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Background
One of the most interest topics in mathematics ecology concerns the uniform persis-
tence, almost periodic oscillations and global stability of ecology system. It is well known 
that a lot of Lotka–Volterra competitive systems have been discussed. Chen (1988) pro-
posed and discussed a more practical competitive model as follows:

In biological terms, x1 and x2 stand for the spatial densities of each species and c1 and 
c2 are their respective net death rate. The coefficients a11 and a22 are intra-specific 
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a10(t)
x1(t)+m1(t)

− a11(t)x1(t)− a12(t)x2(t)− c1(t)
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ẋ2(t) = x2(t)

�

a20(t)
x2(t)+m2(t)

− a21(t)x1(t)− a22(t)x2(t)− c2(t)

�

.

Abstract 

In real world, the ecological systems are usually perturbed by human exploitation 
activities such as planting and harvesting and so on. In order to obtain a more accurate 
description for such phenomenon, the impulsive differential equations play an impor-
tant role. This paper is concerned with a kind of almost periodic Schoener’s competi-
tion model with pure-delays and impulsive effects. By using the comparison theorem 
and the Lyapunov functional method of the impulsive differential equations, some suf-
ficient conditions are obtained for the persistence and existence of a unique uniformly 
asymptotically stable positive almost periodic solution in a class of impulsive Sch-
oener’s competition model with pure-delays. The main results in this paper improve 
some results in recent years. And the method used in this paper provides a possible 
and effective method to study the permanence and existence of a unique uniformly 
asymptotically stable positive almost periodic solution of the models with impulsive 
perturbations in biological populations. Finally, an example and numerical simulations 
are given to illustrate the feasibility and effectiveness of our main results.
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competition rates whereas a12 and a21 are inter-specific competition rates. The asymp-
totic behaviors of the solution to the system (1) have been studied in Liu et al. (2006).

It is well known that the assumption of almost periodicity of the coefficients in systems 
is a way of incorporating the time-dependent variability of the environment, especially 
when the various components of the environment are periodic with not necessary com-
mensurate periods (e.g., climate change, food supplies, mating habits and harvesting). 
For this reason, the assumption of almost periodicity is more realistic, more important 
and more general when we consider the effects of the environmental factors. In recent 
years, there are many scholars concerning with the Schoener’s competition system. Top-
ics such as existence, uniqueness and global attractivity of positive periodic solutions or 
almost periodic solutions of the system were extensively investigated, and many excel-
lent results have been derived (see Xue et al. 2015; Tian et al. 2015; Zhang et al. 2015; Liu 
and Xu 2004; Liu et al. 2006; Li and Yang 2009; Gan and Lin 2012; Wu et al. 2009; Zhang 
et al. 2012 and the references cited therein).

On the other hand, many evolution processes are characterized by the fact that at cer-
tain moments of time they experience a change of state abruptly. These processes are 
subject to short-term perturbations whose duration is negligible in comparison with the 
duration of the process. Consequently, it is natural to assume that these perturbations act 
instantaneously, that is, in the form of impulses. Thus impulsive differential equations, 
that is, differential equations involving impulse effects, appear as a natural description of 
observed evolution phenomena of real world problems. The ecological systems are often 
deeply perturbed by human exploitation activities such as planting and harvesting and so 
on, which makes them unsuitable to be considered continually. In recent years, the impul-
sive problems in ecological systems have been intensively investigated (see Lakshmikan-
tham et  al. 1989; Stamov 2012; Samoilenko and Perestyuk 1995; Bainov and Simeonov 
1993; Jin et al. 2005; Stamov 2009; Liu and Chen 2007; He et al. 2010; Zhang et al. 2014; 
Zhang and Li 2011 for more detail). For instance, Zhang et al. (2012) studied the following 
almost periodic Schoener’s competition model with pure-delays and impulsive effects:

where x1(t), x2(t) are population densities of species x1, x2 at time t, respec-
tively, τij are all nonnegative integers, aij, mi and ci, are all positive almost peri-
odic functions, i = 1, 2, j = 0, 1, 2, h1k , h2k ≥ 0 are almost periodic sequences, 
0 = τ0 < τ1 < τ2 < · · · < τk < τk+1 < · · ·, are impulse points with limk→+∞ τk = +∞, 
and the set of sequences {τ jk}, τ

j
k = τk+j − τk , k ∈ Z

+, j ∈ Z is uniformly almost periodic 
(see Definition 1 in “Preliminaries” section).

The permanence and almost periodicity of all species in multispecies community are 
very important in biological populations. In recent years, the permanence and almost 
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ẋ1(t) = x1(t)

�

a10(t)
x1(t−τ10)+m1(t)

− a11(t)x1(t − τ11)− a12(t)x2(t − τ12)− c1(t)

�

,

ẋ2(t) = x2(t)

�

a20(t)
x2(t−τ20)+m2(t)

− a21(t)x1(t − τ21)− a22(t)x2(t − τ22)− c2(t)

�

, t �= τk ,

�x1(τk) = h1kx1(τk),

�x2(τk) = h2kx2(τk), k ∈ Z
+ := {0, 1, . . .},
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periodic solution of the models in biological populations has been studied by many 
authors (see Zhang 2013, 2014; Du and Lv 2013; Meng and Chen 2006; Lin and Chen 
2009; Zhou et al. 2013; Zhang et al. 2014; Xia et al. 2008; Xia 2013; Liao and Zhang 2012; 
Liao and Xu 2014 and the references cited therein). In these cases, the comparison theo-
rems and the Liapunov functional method of differential equations have been applied 
to obtain the permanence and almost periodic solutions. However, we find few papers 
referring to the discontinuous systems (i.e., impulsive systems).

Recently, there are some scholars concerning with the permanence and almost peri-
odic solution of the impulsive models in biological populations, see Zhang et al. (2012, 
2014), He et al. (2010). For example, He et al. (2010) considered the following impulsive 
differential equation model of plankton allelopathy

By using the relation between the solutions of impulsive system and the corresponding 
non-impulsive system, the authors transformed impulsive system (3) into a continuous 
system. Further, by means of the comparison theorems and the Liapunov functional 
method of differential equations without impulses, the authors obtained some sufficient 
conditions ensuring the existence of a unique uniformly asymptotically stable positive 
almost periodic solution of system (3).

