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Abstract

Rain plays a major impairment factor for propagation of electromagnetic waves in
atmosphere for systems operating at frequencies above 10 GHz. Several effects are
noted such as depolarization, scintillation, interference due to scattering and extra
attenuation which seems to increase with frequency. To mitigate its effect in satellite
communication, knowledge of local rainfall statistics is necessary which act as mile-
stone for design of radio link. Rain attenuation is best visualize by the 1-min rainfall rate
statistic but the measurement of this rain rate distribution is rare on a worldwide basis
and observation of rain rate are done with longer integration times typically 30 min or
more. In this paper, efforts have been made to develop model that can convert rain
rate complementary cumulative distribution function to shorter integration times. The
average relative error margin of about 5, 14,43, 71 and 115 % are noted for 5 to 1-, 10
to 1-,20to 1,30 to 1- and 60 to 1-min respectively from ITU-R P.837-6 method which
have been analyzed in further section of this article. The empirical natures of conver-
sion methods as such Segal method, Burgueno’s method, Chebil and Rahman method
and Logarithmic model are studied along with the proposed new model that seems
to be applicable in derivation of 1-min rain rate of the South Korea rain rate statistics.
International Telecommunication Union-Radio communication Sector (ITU-R) has
developed a recommendation ITU-R P837-6 that enables the user to estimate the local
1-min rainfall rate statistical distribution which is compared with calculated 1-min rain
rate distribution from experimental 1-min rainfall accumulation. Unfortunately, ITU-R
P.837-6 estimated 1-min values show greater error percentages. In order to get better
approximation of local 1-min rain rate estimation, a novel method is proposed and it's
efficiency have been compared with rainfall rate statistics obtained from nine different
locations in the South Korea.

Keywords: 1-min Rain rate, Microwave radio propagation meteorological statistics,
ITU-R 837-6 model

Introduction

Due to increased congestion of communication spectrum below 10 GHz, there is an
increasing need for the use of the short centimeter and millimeter wave parts of the spec-
trum in both terrestrial and satellite communication paths. Rain as the main attenuation
factor in the microwave radio links has been recognized for more than decades mainly
by telecommunication expertise. The reliable statistical modeling of the distribution of
rain rate is still a matter of research. Statistical analyses and techniques are most use-
ful for evaluation of transmission impairments on communication links (Ippolito 2012).
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The approach used in this study model the long term behavior of rain by analyzing the
whole set of data without attempting to classify it according to event types or rain inten-
sity. For the prediction of rain attenuation, accurate knowledge of 1-min integrated
CCDF of rain rate is required as recommended by Series (2015). But difficulty to obtain
such short interval rain rate have forced researcher worldwide to find prediction method
that shall be able to predict local rain rate characteristics (Aris et al. 2013). Paper pro-
posed a prediction model based on the rainfall data collected by Korea Meteorological
Administration (KMA) which has developed and operated a digital system for collecting
and storing rainfall data at 1-min interval since 2004. Performance of proposed model is
compared with ITU-R P.837-6 (2012) and found to give better prediction performance
as it makes reduction in error analysis. The material of the paper is covered as follows:
“Background” section briefly introduces background of established relationships for
derivation of 1-min rain rate. “Methodology and analyses of experimental data” section
deals with experimental data collection procedure. “Results and discussion” section pre-
sents the result and discussion of statistical analyses. Finally, “Conclusion” section draws
conclusion of highly reliable statistical results.

