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Background
The generalized regularized long-wave (GRLW) equation reads (Peregrine 1996):

where α and µ are positive constants, p ≥ 1 is an integer. When p = 1, the Eq. (1) is usu-
ally called as the regularized long-wave (RLW) equation proposed by Peregrine (1996) 
and Benjamin et  al. (1972) to describe nonlinear dispersive waves. Various numerical 
techniques have been developed to solve this equation. These partly include finite dif-
ference method, finite element methods, least squares method and collocation method 
with quadratic B-splines, cubic B-splines and septic splines, multisymplectic numeri-
cal method, in this respect, we refer readers to Kutluay and Esen (2006), Zhang (2005), 
Avilez-Valente and Seabra-Santos (2004), Esen and Kutluay (2006), Guo and Chen 
(2006); Gu and Chen 2008), Saka and Dag (2008), Dag (2000), Dag and Ozer (2001), Dag 
et al. (2004), Soliman and Raslan (2001), Soliman and Hussien (2005), Cai (2009, 2011), 
and references therein. Another special case of Eq. (1) for p = 2, the modified regular-
ized long-wave (MRLW) equation is given by

(1)ut − µuxxt + ux + αupux = 0,

(2)ut − µuxxt + ux + αu2ux = 0.

Abstract 

In this article, we develop a high-order efficient numerical scheme to solve the initial-
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In recent years, the MRLW equation has attracted much attention of many research-
ers. Many mathematical and numerical studies have been developed for the MRLW 
equation in the literatures. Along the mathematical front, for the exact solutions via 
double reduction theory and Lie symmetries, the bifurcation and travelling wave solu-
tions as well as some explicit analytic solutions obtained from dynamical systems theory, 
numerical solutions with high degree of accuracy by the variational iteration method 
and the Adomian decomposition method, we refer readers to Naz et al. (2013), Yan et al. 
(2012), Labidi and Omrani (2011), Khalifa et al. (2008a).

Along the numerical front, many efficient numerical methods have been developed 
for the MRLW equation, such as a new ten-point multisymplectic explicit numeri-
cal method  (Cai 2010), Sinc-collocation method  (Mokhtari and Mohammadi 2010), 
split least-squares mixed finite element method  (Gao et  al. 2015), B-spline finite ele-
ment method  (Gardner et  al. 1997), finite difference method  (Khalifa et  al. 2007; 
Akbari and Mokhtari 2014), cubic B-spline collocation method  (Khalifa et  al. 2008b), 
quadratic B-spline collocation method  (Tirmizi 2010), quadratic B-spline collocation 
method (Raslan 2009).

In recent works (Dehghan et al. 2009; Xie et al. 2009; Wang and Guo 2011; Wang 2014, 
2015), the fourth-order compact finite difference approximation solutions to solve the 
Klein–Gordon equation, the Schrödinger equation and Klein–Gordon–Schrödinger 
equation were shown, respectively. The numerical results are encouraging. Motivated by 
the techniques of these works, in this paper, we propose a linearized compact conserva-
tive difference scheme with high accuracy to solve the MRLW equation (2) numerically. 
The presented compact difference scheme is three-level, linear-implicit and second-
order accuracy in time and fourth-order accuracy in space. By means of the matrix 
theory, we convert the proposed scheme into the vector difference one. The coefficient 
matrices of the present scheme are symmetric and tridiagonal, and Thomas algorithm 
can be employed to solve them effectively. Numerical example on the model problem 
shows that the present scheme is of high accuracy and good stability, which preserves 
the original conservative properties at the same time.

The rest of this paper is organized as follows. In “The high-accuracy compact conserv-
ative vector difference scheme” section, a linearized compact finite difference scheme 
for the MRLW equation is described. In “Discrete conservative property, estimate and 
solvability” section, we discuss the solvability of the scheme and the estimate of the dif-
ference solution. In “Convergence and stability of the difference scheme” section, con-
vergence and stability of the scheme are proved by using energy method. In “Numerical 
experiments” section, numerical experiments are reported to test the theoretical results.