Next, by using a similar method as that in He et al. (2010), the authors in Zhang et al. 
(2012, 2014) studied the permanence and almost periodic solution of system (2) and the 
following impulsive multispecies mutualism system:

It is worthwhile to note that the main results of paper (Zhang et al. 2012, 2014; He et al. 
2010) indicates the impulsive coefficients hik in system (2)–(4) satisfying the following 
condition: 

(F)  � Hi(t) :=
∏

0<tk<t(1+ hik), i = 1, 2 or i = 1, 2, . . . , n (for system (4)), k ∈ Z
+ is 

almost periodic function and there exist positive constants Hu
i  and Hl

i  such that 
Hl
i ≤ Hi(t) ≤ Hu

i .

Remark 1  Obviously, condition (F) is too harsh. For example, if the impulse coefficient 
hik ≡ 0.3 (i = 1, 2) in system (2)–(4), then (F) is invalid. Therefore, the main results in 
papers (Zhang et al. 2012, 2014; He et al. 2010) are difficult to apply to more extensive 
model with impulsive effects.
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ẋ1(t) = x1(t)

�

r1(t)− a11(t)x1(t)− a12(t)x1(t)− b1(t)x1(t)x2(t)

�

,

ẋ2(t) = x2(t)

�

r1(t)− a21(t)x1(t)− a22(t)x2(t)− b2(t)x1(t)x2(t)

�

, t �= tk ,

�x1(tk) = h1kx1(tk),

�x2(tk) = h2kx2(tk), k ∈ Z
+.

(4)
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ẋi(t) = xi(t)

�

ri(t)− ai(t)xi(t − τi(t))+
�n

j=1,j �=i bij(t)
xj(t)

1+xj(t)

�

, t �= tk ,

�xi(tk) = hikxi(tk), k ∈ Z
+, i = 1, 2, . . . , n.
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In Zhang et  al. (2012, 2014), He et  al. (2010), although the authors considered the 
impulsive system, but still used the research method of continuous systems. Stimulated 
by this, by means of the comparison theorem and the Lyapunov functional method of 
the impulsive differential equations (Lakshmikantham et  al. 1989; Stamov 2012), the 
main purpose of this paper is to establish some sufficient conditions which guarantee the 
permanence and existence of a unique uniformly asymptotically stable positive almost 
periodic solution of system (2). The main results obtained in this paper remove the harsh 
condition (F) and provide a possible and effective method to study the permanence and 
existence of a unique uniformly asymptotically stable positive almost periodic solution 
of the models with impulsive perturbations in biological populations.

Let R and Z denote the sets of real numbers and integers integers, respectively. Related 
to a continuous function f, we use the following notations:

The organization of this paper is as follows. In “Preliminaries” section, we give some 
basic definitions and necessary lemmas which will be used in later sections. In “Perma-
nence” section, by using the comparison theorem of the impulsive differential equations 
(Lakshmikantham et al. 1989), we give the permanence of system (2). In “Almost peri-
odic solution” section, we study the existence of a unique uniformly asymptotically sta-
ble positive almost periodic solution of system (2) by applying the Lyapunov method of 
the impulsive differential equations (Stamov 2012). Finally, an example and numerical 
simulations are given to illustrate that our results are feasible.

Preliminaries
Now, let us state the following definitions and lemmas, which will be useful in proving 
our main result.

By I, I = {{τk} ∈ R : τk < τk+1, k ∈ Z, limk→±∞ τk = ±∞}, we denote the set 
of all sequences that are unbounded and strictly increasing. Let � ⊂ R, � �= ∅, 
τ = max{2τij , i = 1, 2, j = 0, 1, 2}, ξ0 ∈ R, introduce the following notations:
PC(ξ0) is the space of all functions φ : [ξ0 − τ , ξ0] → � having points of discontinuity 

at µ1,µ2, . . . ∈ [ξ0 − τ , ξ0] of the first kind and left continuous at these points.
For J ⊂ R, PC(J ,R) is the space of all piecewise continuous functions from J to R with 

points of discontinuity of the first kind τk, at which it is left continuous.
Let φ1,φ2 ∈ PC(0). Denote by xi(t) = xi(t; 0,φi), xi ∈ �, i = 1, 2 the solution of system 

(2) satisfying the initial conditions

By the basic theories of impulsive differential equations with delay in Stamov (2012), sys-
tem (2) and (5) has a unique solution. Since the solution of system (2) and (5) is a piece-
wise continuous function with points of discontinuity of the first kind τk, k ∈ Z we adopt 
the following definitions for almost periodicity.

Definition 1  (Stamov 2012) The integer number p is said to be an ǫ-almost period of 
{τk}, if for k ∈ Z, |τk+p − τk | < ǫ.

f l = inf
s∈R

f (s), f u = sup
s∈R

f (s).

(5)0 ≤ xi(s; 0,φi) = φi(s) < +∞, s ∈ [−τ , 0], xi(0+ 0; 0,φi) = φi(0) > 0.
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Definition 2  (Stamov 2012) The set of sequences {τ
j
k}, τ

j
k = τk+j − τk ,

k ∈ Z, j ∈ Z, {τk} ∈ I is said to be uniformly almost periodic if for arbitrary ǫ > 0 there 
exists a relatively dense set of ǫ-almost periods common for any sequences.

Definition 3  (Stamov 2012) The function ϕ ∈ PC(R,R) is said to be almost periodic, if 
the following hold:

(1) 	�The set of sequences {τ jk}, τ
j
k = τk+j − τk , k ∈ Z, j ∈ Z, {τk} ∈ I is uniformly almost 

periodic.
(2) 	�For any ǫ > 0 there exists a real number δ > 0 such that if the points t ′ and t ′′ 

belong to one and the same interval of continuity of ϕ(t) and satisfy the inequality 
|t ′ − t ′′| < δ, then |ϕ(t ′)− ϕ(t ′′)| < ǫ.