Background

Rainfall data of longer integration time relatively on hourly basis is readily available, 5-
or 10-min accumulation data are recorded by several weather services, but 1-min accu-
mulation interval data is available from only special observations at a few locations.
Under this scenario, derivation of model for statistical distribution of short time interval
requires the limited number of available observation to be combined in order to provide
statistically valid empirical distribution function (Crane 1996). As the earlier approach is
presented by ITU-R with latest global model (2012), its usefulness is depicted by Emil-
iani et al. (2010), Capsoni and Lorenzo (2009), Capsoni et al. (2009) which highlight the
benefits of using EXCELL RSC physical approach to the conversion of rainfall statistics.
Furthermore, several methods based on physical approach and empirical ways are stud-
ied but when physical approach is used, all the input parameters needed for analysis
is unavailable. Similarly, mathematical theory with is based on first principles for de-
integrating T-min experimental probability distribution (PD) into corresponding 1-min
PD are studied (Matricciani 2011). However, the contribution present the need for more
efficient propagation planning, based on the use of number and duration of rain events
along with the fraction of rainy time. The experimental system carried out by KMA pro-
vides the record for only experimental 1-min rainfall amount as discussed in further sec-
tion of this paper. Due to the ease of simplicity and easier analysis purpose, empirical
nature of rainfall rate method is chosen (Emiliani et al. 2009). The rain rate characteristic
of the South Korea was studied to predict 1-min rain rate statistic in Jung et al. (2008),
which was based on the 2 years of rain events. Unfortunately, it was found to be less
effective and generated higher error percentage. Similarly, with three years of rainfall
data, a conversion method for rainfall rate with various integration time was proposed
(Lee et al. 1994) base on linear and logarithmic approach. In addition, the global empiri-
cal approach was also analyzed in Jung et al. (2008), which was compared with older
version of ITU-R P.837-5 rain rate model. A model for rain drop size distribution (Park
et al. 2002), was introduced which describe extended gamma distribution function.
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In this scenario, this paper presents a novel work for prediction of 1-min rainfall rate.
Empirical methods is equally been studied in other countries as noted in Ong and Zhu
(1997), Singh et al. (2006, 2007), Mandeep and Hassan (2008), Segal (1986), Burgueno
et al. (1988) from long term rainfall database. In addition, the global coefficients values
are listed in Emiliani et al. (2008) which extend its application to rain rate conversion
methods in temperate, tropical and cold climates.

The performance of proposed ITU-R P.837-6 (2012) method for derivation of 1-min
rain rate is compared with globally applicable empirical methods namely Segal (1986),
Burgueno et al. (1988), Chebil and Rahman (1999), logarithmic (Lee et al. 1994) along
with global coefficients approach and polynomial fit analysis of the rainfall rate data. The
use of polynomial relationship was found to be better for derivation of 1-min integra-
tion time as shown in Khairolanuar et al. (2014), Owolawi (2011). The brief overviews of
applied models are presented below:

Segal method

This method was developed based on database of high resolution rainfall records pre-
pared at the Communications Research Centre. The rainfall records were taken from ten
years of daily tipping bucket rain gauge charts for each of the 47 stations in Canada. The
conversion method is expressed as (Segal 1986):

R1(P) = p(P)R(P) (D

where, conversion factor, p,(P) = aPP, R, (P) represents the rainfall rate in a 1-min inte-
gration time with the possibility of occurrence P, R (P) is the rainfall rate in T-minutes
integration time, and parameters a and b are regression coefficients that are derived
from statistical analysis of rainfall data.

Burgueno et al. method
Based on 49 years of rainfall data measured at Barcelona, Spain, Burgueno et al used
direct power law fit as (Burgueno et al. 1988):

R;(P) = aRP(P) 2

where R,(P) and R,(P) are the precipitation rates with a sampling interval of 1- and t-min
respectively with equal probability of time percentage P, a and b represent the conver-
sion variables.

Chebil and Rahman method

Chebil and Rahman introduced an experimental technique for estimating the precipita-
tion rate conversion element by using the conversion process from 60- to 1-min integra-
tion time as (Chebil and Rahman 1999):

Pso(P) = Ry (P)/Reo(P) 3)

where Rgo(P) is the precipitation rate in 60-min integration time. pgo(P) is expressed as

@P) ith regression variables repre-

a mixed power-exponential law, ps,(P) = aP® + ce
sented by a, b, c and d analyzed from statistical analysis of rainfall data. Suitability of this

method has been further tested for other lower integration time intervals.
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Logarithmic model
The expression for this model is given as (Lee et al. 1994):

log[R; (P)] = alog[R+(P)] 4)

where a is the regression variable derived from statistical analysis of rainfall rate.