The high‑accuracy compact conservative vector difference scheme
In this section, we describe a high-order linear-compact conservative difference scheme 
for the Eq. (2). Consider the MRLW equation

with an initial condition

(3)ut − µuxxt + ux + αu2ux = 0,

(4)u(x, 0) = u0(x), x ∈ [xl , xr],
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and the boundary conditions

where u0(x) is a known smooth function.
The IBV problem (3)–(5) is known to possess the following conservative property:

Let h =
xr−xl

J  and τ = T
N  be the uniform step size in the spatial and temporal direc-

tion, respectively. Denote xj = jh (0 ≤ j ≤ J ), tn = nτ (0 ≤ n ≤ N ), unj ≈ u(xj , tn) and 
Z0
h = {u = (uj)|u0 = uJ = 0, j = 0, 1, 2, . . . , J}. Define

In the paper, C denotes a general positive constant which may have different values in 
different occurrences.

For the one-order derivative ux and two-order derivative uxx, we have the following 
formulas:

Omitting the high-order terms O(h4) in the formulas above, we consider the following 
three-level linear compact scheme for the IBV problem (3)–(5).

The scheme (7) is three-level and linear-implicit, so it can be easily implemented and 
suitable for parallel computing.

(5)u(xl , t) = u(xr , t) = 0, t ∈ [0,T ].

(6)E(t) = ||u||2L2 + µ||ux||
2
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, ūnj =

un+1
j + un−1

j

2
,

Ahu
n
j = unj +

h2

12
δxδx̄u

n
j =

1

12

(

unj−1 + 10unj + unj+1

)

u
n+ 1

2
j =

un+1
j + unj

2
, Bhu

n
j = unj +

h2

6
δxδx̄u

n
j =

1

6

(

unj−1 + 4unj + unj+1

)

.

ux(xj) = B
−1
h δx̂u(xj)+ O

(

h4
)

, Nxx(xj) = A
−1
h δxδx̄u(xj)+ O

(

h4
)

, (j �= 0, J ).
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n
j

)(

unj

)2

+ δx̂

[

(

unj

)2(
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Define

Notice that M and K  are two real-value symmetric positive definite matrices. Hence 
there exist two real-value symmetric positive definite matrices G and H, such that 
G = M

−1, H = K
−1. Then (7)–(10) can be rewritten into the vector form as follows:

For convenience, the last term of (11) is defined by

Discrete conservative property, estimate and solvability
In this section, we shall discuss the estimate for the difference solution and the solvabil-
ity of the difference scheme (11). For ∀vn,wn ∈ Z0

h, we define the discrete inner products 
and norms on Z0

h via:
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∑
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(
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To analyze the discrete conservative property and estimates of difference solution for 
the scheme (11)–(14), the following lemmas should be introduced.

Lemma 1  (Wang and Guo 2011) For any real value symmetric positive definite matrix 
G(J−1)×(J−1), then we have

where R is obtained from G by Cholesky decomposition (Zhang 2004).

Lemma 2  (Wang 2015) On the matrices M and K , there are the following results:

(1)	  The eigenvalues of the matrices M and K  are 

(2)	  The two matrices have the same eigenvectors 

Lemma 3  For real value symmetric positive definite matrices G(J−1)×(J−1) = M
−1 and 

H (J−1)×(J−1) = K
−1, then there exist three positive constants C0, C1 and C2, such that

where C0 = 1,C1 =
3
2 ,C2 = 3, R and S are obtained from G, H by Cholesky decomposi-

tion (Zhang 2004) respectively.

Proof  It follows from Lemma 2 that

This implies that

Notice that G and H are also real value symmetric positive definite matrices. From 
Cholesky decomposition, we obtain

Then
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This together with the definition of matrix norm and (18) gives that

where C0 = 1,C1 =
3
2. Similarly, we can also obtain

where C0 = 1,C2 = 3.

Remark 1  On the above real value symmetric positive definite matrices G and H, 
according to Lemmas 2 and 3, for C is big enough, we can have ||Sun||2 ≤ C||Run||2.