(3) 	�For any ǫ > 0 there exists a relatively dense set T such that if η ∈ T  , then 
|ϕ(t + η)− ϕ(t)| < ǫ for all t ∈ R satisfying the condition |t − τk | > ǫ, k ∈ Z. The 
elements of T are called ǫ-almost periods.

Lemma 1  (Stamov 2012) Let {τk} ∈ I Then there exists a positive integer. A such that on 
each interval of length 1, we have no more than A elements of the sequence {τk}, i.e.,

where i(s, t) is the number of the points τk in the interval (s, t).

Theoretically, one can investigate the existence, uniqueness and stability of almost 
periodic solution for functional differential equations by using Lyapunov functional as 
follows (Stamov 2012, P109):

Let Rn be the n-dimensional Euclidean space with elements x = (x1, . . . , xn)
T and 

norm |x|0 =
∑n

i=1 |xi|, C = C([−τ , 0],Rn), B ∈ R
+. Denote CB = {ϕ ∈ C : �ϕ� < B}, 

with �ϕ� = sups∈[−τ ,0] |ϕ(s)|0.
Consider the system of impulsive differential equations with delay:

where t ∈ R, {τk} ∈ I, f (t,ϕ) is continuous in (t,ϕ) ∈ R× CB and almost periodic in t 
uniformly for ϕ ∈ CB, ∀ρ > 0, ∃M(ρ) > 0 such that |f (t,ϕ)| ≤ M(ρ) as t ∈ R, ϕ ∈ Cρ, 
while xt ∈ CB is defined as xt(s) = x(t + s) for s ∈ [−τ , 0], Ik : D → R

n, k ∈ Z, D is an 
open set in Rn.

Introduce the following conditions: 

(C1)	�  The sequence {Ik(x)}, k ∈ Z is almost periodic uniformly with respect to x ∈ D.

Lemma 2  (Stamov 2012, P109) Suppose that there exists a Lyapunov functional 
V (t,φ,ψ) defined on R× CB × CB satisfying the following conditions:

(1)	 u(�φ − ψ�) ≤ V (t,φ,ψ) ≤ v(�φ − ψ�), where u, v ∈ P with P = {u : R+ → R
+|u 

is continuous increasing function and u(s) → 0 as s → 0}.

i(s, t) ≤ A(t − s)+ A,

(6)







ẋ(t) = f (t, xt), t �= τk ,

�x(τk) = Ik(x(τk)),
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(2) 	|V (t, φ̄, ψ̄)− V (t, φ̂, ψ̂)| ≤ L(�φ̄ − φ̂� + �ψ̄ − ψ̂�), where L > 0 is a constant.
(3)	 For t = τk, V (t+,φ + Ik(φ),ψ + Ik(ψ)) ≤ V (t,φ,ψ); For t �= τk, V̇(2.2)(t,φ,ψ) ≤

−γV (t,φ,ψ), ∀k ∈ Z, where γ > 0 is a constant.

Moreover, one assumes that system (6) has a solution that remains in a compact set S ⊂ D. 
Then system (6) has a unique almost periodic solution which is uniformly asymptotically stable.

Remark 2  From the proof of Lemma 2, it is not difficult to prove that condition (1) of 
Lemma 2 can be replaced by the following condition: 

(1)′ 	u(|φ(0)− ψ(0)|0) ≤ V (t,φ,ψ) ≤ v(�φ − ψ�), where u, v ∈ P with P = {u : R+

→ R
+|u is continuous increasing function and u(s) → 0 as s → 0}.

Permanence
In this section, we establish a permanence result for system (2).

Lemma 3  (Lakshmikantham et al. 1989) Assume that x ∈ PC(R) with points of discon-
tinuity at t = τk and is left continuous at t = τk for k ∈ Z

+, and

where f ∈ C(R× R,R), Ik ∈ C(R,R) and Ik(x) is nondecreasing in x for k ∈ Z
+. Let 

u∗(t) be the maximal solution of the scalar impulsive differential equation

existing on [t0,∞). Then x(t+0 ) ≤ u0 implies x(t) ≤ u∗(t) for t ≥ t0.

Remark 3  If the inequalities (7) in Lemma 3 is reversed and u∗(t) is the minimal solu-
tion of system (8) existing on [t0,∞), then x(t+0 ) ≥ u0 implies x(t) ≥ u∗(t) for t ≥ t0.

For arbitrary a, b > 0, hk ≥ 0, we give the following notations:

where A is defined as that in Lemma 1, τ 1k = τk+1 − τk is defined as that in Definition 2.

Lemma 4  Assume that a, b > 0, hk ≥ 0, then the following impulsive logistic equation

(7)







ẋ(t) ≤ f (t, x(t)), t �= τk ,

x(τ+
k
) ≤ Ik(x(τk)), k ∈ Z

+,

(8)







u̇(t) = f (t,u(t)), t �= τk ,

u(τ+k ) = Ik(u(τk)) ≥ 0, k ∈ Z
+,

u(t+0 ) = u0

ξ : = ln sup
k∈Z

1

1+ hk
, α := a− ξA, θ := inf

k∈Z
τ 1k , η := inf

k∈Z

{ 1
∏

j=0

1

1+ hj+k
, 1

}

,

W (t, s) =

{

e−a(t−s), τk−1 < s < t < τk ;
∏k+1

j=m
1

1+hj
e−a(t−s), τm−1 < s ≤ τm < τk < t ≤ τk+1,

(9)







ẋ(t) = x(t)
�

a− bx(t)
�

, t �= τk ,

�x(τk) = hkx(τk), k ∈ Z
+
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has a unique globally asymptotically stable positive almost periodic solution x∗, which 
can be expressed as follows:

Proof  Let u =
1
x, then system (9) changes to

Together with the system (11) we consider the linear system

Now let us consider the equation

and its solution

Then from Stamov (2012), the Cauchy matrix of the linear system (12) is

and the solution of system (12) is in the form

Therefore, system (11) has a solution

Letting t0 → −∞ in the above equation (W (t, t0)u(t0) → 0), then by Stamov (2012) we 
have

is a solution of system (11) and is almost periodic. Then system (9) has a almost periodic 
solution x∗(t) which can be expressed by (10). By Lemma 1, we have from (10) that

(10)
α

eξAb
≤ x∗(t) =

[

b

∫ t

−∞

W (t, s) ds

]−1

≤
a

ηb(1− e−aθ )
.