ITU-R recommended model

The most acknowledge model of the latter kind included in Study Group 3 Report for
the update of Rec. ITU-R P.837-5, Annex 3 (2012), which allows global 1-min rain rate
prediction from the knowledge of the local rainfall rate. EXCELL Rainfall Statistics Con-
version (ERSC) (henceforth EXCELL RSC) method is used for conversion of rainfall rate
statistics from long to 1-min integration time. This method is based on the simulated
movement of rain cells over a virtual rain gauge, with given integration time T, whose
translation velocity depends both on the type of precipitation and on the observation
period. The conversion of rainfall was obtained using a virtual rain gauge according to
the local mean yearly wind velocity, which as extracted from the ERA-40 database. The
model goes through an iterative inversion procedure that aims at identifying the local
P(R), (a set of Py, n, R,) which when used as input to the rain gauge simulator, pro-
vides the best possible estimate of the measured P(R)y. The detail of this approach can
be obtained from description of method adopted for the update of Rec. ITU-R P.837-5,
Annex 3.

Proposed model

The new model is based on the curve fitting technique analyze from Matlab. Polynomial
in one variable is expressed as apx" + an_1x" 1+ .-+ a;x! + ap where x is a variable
and exponents are non negative integers with real number coefficients and a, # 0. A
function in the form f(x) = apx™ + ap_1x™ 1+ .- +a;x! +agisa polynomial function.
Rain cells characteristics have been found to be better shown by an exponential profile
which is able to represent real single-peaked rain structure (Luini and Capsoni 2011).
The rainfall pattern is observed to be visible through exponential coefficients. This paper
present a comparison with several polynomial functions and proposed Model 1 of
modified fourth order polynomial function as a suitable approach for South Korea’s own
numerical prediction model for 1-min rainfall rate derivation. These models are repre-
sented as:

Model 1 is expressed as Ry (P) = ae® P [R(P)]* + be® @ [R.(P)]® + c[R.(P)]* + d[R:(P)] (5)
Model 2 is expressed as Ry (P) = ae® P [R.(P)]> + be® V)[R, (P)] (6)
Model 3 is expressed as Ry (P) = ae® P [R.(P)]*> + be® P [R{(P)] + ¢ (7)
R1(P) = a[R<(P)]? 4+ b[R(P)] + ¢, represent second degree polynomial function (8)

R;(P) = a[R, (P)]3 +b[R, (P)]2 +c[R(P)]+d, represent third degree polynomial function
9
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where R,(P) represents the rainfall rate in a 1-min integration time with the possibility
of occurrence P, R (P) is the rainfall rate in T-minutes integration time, and coefficients
a, b, c and d are regression coefficients that are obtained through statistical analysis of
rainfall data with the use of curve fitting technique derived from Matlab programming.
The effectiveness of proposed Model 1 are measured through various error analyses
which highlight better agreement with experimental 1-min rainfall data obtained from
KMA for listed nine different regions of South Korea. The importance of constant values
and modification on coefficients are judged through regression analysis and curve fitting
approach which give minimum error values against the calculated 1-min rain rate values

from experimental rainfall amount collection under 1-min duration.

Methodology and analyses of experimental data

The Republic of Korea lies in temperate zone with four distinct seasons. Geographically,
country is located in the middle latitudes of the Northern Hemisphere, on the east coast
of the Eurasian Continent and also adjacent to the Western Pacific. Thus, complex cli-
mate characteristics are observed in this belt which reveals both continental and oceanic
features. The seasonal climate characteristic of the South Korea is shown in Table 1.

Rainfall data is effectively recorded by KMA, a central governmental organization of
the Republic of Korea under the Ministry of Environment (MOE), which has developed
a digital system for accurate measurement of 1-min rainfall amount since 2004 through
the use of Tipping bucket rain gauge over several sites some of which are shown in Fig. 1
with the intensity to develop the South Korea’s own numerical prediction model.