We also use the following Lemma.

Lemma 4  (Discrete Sobolev’s inequality Zhou 1990) There exist two positive constants 
C1 and C2 such that

Theorem  1  Suppose u0 ∈ H1
0 [xl , xr], then the scheme (11)–(14) admits the following 

invariant

Proof  Taking the inner product of (11) with un+1 + u
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Computing the fourth term of the left-hand side in (24) yields

It follows from (24) to (26) that

Thus

where En = 1
2 (||u

n+1||2+||un||2)+ 1
2µ(||Rδxu

n+1||2+||Rδxu
n||2)+hτ

∑J−1
j=1 (Sδx̂u

n
j )Su
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j  . 

This completes the proof of Theorem 1.

Theorem 2  Assume that u0 is sufficiently smooth, then there is the estimation for the 
solution un of the scheme (11)–(14): ||un|| ≤ C , ||δxu

n|| ≤ C, which yield ||un||∞ ≤ C.

Proof  It follows from (23) that

This together with Lemma 3 gives that

Let τ be small enough, such that 1− C2τ > 0,C0µ− C2βτ > 0, then we obtain from 
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n
��

u
n
�2
, ūn

�

−
�

S
�

u
n
�2
ū
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n
j

��

unj

�2
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[
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An application of Lemma 4 yields

Remark 2  Theorem 2 implies that scheme (11)–(14) is unconditionally stable.

Theorem 3  The difference scheme (11) is uniquely solvable.

Proof  By the mathematical induction. It is obvious that u0 is uniquely determined by 
(13). We can choose a fourth-order method to compute u1 [such as C–N scheme (12)]. 
Assuming that u1, . . . ,un are uniquely solvable, consider un+1 in (11) which satisfies

Doing in (33) the inner product of with un+1 and using Lemma 1 yield

where φ(un,un+1) = 1
8αH[δx̂u

n+1(un)2 + δx̂((u
n)2un+1)].

Similarly to the proof of (26), we obtain

This together with (34) gives that

This implies that there uniquely exists trivial solution satisfying Eq. (33). Hence, un+1 
in (11) is uniquely solvable. This completes the proof of Theorem 3.

Convergence and stability of the difference scheme
First, we shall consider the truncation error of the difference scheme (11)–(14). Let 
vnj = u(xj , tn). We define the truncation error as follows:

(32)||un||∞ ≤ C .
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[
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0 = u0, 1 ≤ j ≤ J − 1,

(40)vn0 = vnJ = 0, 0 ≤ n ≤ N .
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Using Taylor expansion and considering the construction of the difference scheme 
of (7)–(10), we know the accuracy of (7)–(10) is O(τ 2 + h4). The scheme (11)–(14) is 
equivalent to (7)–(10). Then we have that |rn| = O(τ 2 + h4), |σ 0| = O(τ 2 + h4) hold if 
τ , h → 0.

Next, we shall discuss the convergence and stability of the scheme (11)–(14).

Lemma 5  (Discrete Gronwall inequality  Zhou 1990) Suppose that the discrete mesh 
function {wn|n = 1, 2, . . . ,N ;Nτ = T } satisfies recurrence formula

where A,B and Cn (n = 1, . . . ,N) are nonnegative constants. Then

where τ is small, such that (A+ B)τ ≤ N−1
2N (N > 1).

Theorem 4  Assume that u0 is sufficiently smooth and u(x, t) ∈ C5,3
x,t , then the solution un 

of the scheme (10)–(12) converges to the solution of the IBV problem (3)–(5) and the rate 
of convergence is O(τ 2 + h4) by the || · ||∞ norm.