(11)







du(t)
dt

= −au(t)+ b, t �= τk ,

�u(τk) = −
hk

1+hk
u(τk), k ∈ Z

+.

(12)







du(t)
dt

= −au(t), t �= τk ,

�u(τk) = −
hk

1+hk
u(τk), k ∈ Z

+.

du(t)

dt
= −au(t), τk−1 < t ≤ τk

u(t) = u(s)e−a(t−s), τk−1 < s < t ≤ τk .

W (t, s) =







e−a(t−s), τk−1 < s < t < τk;

�k+1
j=m

1

1+hj
e−a(t−s), τm−1 < s ≤ τm < τk < t ≤ τk+1

u(t; t0;u(t0)) = W (t, t0)u(t0), t0 ∈ R.

u(t; t0;u(t0)) = W (t, t0)u(t0)+ b

∫ t

t0

W (t, s) ds.

u(t) = b

∫ t

−∞

W (t, s) ds

x∗(t) ≥

[

b

∫ t

−∞

ei(s,t)ξ e−a(t−s) ds

]−1

≥

[

b

∫ t

−∞

eξAe−α(t−s) ds

]−1

=
α

eξAb
.
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On the other hand,

Next, we shall prove that the uniqueness and stability of x∗(t) of system (9). Suppose that 
x(t) is another positive solution of system (9). Define a function

For t �= τk, k ∈ Z
+, calculating the upper right derivative of V(t) along the solution of 

system (9), we have

For t = τk, k ∈ Z
+, we have

Therefore, V is non-increasing. Integrating (13) from 0 to t leads to

that is,

which implies that

Thus, the almost periodic solution of system (9) is globally asymptotically stable. This 
completes the proof.

Lemma 5  Assume that a, b > 0, hk ≥ 0, then every solution x of the following system 
with delay

satisfies

where B = inf t∈R b
∏

τk∈[t−τ ,t)(1+ hk)
−1e−aτ, θ := infk∈Z τ

1
k  and η := infk∈Z

∏2
j=1

1
1+hj+k

 .

x∗(t) ≤

[

b

∫ t

t−θ

W (t, s) ds

]−1

≤

[

b

∫ t

t−θ

ηe−a(t−s) ds

]−1

=
a

ηb(1− e−aθ )
.

V (t) = | ln x∗(t)− ln x(t)|, ∀t ∈ R.

(13)D+V (t) = sgn[x∗(t)− x(t)]

[

ẋ∗(t)

x∗(t)
−

ẋ(t)

x(t)

]

= −b|x∗(t)− x(t)|.

V (τ+k ) = | ln x∗(τ+k )− ln x(τ+k )|

=

∣

∣

∣

∣

ln
(1+ hk)x

∗(τk)

(1+ hk)x(τk)

∣

∣

∣

∣

= | ln x∗(τk)− ln x(τk)| = V (τk).

V (t)+ b

∫ t

0
|x(s)− x∗(s)| ds ≤ V (0) < +∞, ∀t ≥ 0,

∫ +∞

0
|x(s)− x∗(s)| ds < +∞,

lim
s→+∞

|x(s)− x∗(s)| = 0.

(14)

{

ẋ(t) ≤ x(t)
[

a− bx(t − τ )
]

, t �= τk ,

�x(τk) = hkx(τk), k ∈ Z
+

lim sup
t→∞

x(t) ≤ M :=
a

ηB(1− e−aθ )
,
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Proof  From system (14), we have

is equivalent to

For some t ∈ [0,+∞) and t �= τk, k ∈ Z
+, consider interval [t − τ , t). Assume that 

τ1 < τ2 < · · · < τj are the impulse points in [t − τ , t). Integrating the first inequality of 
system (15) from t − τ to τ1 leads to

Integrating the first inequality of system (15) from τ1 to τ2 leads to

Integrating the first inequality of system (15) from τ2 to τ3 leads to

Repeating the above process, integrating the first inequality of system (15) from τj to t 
leads to

Then

Substituting (16) into system (14) leads to

Consider the auxiliary system

By Lemma 3, x(t) ≤ z(t), where z(t) is the solution of system (17) with z(0+) = x(0+). By 
Lemma 4, system (17) has a unique globally asymptotically stable positive almost peri-
odic solution z∗ which can be expressed as follows:

{

ẋ(t) ≤ ax(t), t �= τk ,

�x(τk) = hkx(τk), k ∈ Z
+

(15)

{

d
dt
[x(t)e−at ] ≤ 0, t �= τk ,

�x(τk) = hkx(τk), k ∈ Z
+.

x(τ1)e
−aτ1 ≤ x(t − τ )e−a(t−τ).

x(τ2)e
−aτ2 ≤ x(τ+1 )e−aτ1 = (1+ h1)x(τ1)e

−aτ1 ≤ (1+ h1)x(t − τ )e−a(t−τ).

x(τ3)e
−aτ3 ≤ x(τ+2 )e−aτ2 = (1+ h2)x(τ2)e

−aτ2 ≤ (1+ h1)(1+ h2)x(t − τ )e−a(t−τ).

x(t)e−at
≤ x(τ+j )e−aτj = (1+ hj)x(τj)e

−aτj ≤
∏

τk∈[t−τ ,t)

(1+ hk)x(t − τ )e−a(t−τ).

(16)
x(t − τ ) ≥

∏

τk∈[t−τ ,t)

(1+ hk)
−1e−aτx(t).

{

ẋ(t) ≤ x(t)
[

a− Bx(t)
]

, t �= τk ,

�x(τk) = hkx(τk), k ∈ Z
+.