Proof  Let en = v
n − u

n. From (37) to (40) and (11) to (14), we have

Doing in (41) the inner product with 2ēn (i.e. en+1 + e
n−1) and using Lemma 1, we obtain

where P = 1
4αH[(δx̂v̄

n)(vn)2 − (δx̂ū
n)(un)2], Q = 1

4αH{[δx̂[(v
n)2v̄n] − δx̂[(u

n)2ūn]}.

wn − wn−1 ≤ Aτwn + Bτwn−1 + Cnτ ,

||wn||∞ ≤

(

w0 + τ

N
∑

k=1

Ck

)

e2(A+B)T ,

(41)

r
n = δt̂e

n − µGδxδx̄δt̂e
n +Hδx̂e

n +
1

4
αH

{

(

δx̂v̄
n
)(

v
n
)2

+ δx̂

[

(

v
n
)2
v̄
n
]}

−
1

4
αH

{

(

δx̂ū
n
)(

u
n
)2

+ δx̂

[

(

u
n
)2
ū
n
]}

, 1 ≤ n ≤ N − 1,

(42)

σ
0 = δte

0 − µGδxδx̄δte
0 +Hδx̂e

0+ 1
2 +

1

4
αH

{

(

δx̂v
0+ 1

2

)(

v
0+ 1

2

)2
+ δx̂

[

(

v
0+ 1

2

)3
]}

−
1

4
αH

{

(

δx̂u
0+ 1

2 )(u0+
1
2

)2
+ δx̂

[

(

u
0+ 1

2

)3
]}

,

(43)e
0 = 0, 1 ≤ j ≤ J − 1,

(44)en0 = enJ = 0, 0 ≤ n ≤ N .

(45)

(

r
n, 2ēn

)

=
1

2τ

(

||en+1||2 − ||en−1||2
)

+
1

2τ
µ

(

||Rδxe
n+1||2 − ||Rδxe

n−1||2
)

+ h

J−1
∑

j=1

(

Sδx̂e
n
j

)

S

(

en+1
j + en−1

j

)

+
(

P + Q, 2ēn
)

,
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Computing the fourth term of right-hand side of (45) and using Theorem 2, Lemma 3 
yield

Similarly, we have that

In addition, it is obvious that

It follows from (45) to (49) that

Let Bn = 1
2 (||e

n+1||2 + ||en||2)+ 1
2 (||Rδxe

n+1||2 + ||Rδxe
n||2), then (50) can be written 

as follows:

By Lemma 5, it can immediately be obtained that

(46)

�

P, 2ēn
�

=
1

2
α

�

H

�

�

δx̂v̄
n
��

v
n
�2

−
�

δx̂ū
n
��

u
n
�2
�

, ēn
�

=
1

2
α

�

H

�

�

δx̂ē
n
��

v
n
�2

+
�

δx̂ū
n
�

�

�

v
n
�2

−
�

u
n
�2
��

, ēn
�

=
1

2
αh







J−1
�

j=1

S

�

δx̂ ē
n
j

��

vnj

�2
Sēnj +

J−1
�

j=1

S

�

δx̂ū
n
j

�

�

�

vnj

�2
−

�

unj

�2
�

Sēnj







=
1

2
αh

J−1
�

j=1

S

�

δx̂ ē
n
j

��

vnj

�2
Sēnj +

1

2
αh

J−1
�

j=1

S

�

δx̂ū
n
j

��

enj

�

vnj − unj

��

Sēnj

≤ C
�

||Sδx̂ē
n||2 + ||Sen||2 + ||Sēn||2

�

≤ C
�

||Rδxe
n+1||2 + ||Rδxe

n−1||2 + ||en+1||2 + ||en||2 + ||en−1||2
�

.

(47)
(

Q, 2ēn
)

≤ C
(

||Rδxe
n+1||2 + ||Rδxe

n−1||2 + ||en+1||2 + ||en||2 + ||en−1||2
)

.

(48)
(

r
n, 2ēn

)

≤ ||rn||2 +
1

2

(

||en+1||2 + ||en−1||2
)

,

(49)

h

J−1
∑

j=1

(

Sδx̂e
n
j

)

S

(

en+1
j + en−1

j

)

≤ ||Sδxe
n||2 +

1

2

(

||en+1||2 + ||en−1||2
)

≤ C||Rδxe
n||2 +

1

2

(

||en+1||2 + ||en−1||2
)

.

(50)

1

2τ

(

||en+1||2 − ||en−1||2
)

+
1

2τ

(

||Rδxe
n+1||2 − ||Rδxe

n−1||2
)

≤ ||rn||2 + C

[

||Rδxe
n+1||2 + ||Rδxe

n||2 + ||Rδxe
n−1||2 + ||en+1||2 + ||en||2 + ||en−1||2

]

.

(51)Bn − Bn−1 ≤ τ ||rn||2 + Cτ
(

Bn + Bn−1
)

.

(52)Bn ≤

(

B0 + T sup
l≤n≤N

||rn||2

)

eCT .
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Taking the inner product in (42) with e1, we have

where I = 1
4
αH[(δx̂v

0+ 1
2 )(v0+

1
2 )2 − (δx̂u

0+ 1
2 )(u0+

1
2 )2], II = 1

4
αH{δx̂[(v

0+ 1
2 )3] − δx̂[(u

0+ 1
2 )3]}. 

Notice that

From the discrete initial condition (43), we know that e0 = 0. Computing the fourth 
term of right-hand side in (53) and using Theorem 2, Lemma 3 yield

Similarly, we get

It follows from (53) to (56) that

This together with (σ 0, e1) ≤ 1
2 (||σ

0||2 + ||e1||2) and Lemma 3 gives that

Let τ be small enough, such that 1
τ
− 1

2 − C > 0, 1
τ
C0µ− C > 0. Then we obtain from 

(58) that

where K1 =
1

2
τ
−1−2C

,K2 =
1

2
τ
C0µ−2C

.

It follows from Lemma 3 that

(53)
(

σ
0, e1

)

=
1

τ
||e1||2 +

1

τ
µ||Rδxe

1||2 +
1

2

(

Hδx̂e
1, e1

)

+
(

I , e1
)

+
(

II , e1
)

,

(54)
1

2

(

Hδx̂e
1, e1

)

= 0.

(55)

(

I , e1
)

=

(

1

4
αH

[

(

δx̂v
0+ 1

2

)(

v
0+ 1

2

)2
−

(

δx̂u
0+ 1

2

)(

u
0+ 1

2

)2
]

, e1
)

=
1

8
α

(

S

[

(

δx̂e
1
)(

v
0+ 1

2

)2
+

(

δx̂u
0+ 1

2

)

e
1
(

v
0+ 1

2 + u
0+ 1

2

)

]

, Se1
)

≤ C
(

||Sδxe
1||2 + ||Se1||2

)

≤ C
(

||δxe
1||2 + ||e1||

)

.

(56)
(

II , e1
)

≤ C
(

||δxe
1||2 + ||e1||

)

.

(57)
1

τ
||e1||2 +

1

τ
µ||Rδxe

1||2 ≤
(

σ
0, e1

)

+ C
(

||δxe
1||2 + ||e1||

)

.

(58)

(

1

τ
−

1

2
− C

)

||e1||2 +

(

1

τ
C0µ− C

)

||δxe
1||2 ≤

1

2
||σ 0||2.

(59)||e1||2 ≤ K1[O(τ 2 + h4)]2, ||δxe
1||2 ≤ K2

[

O
(

τ 2 + h4
)]2

,

(60)||Rδxe
1||2 ≤ C1K2

[

O
(

τ 2 + h4
)]2

.
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This implies that

It follows from (52) that

which together with Lemmas 3 and 4, and the definition of Bn gives that

This completes the proof of Theorem 4.
Similarly, we can prove stability of the difference solution.

Theorem 5  Under the conditions of Theorem 4, the solution un of the scheme (11)–(14) 
is unconditionally stable by the || · ||∞ norm.