(17)

{

ż(t) = z(t)
[

a− Bz(t)
]

, t �= τk ,

z(τ+
k
) = (1+ hk)z(τk), k ∈ Z

+.

z∗(t) =

[

B

∫ t

−∞

W (t, s) ds

]−1

≤

[

B

∫ t

t−θ

W (t, s) ds

]−1

≤
a

ηB(1− e−aθ )
:= M.
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Then for any constant ǫ > 0, there exists T1 > 0 such that x(t) ≤ z(t) < z
∗(t)+

ǫ ≤ M + ǫ for t > T1. So

This completes the proof.�  �

Lemma 6  Assume that a, b > 0, hk ≥ 0, then every solution x of the following system 
with delay

satisfies

where D = supt∈R b
∏

τk∈[t−τ ,t)(1+ hk)
−1e−(a−bM)τ, ξ := ln supk∈Z

1
1+hk

 and A is 
defined as that in Lemma 1.

Proof  According to Lemma 5, there exist ǫ > 0 and T2 > 0 such that

From system (18), we have

is equivalent to

Similar to the argument as that in (16), we have

Substituting (19) into system (18) leads to

Consider the auxiliary system

lim sup
t→∞

x(t) ≤ M.

(18)

{

ẋ(t) ≥ x(t)
[

a− bx(t − τ )
]

, t �= τk ,

�x(τk) = hkx(τk), k ∈ Z
+

lim inf
t→∞

x(t) ≥ N :=
a− ξA

eξAD
,

x(t) ≤ M + ǫ for t ≥ T2.

{

ẋ(t) ≥ [a− b(M + ǫ)]x(t), t �= τk , t ≥ T2,

�x(τk) = hkx(τk), k ∈ Z
+

{

d
dt
[x(t)e−[a−b(M+ǫ)]t ] ≥ 0, t �= τk t ≥ T2,

�x(τk) = hkx(τk), k ∈ Z
+.

(19)
bx(t − τ ) ≤ b

∏

τk∈[t−τ ,t)

(1+ hk)
−1e−[a−b(M+ǫ)]τx(t) := Dǫx(t), t ≥ T2.

{

ẋ(t) ≥ x(t)
[

a− Dǫx(t)
]

, t �= τk , t ≥ T2,

�x(τk) = hkx(τk), k ∈ Z
+.

(20)

{

ż(t) = z(t)
[

a− Dǫz(t)
]

, t �= τk , t ≥ T2,

z(τ+
k
) = (1+ hk)z(τk), k ∈ Z

+.
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By Remark 3, x(t) ≥ z(t), where z(t) is the solution of system (20) with z(0+) = x(0+). By 
Lemma 4, system (20) has a unique globally asymptotically stable positive almost peri-
odic solution z∗ which can be expressed as follows:

Letting ǫ → 0 in the above inequality leads to

Similar to the argument as that in Lemma 5, it follows that

This completes the proof. � �

Remark 4  When hik(i = 1, 2) ≡ 0 in systems (14) and (18), then Lemmas 5, 6 change to 
the corresponding results in Nakata and Muroya (2010). So Lemmas  5, 6 extend the cor-
responding result in Nakata and Muroya (2010).

Let

Proposition 1  Every solution (x1, x2)T of system (2) satisfies

where M1 and M2 are defined as that in (21) and (22), respectively.

Proof  From system (1), we have

where ru1 := supt∈R
∣

∣

a10(t)
m1(t)

− c1(t)
∣

∣. By Lemma  5, we have

where B1 = inf t∈R al11
∏

τk∈[t−τ11,t)
(1+ h1k)

−1e−ru1 τ11. Similarly, ones obtain that

z∗(t) =

[

Dǫ

∫ t

−∞

W (t, s) ds

]−1

≥

[

Dǫ

∫ t

t−θ

W (t, s) ds

]−1

≥
a− ξA

eξADǫ

.

z∗(t) ≥
a− ξA

eξAD
:= N .

lim inf
t→∞

x(t) ≥ N .

ηi := inf
k∈Z

1
∏

j=0

1

1+ hi(j+k)
, ξi := ln sup

k∈Z

1

1+ hik
, i = 1, 2.

lim sup
t→∞

xi(t) ≤ Mi, i = 1, 2,

{

ẋ1(t) ≤ x1(t)
[

r
u
1
− a

l
11
x1(t − τ11)

]

, t �= τk ,

x1(τ
+

k
) = (1+ h1k)x1(τk), k ∈ Z

+,

(21)lim sup
t→∞

x1(t) ≤ M1 :=
ru1

η1B1(1− e−ru1 θ )
,

(22)lim sup
t→∞

x2(t) ≤ M2 :=
ru2

η2B2(1− e−ru2 θ )
,
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where ru2 := supt∈R
∣

∣

a20(t)
m2(t)

− c2(t)
∣

∣, B2 = inf t∈R al22
∏

τk∈[t−τ22,t)
(1+ h2k)

−1e−ru2 τ22. This 
completes the proof.�  �

Proposition 2  Let N1 and N2 are defined as that in (23) and (24), respectively. Then 
every solution (x1, x2)T of system (2) satisfies

if the following condition holds:

(H1)	� rl1 := inf t∈R
[

a10(t)
M1+m1(t)

− a12(t)M2 − c1(t)
]

≥ ξ1A , 

rl2 := inf t∈R
[

a20(t)
M2+m2(t)

− a21(t)M1 − c2(t)
]

≥ ξ2A.

Proof  According to Proposition 1 and (H1), there exist ǫ > 0 and T3 > 0 such that

From system (1), we have

By Lemma 6 and the arbitrariness of ǫ, one has

where D1 := supt∈R au11
∏

τk∈[t−τ11,t)
(1+ h1k)

−1e−(rl1−au11M1)τ11. Similarly, we have

where D2 := supt∈R au22
∏

τk∈[t−τ22,t)
(1+ h2k)

−1e−(rl2−au22M2)τ22. This completes the 
proof. � �

Remark 5  In view of (H1) in Proposition  2, the values of impulse coefficients 
hik (i = 1, 2) and the number of the impulse points τk in each interval of length 1 have 
negative effect on the permanence of system (2).