Numerical experiments
In this section, we conduct some numerical experiments to verify our theoretical results 
obtained in the previous sections. In order to test whether the present scheme (11)–(14) 
exhibits the expect convergence rates in time and in space, we will measure the accuracy 
of the proposed scheme using the square norm errors and the maximum norm errors 
defined by

The exact solution of the IBV problem (3)–(5) has the following form (Gardner et al. 
1997):

where x0, c are arbitrary constants.
It follows from (64) that the initial-boundary value problem (3)–(5) is consistent to the 

initial value problem (3) and (4) for −xl ≫ 0, xr ≫ 0. In the following numerical experi-
ments, we take xl = −40, xr = 60, T = 10.

The IBV problem (3)–(5) has another two invariants (Gardner et al. 1997):

(61)B0 =
[

O
(

τ 2 + h4
)]2

.

(62)Bn ≤ C
[

O
(

τ 2 + h4
)]2

,

(63)||en||∞ ≤ C · O
(

τ 2 + h4
)

.

enǫ1 = ||vn − u
n||∞, enǫ2 = ||vn − u

n||.

(64)u(x, t) =

√

6c

α
sech

[√

c

µ(c + 1)
(x − (c + 1)t − x0)

]

,

(65)Q(t) =

∫ xr

xl

u(x, t)dx ≃ h

J−1
∑

j=1

unj ,
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The initial condition of the studied model is obtained from (64) with the parameters 
x0 , c, α and μ:

In computations, we always choose the parameter x0 = 0. Take the parameters 
c = α = µ = 1. To verify the accuracy O(τ 2 + h4) in the spatial direction, we take 
τ = h2 . And we choose h small enough to verify the second-order accuracy in the tem-
poral direction. The convergence order figure of log(en)–log(h) with τ = h2 and the one 
of log(en)–log(τ ) with h small enough are given in Figs. 1 and 2 under various mesh steps 
h and τ at t = 10. From Figs. 1 and 2, it is obvious that the scheme (11)–(14) is conver-
gent in maximum norm, and the convergence order is O(τ 2 + h4).

The errors in the sense of L∞-norm and L2-norm of the numerical solutions un of 
the scheme (11) are listed on Tables 1 and 2. Tables 1 and 2 shows good stability of the 
numerical solutions and also verify the scheme in present paper is efficient and of high 
accuracy.

We have shown in Theorem 1 that the numerical solution un of the scheme (11) satis-
fies the conservative property (23). The values of En, Q Ẽ for the scheme (11) are pre-
sented in Table 3 under steps h = 0.1 and τ = 0.01. It is easy to see from Table 3 that the 
scheme (11) preserves the discrete conservative properties very well, thus it can be used 
to computing for a long time.

The curves of the solitary wave with time computed by scheme (11) with h = 0.05 and 
τ = 0.0025 are given in Fig.  3; the waves at t = 5 and 10 agree with the ones at t = 0 
quite well, which also demonstrate the accuracy and efficiency of the scheme in present 
paper.

To compare the numerical results with other results shown in previous stud-
ies, we denote the proposed scheme in Akbari and Mokhtari (2014) as Scheme I with 
p = 2,µ = ε = 1 and d = 1

3. Denote the present scheme (11) with c = 1
3 ,α = µ = 1 as 

Scheme II. The corresponding errors in the sense of L∞-norm and CPU time are listed 
on Table 4 under different mesh steps h and τ. From Table 4, we get that a fourth-order 
three-level linear scheme as accurate as Scheme I which is a two-level one.

Conclusion
In this paper, an attempt has been made to construct a new numerical scheme to 
solve the initial-boundary problem of the MRLW equation, which has the following 

(66)Ẽ(t) =

∫ xr

xl

[

u4 −
6µ

α
u2x

]

dx ≃ h

J−1
∑

j=1

[

(

unj

)4
−

6µ

α

(

(ux)
n
j

)2
]

.

(67)u(x, 0) =

√

6c

α
sech

[√

c

µ(c + 1)
(x − x0)

]

.
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Fig. 1  Spatial convergence order in maximal norm for un at t = 10 with different h and τ computed by the 
scheme (11)–(14)
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Fig. 2  Temporal convergence order in maximal norm for un at t = 10 with different h and τ computed by the 
scheme (11)–(14)
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advantages: Coupling with the matrix theory, we convert the proposed scheme into 
the vector difference one. The new scheme is high-accuracy which has the accuracy 
of O(τ 2 + h4); The new scheme is conservative and preserves the original conserva-
tive properties; The coefficient matrices of the scheme is symmetric and tridiagonal, so 
Thomas algorithm can be employed to solve it effectively. Some numerical results are 
reported to show the efficiency and accuracy of the scheme.

Table 1  The errors for  numerical solutions un of  the scheme (11)–(14) at  different time t 
with various h and τ = h

2

t h = 0.2 0.1 0.05 0.025

e
n
ǫ1

e
n
ǫ2

e
n
ǫ1

e
n
ǫ2

e
n
ǫ1

e
n
ǫ2

e
n
ǫ1

e
n
ǫ2

2 3.7504e−3 6.8705e−3 2.3827e−4 4.3361e−4 1.4930e−5 2.7153e−5 9.3409e−7 1.6997e−6

4 7.1325e−3 1.3403e−2 4.5011e−4 8.438e−4 2.8167e−5 5.2812e−5 1.7639e−6 3.3089e−6

6 1.0303e−2 1.9666e−2 6.5000e−4 1.2367e−3 4.0665e−5 7.7372e−5 2.5487e−6 4.8528e−6

8 1.3432e−2 2.5820e−2 8.4767e−4 1.6227e−3 5.3023e−5 1.0151e−4 3.3268e−6 6.3733e−6

10 1.6551e−2 3.1935e−2 1.0447e−3 2.0063e−3 6.5345e−5 1.2549e−4 4.1045e−6 7.8878e−6

Table 2  The errors for  numerical solutions un of  the scheme (11)–(14) at  different time t 
with various τ when h = 0.05

t τ = 0.1 0.05 0.025 0.0125

e
n
ǫ1

e
n
ǫ2

e
n
ǫ1

e
n
ǫ2

e
n
ǫ1

e
n
ǫ2

e
n
ǫ1

e
n
ǫ2

2 2.1201e−2 3.9697e−2 5.4220e−3 1.0131e−2 1.3673e−3 2.5533e−3 3.4332e−4 6.4146e−4

4 4.1031e−2 7.8091e−2 1.0443e−2 1.9881e−2 2.6281e−3 5.0027e−3 6.5986e−4 1.2555e−3

6 5.9886e−2 1.1514e−1 1.5225e−2 2.9270e−2 3.8276e−3 7.3585e−3 9.6034e−4 1.8457e−3

8 7.8493e−2 1.5154e−1 1.9948e−2 3.8497e−2 5.0129e−3 9.6738e−3 1.2572e−3 2.4257e−3

10 9.7041e−2 1.8768e−1 2.4657e−2 4.7665e−2 6.1945e−3 1.1974e−2 1.5533e−3 3.0020e−3

Table 3  Discrete conservative properties of  the scheme (11)–(14) when  h = 0.1 
and τ = 0.01

t E
n Q ˜E

2 19.7989864026379 10.8827962014572 50.9215819473395

4 19.7989864025761 10.8827962035498 50.9215813909925

6 19.7989864025143 10.8827962044781 50.9215812185741

8 19.7989864024516 10.8827962047988 50.9215811567766

10 19.7989864023892 10.8827962049056 50.9215811324460
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Fig. 3  Exact solutions u(x, t) at t = 0 and numerical solutions un computed by the scheme (11)–(14) with 
h = 0.05, τ = 0.0025 at t = 5 and 10

Table 4  The maximal errors for  numerical solutions un of  Scheme I and II at time t = 10 
with various h and τ

(h, τ) (0.1, 0.2) (0.05, 0.05) (0.025, 0.0125) (0.0125, 0.003125)

Scheme I 3.11496e−2 1.53986e−3 8.84019e−5 5.40468e−6

CPU time (s) 0.929105 2.412442 19.031491 255.135799

Scheme II 2.91603e−2 1.87511e−3 1.17545e−4 7.35116e−6

CPU time (s) 0.727532 2.229997 17.104052 239.567755
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