By Propositions 1, 2, we have

Theorem 1  Assume that (H1) holds, then system (2) is permanent.

Remark 6  Theorem 1 is a permanence result of system (2) without (F). So Theorem 1 
improves the corresponding result in Zhang et al. (2012). Further, Theorem 1 provides 

lim inf
t→∞

xi(t) ≥ Ni, i = 1, 2,

xi(t) ≤ Mi + ǫ for t ≥ T3, i = 1, 2,

rl1(ǫ) := inf
t∈R

[

a10(t)

(M1 + ǫ)+m1(t)
− a12(t)(M2 + ǫ)− c1(t)

]

≥ ξ1A,

rl2(ǫ) := inf
t∈R

[

a20(t)

(M2 + ǫ)+m2(t)
− a21(t)(M1 + ǫ)− c2(t)

]

≥ ξ2A.

{

ẋ1(t) ≥ x1(t)
[

rl1(ǫ)− au11x1(t − τ11)
]

, t �= τk , t > T3,

x1(τ
+

k ) = (1+ h1k)x1(τk), k ∈ Z
+.

(23)lim inf
t→∞

x1(t) ≥ N1 :=
rl1 − ξ1A

eξ1AD1
,

(24)lim inf
t→∞

x2(t) ≥ N2 :=
rl2 − ξ2A

eξ2AD2
,
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a possible and effective method to study the permanence of the models with impulsive 
perturbations and pure-delays in biological populations.

Remark 7  From the proof of Propositions 1, 2, we know that under the conditions of 
Theorem 1, the set S = {(x1, x2)

T ∈ R
2 : Ni ≤ xi ≤ Mi, i = 1, 2} is an invariant set of sys-

tem (2).

Almost periodic solution
The main result of this paper concerns the existence of a unique uniformly asymptoti-
cally stable positive almost periodic solution for system (2).

For convenience, we introduce some notations as follows:

where M1, M2, N1 and N2 are defined as that in “Permanence” section.

Theorem 2  Assume that (H1) holds. Suppose further that 

(H2)	� There exist two positive constants �1 and �2 such that �1α1 > �2β1 and �2α2 > �1β2.  
Then system (2) admits a unique uniformly asymptotically stable almost periodic 
solution.

Proof  Let xi(t) = ezi(t), i = 1, 2, then system (2) is transformed into

Suppose that Z(t) = (z1(t), z2(t))
T and Z∗(t) = (z∗1(t), z

∗
2(t))

T are any two solutions of 
system (25). Consider the product system of system (25)

α1 =
al10N1

(

M1 +mu
1

)2
+ al11N1 −

(√
τ10a

u
10M1

(

N1 +ml
1

)2

)2

−
(τ10 + τ11)a

u
10a

u
11M

2
1

(

N1 +ml
1

)2
− τ11a

u2
11M

2
1 ,

α2 =
al20N2

(

M2 +mu
2

)2
+ al22N2 −

[√
τ20a

u
20M2

(

N2 +ml
2

)2

]2

−
(τ20 + τ22)a

u
20a

u
22M

2
2

(

N2 +ml
2

)2
− τ22a

u2
22M

2
2 ,

β1 =
τ20a

u
20a

u
21M1M2

(

N2 +ml
2

)2
+ τ22a

u
21a

u
22M1M2 + au21M1,

β2 =
τ10a

u
10a

u
12M1M2

(

N1 +ml
1

)2
+ τ11a

u
11a

u
12M1M2 + au12M2,

(25)























ż1(t) =
a10(t)

ez1(t−τ10)+m1(t)
− a11(t)e

z1(t−τ11) − a12(t)e
z2(t−τ12) − c1(t),

ż2(t) =
a20(t)

ez2(t−τ20)+m2(t)
− a21(t)e

z1(t−τ21) − a22(t)e
z2(t−τ22) − c2(t), t �= τk ,

ez1(τ
+

k )
= (1+ h1k)e

z1(τk ),

ez2(τ
+

k )
= (1+ h2k)e

z2(τk ), k ∈ Z
+.

(26)































































ż1(t) =
a10(t)

ez1(t−τ10)+m1(t)
− a11(t)e

z1(t−τ11) − a12(t)e
z2(t−τ12) − c1(t),

ż2(t) =
a20(t)

ez2(t−τ20)+m2(t)
− a21(t)e

z1(t−τ21) − a22(t)e
z2(t−τ22) − c2(t),

ż∗1(t) =
a10(t)

e
z∗1 (t−τ10)+m1(t)

− a11(t)e
z∗1 (t−τ11) − a12(t)e

z∗2 (t−τ12) − c1(t),

ż∗2(t) =
a20(t)

e
z∗2 (t−τ20)+m2(t)

− a21(t)e
z∗1 (t−τ21) − a22(t)e

z∗2 (t−τ22) − c2(t), t �= τk ,

ez1(τ
+

k )
= (1+ h1k)e

z1(τk ),

ez2(τ
+

k )
= (1+ h2k)e

z2(τk ),

ez
∗
1 (τ

+

k )
= (1+ h1k)e

z∗1 (τk ),

ez
∗
2 (τ

+

k )
= (1+ h2k)e

z∗2 (τk ), k ∈ Z
+.
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Set S1 = {φ = (z1t , z2t)
T ∈ C([−τ , 0],R2) : lnNi ≤ zit ≤ lnMi, t ∈ R

+, i = 1, 2}, which 
is an invariant set of system (26) directly from Remark 7.

Construct a Lyapunov functional V (t) = V (t,φ,ψ) = V
(

t, (z1t , z2t)
T , (z∗1t , z

∗
2t)

T
)

 
defined on R+ × S1 × S1 as follows:

where

By the definitions of S1 and V, there is some large enough positive constant K such that

Similar to the argument as that in Zhang et al. (2012), we have

where � := min{�1, �2},

V (t,φ,ψ) = V1(t,φ,ψ)+ V2(t,φ,ψ)+ V3(t,φ,ψ)+ V4(t,φ,ψ),

V1(t,φ,ψ) = �1|z1(t)− z∗1(t)| + �2|z2(t)− z∗2(t)|,

V2(t,φ,ψ) = �1

(

au10M1
(

N1 +ml
1

)2

)2 ∫ −τ10

−2τ10

∫ t

t+s

∣

∣z1(r)− z∗1(r)
∣

∣ dr ds

+ �1
au10a

u
11M

2
1

(

N1 +ml
1

)2

∫ −τ11

−τ11−τ10

∫ t

t+s

∣

∣z1(r)− z∗1(r)
∣

∣ dr ds

+ �1
au10a

u
11M

2
1

(

N1 +ml
1

)2

∫ −τ10

−τ10−τ11

∫ t

t+s

∣

∣z1(r)− z∗1(r)
∣

∣ dr ds

+ �1a
u2
11M

2
1

∫ −τ11

−2τ11

∫ t

t+s

∣

∣z1(r)− z∗1(r)
∣

∣ dr ds

+ �2
au20a

u
21M1M2

(

N2 +ml
2

)2

∫ −τ21

−τ21−τ20

∫ t

t+s

∣

∣z1(r)− z∗1(r)
∣

∣ dr ds

+ �2a
u
21a

u
22M1M2

∫ −τ21

−τ21−τ22

∫ t

t+s

∣

∣z1(r)− z∗1(r)
∣

∣ dr ds,

V3(t,φ,ψ) = �1
au10a

u
12M1M2

(

N1 +ml
1

)2

∫ −τ12

−τ12−τ10

∫ t

t+s

∣

∣z2(r)− z∗2(r)
∣

∣ dr ds

+ �1a
u
11a

u
12M1M2

∫ −τ12

−τ12−τ11

∫ t

t+s

∣

∣z2(r)− z∗2(r)
∣

∣ dr ds

+ �2

(

au20M2
(

N2 +ml
2

)2

)2 ∫ −τ20

−2τ20

∫ t

t+s

∣

∣z2(r)− z∗2(r)
∣

∣ dr ds

+ �2
au20a

u
22M

2
2

(

N2 +ml
2

)2

∫ −τ22

−τ22−τ20

∫ t

t+s

∣

∣z2(r)− z∗2(r)
∣

∣ dr ds

+ �2
au20a

u
22M

2
2

(

N2 +ml
2

)2

∫ −τ20

−τ20−τ22

∫ t

t+s

∣

∣z2(r)− z∗2(r)
∣

∣ dr ds

+ �2a
u2
22M

2
2

∫ −τ22

−2τ22

∫ t

t+s

∣

∣z2(r)− z∗2(r)
∣

∣ dr ds,

V4(t,φ,ψ) = �2a
u
21M1

∫ t

t−τ21

∣

∣z1(s)− z∗1(s)
∣

∣ ds + �1a
u
12M2

∫ t

t−τ12

∣

∣z2(s)− z∗2(s)
∣

∣ ds.

V (t,φ,ψ) ≤ K .

(27)V (t,φ,ψ) ≥ �|φ(0)− ψ(0)|0,
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where

and for ∀ φ̄ = (z̄1t , z̄2t)
T , ψ̄ = (z̄∗1t , z̄

∗
2t)

T , φ̂ = (ẑ1t , ẑ2t)
T , ψ̂ = (ẑ∗1t , ẑ

∗
2t)

T ∈ S1, it follows 
that

So condition (2) in Lemma  2 is satisfied. In view of (27)–(28), let u, v ∈ C(R+, R+), 
u(s) = �s, v(s) = �s, thus condition (1)′  in Remark 2 is satisfied.

From article Zhang et al. (2012), for t �= τk, k ∈ Z
+, calculating the upper right deriva-

tive of V along the solution of system (26), we have

where γ :=
χ�|φ(0)−ψ(0)|0

K , χ := min{ �
�1
, �
�2
} and � := min{�1α1 − �2β1, �2α2 − �1β2}.

For t = τk, k ∈ Z
+, we have

In view of (29)–(30), condition (3) in Lemma 2 is satisfied.
By Lemma  2, system (2) admits a unique uniformly asymptotically stable positive 

almost periodic solution (z1(t), z2(t))T. This completes the proof. � �

Remark 8  Without (F), system (2) also admits a unique uniformly asymptotically sta-
ble positive almost periodic solution. So Theorem  2 extends the corresponding result 

(28)V (t,φ,ψ) ≤ ��φ − ψ�,

� : = �1 + �2 + 2�1τ
2

(

au10M1
(

N1 +ml
1

)2

)2

+ 2�1τ
2 au10a

u
11M

2
1

(

N1 +ml
1

)2

+ 2�1τ
2 au10a

u
11M

2
1

(

N1 +ml
1

)2
+ 2�1τ

2au211M
2
1 + 2�2τ

2 a
u
20a

u
21M1M2

(

N2 +ml
2

)2

+ 2�2τ
2au21a

u
22M1M2 + 2�1τ

2 a
u
10a

u
12M1M2

(

N1 +ml
1

)2
+ 2�1τ

2au11a
u
12M1M2

+ 2�2τ
2

(

au20M2
(

N2 +ml
2

)2

)2

+ 2�2τ
2 au20a

u
22M2

(

N2 +ml
2

)2
+ 2�2τ

2 au20a
u
22M

2
2

(

N2 +ml
2

)2

+ 2�2τ
2au222M

2
2 + �2τa

u
21M1 + �1τa

u
12M2,

∣

∣V (t, φ̄, ψ̄)− V (t, φ̂, ψ̂)
∣

∣ ≤ �(�φ̄ − φ̂� + �ψ̄ − ψ̂�).

(29)D+V (t,φ,ψ) ≤ −γV (t,φ,ψ),

(30)

V (τ+k ,φ,ψ) = V1(τ
+

k ,φ,ψ)+ V2(τ
+

k ,φ,ψ)+ V3(τ
+

k ,φ,ψ)+ V4(τ
+

k ,φ,ψ)

= V1(τ
+

k ,φ,ψ)+ V2(τk ,φ,ψ)+ V3(τk ,φ,ψ)+ V4(τk ,φ,ψ)

=

2
∑

i=1

�i|zi(τ
+

k )− z∗i (τ
+

k )| + V2(τk ,φ,ψ)+ V3(τk ,φ,ψ)+ V4(τk ,φ,ψ)

=

2
∑

i=1

�i|zi(τk)− z∗i (τk)| + V2(τk ,φ,ψ)+ V3(τk ,φ,ψ)+ V4(τk ,φ,ψ)

= V1(τk ,φ,ψ)+ V2(τk ,φ,ψ)+ V3(τk ,φ,ψ)+ V4(τk ,φ,ψ)

= V (τk ,φ,ψ).
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in Zhang et  al. (2012). Further, Theorem  2 gives the sufficient conditions for the uni-
form asymptotical stability of a unique positive almost periodic solution of system (2). 
Therefore, Theorem 2 provides a possible method to study the existence, uniqueness and 
stability of positive almost periodic solution of the models with impulsive perturbations 
and pure-delays in biological populations.

Remark 9  In the last two decades, the method of constructing a Lyapunov functional 
has been extensively used in the study of stability of the deterministic models (Xue et al. 
2015; Tian et al. 2015; Zhang et al. 2015; Liu and Xu 2004; Liu et al. 2006; Li and Yang 
2009; Gan and Lin 2012; Wu et al. 2009; Zhang et al. 2012). However, there have been 
numerous relevant works using the Lyapunov functional method in stochastic systems, 
see Shang (2014, 2015, 2016). The methods used in this paper can be extended to study 
the permanence and existence of a unique uniformly asymptotically stable positive 
almost periodic solution of the stochastic models with impulsive perturbations in bio-
logical populations.

An example and numerical simulations

Example 1  Consider the following Schoener’s competition model with pure-delays and 
impulsive effects:

where a11(t) = a22(t) = 0.35+ 0.05 cos(
√
3t), a12(t) = a21(t) ≡ 0.0001, c1(t) =

0.30005+ 0.00005 sin(
√
2t), c2(t) = 0.30005+ 0.00005 cos(

√
2t), t ∈ R. Then the above 

system is permanent and has a unique uniformly asymptotically stable almost periodic 
solution.

Proof  Obviously, au10 = au20 = 1, al10 = al20 = 1, au11 = au22 = 0.4, al11 = al22 = 0.3,  
au12 = au21 = 0.0001, al12 = al21 = 0.0001, cu1 = cu2 = 0.3001, cl1 = cl2 = 0.3, θ = 2, 
η1 ≈ 0.4 , η2 = 4, ξ1 ≈ 0.3, ξ2 ≈ 0.7, A = 1. By calculation, we obtain that y∗1 ≈ 0.7256, 
y∗2 ≈ 0.5421, min{rl1, r

l
2} ≥ 0.03 > 0, y1∗ = y2∗ ≥ 0.01. So (H1) holds. Further, we also get 

that

which implies that (H2) is satisfied for �1 = �2 = 1. It is easy to verify that (H1)–(H2) are 
satisfied and the result follows from Theorems  1 and 2 (see Figs. 1, 2, 3). This completes 
the proof.�  �



















































ẋ1(t) = x1(t)

�

1
x1(t−0.0001)+2

− a11(t)x1(t − 0.0001)− a12(t)x2(t − 0.0002)− c1(t)

�

,

ẋ2(t) = x2(t)

�

1
x2(t−0.0001)+2

− a21(t)x1(t − 0.0002)− a22(t)x2(t − 0.0001)− c2(t)

�

, t �= τk ,

�x1(τk ) = 0.5x1(τk ),

�x2(τk ) = 0.4x2(τk ), {τk : k ∈ Z} ⊂ {5k : k ∈ Z},

α1 ≥ 0.03, α2 ≥ 0.02, max{β1,β2} ≤ 0.00007,
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Remark 10  In Example 1, the impulse coefficients (h1k = 0.5 and h2k = 0.6) do not satisfy 
(F). So it is impossible to obtain the permanence and existence of a unique uniformly asymp-
totically stable positive almost periodic solution of system (1) by the result in Zhang et al. 
(2012). Therefore, the work in this paper improves the results in paper Zhang et al. (2012).

Conclusion
By using the comparison theorem and the Lyapunov method of the impulsive differen-
tial equations, sufficient conditions are obtained for the permanence and existence of 
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Fig. 1  State variables x1 and x2 of Example 1. Blue line x1(s) = 0.12, s ∈ [−1, 0]; Green line x2(s) = 0.02, 
s ∈ [−1, 0]
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Fig. 2  Stability of state variable x1 of Example 1. Blue line  x1(s) = 0.14, s ∈ [−1, 0]; Red line x1(s) = 0.12, 
s ∈ [−1, 0]; Green line x1(s) = 0.10, s ∈ [−1, 0]
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Fig. 3  Stability of state variable x2 of Example 1. Blue line x2(s) = 0.018, s ∈ [−1, 0]; Red line x2(s) = 0.002, 
s ∈ [−1, 0]; Green line x1(s) = 0.022, s ∈ [−1, 0]
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a unique uniformly asymptotically stable positive almost periodic solution in a class of 
impulsive Schoener’s competition model with pure-delays. Proposition 2 and Theorem 2 
imply that the values of impulse coefficients hik (i = 1, 2, 3) and the number of the 
impulse points τk in each interval of length 1 are harm for the permanence and existence 
of a unique uniformly asymptotically stable positive almost periodic solution for a class 
of impulsive Schoener’s competition model with pure-delays. The main results obtained 
in this paper are completely new and the method used in this paper provides a possi-
ble method to study the permanence and existence of a unique uniformly asymptotically 
stable positive almost periodic solution of the models with impulsive perturbations and 
pure-delays in biological populations.
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