Furthermore, Table 2 indicates the selected sites with their geographical co-ordinate
values.

Tipping bucket rain gauge, which is used throughout the measurement sites, automat-
ically record rainfall and facilitate the digitization of telemetric observation signals. The
heater is installed inside the sewer for measurement under snowfall.

Figure 2 shows the internal structure of rain gauge. KMA uses conducting vessel size
of 0.5 mm to improve the shortcomings of the gutter. Once the collected water is more
than 0.5 mm it eventually, fills the bucket. Bucket is mounted in particular axis of rota-
tion to shift the center like a seesaw. This bucket is in contact with the Reed Switch with
the rotation axis which is operated by electrical pulse occurred due to tipping phenom-
enon. Finally, signal generated through Reed Switch is recorded on recording device
which provide measurement of 1-min rainfall amount.

Table 3 shows specification of rain gauge used for recording of 1-min rainfall amount.

The tipping bucket has unstably balanced twin-bucket with sensitivity of 0.1 mm per tips
which trigger an electronic impulse and is stored in the data logger which scans the data at
an interval over 1-min. The availability of the gauge is about 99.2 %. The 0.8 %unavailability
is due to system maintenance. Figure 3 shows the overall operation of experimental system

Table 1 Seasonal climatic characteristic

Month | January | February | March ‘ April | May | June ‘ July | August | September | October | November | December

Season Winter Spring Summer Fall Winter

Cold Mild Warm Serene Cold
Weather -
Pattern Dry Humid |

Snow Clear Heavy rainfall | Clear Snow

Dry
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Fig. 1 Major cities of the South Korea

Table 2 Locations selected for model testing

Climatic region Station location Latitude (N) Longitude (E) Measurement
duration (years)

Temperate Gwangju 35.16 126.86 10
Daegu 3587 1286
Daejeon 36.35 127.39
Busan 3518 129.08
Seogwipo 33.25 126.56
Seoul 37.56 126.99
Ulsan 3554 129.31
Incheon 3745 126.73
Chuncheon 37.88 127.73

O Electric Heater——_ "2
3 7 e g :
/ ___Pweremlur
: Ctmr:l Axis
, 7 Rt ]
g\ Reed Switch—"
I “S\\_ Herizental Control

Instrument

Fig. 2 Tipping bucket rain gauge

used for rainfall amount data logging parts where the accumulated rainfall amount data
is first collected in a data logger which record the number of tips for every 1-min interval
which is then converted to rainfall amount and finally stored in data storage devices.

ITU rain attenuation prediction method, Series (2015), is based on 0.01 % of a time
for rain rate parameter. Similarly, Recommendations ITUR (2015) emphasizes on use
of rain rate exceeded for 0.01 % of the time with an integration time of 1-min for long
term statistics of rain attenuation. The importance of 1-min rain rate has been further
studied for satellite and terrestrial rain attenuation predictions (Abdulrahman et al.
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Table 3 Specification of tipping bucket rain gauge

Equipment Specification Description
Rain gauge Sensor type Tipping bucket
Switch Form A reed, mercury-wetted
Size 200 mm in diameter
Resolution 0.5 mm
Sensitivity 0.1 mm per tips
Accuracy <5%
Operating temperature —40to +50°C
Rain Gauge Data storage
Data Logger Modem Modem
E— E” | > g > , —— [uue
=7 j \1. d \1 g
! [

Fig. 3 Experimental system used for measuring 1-min rainfall amount

2010; Islam et al. 2012). The calculated values for rainfall rate at 0.01 % of the annual
time percentage were 90, 60, 79.8, 90, 90, 90, 65.4, 89.4 and 60 mm/h over 1-min inte-
gration time for Gwangju, Daegu, Daejeon, Busan, Seogwipo, Seoul, Ulsan, Incheon
and Chuncheon sites respectively. Unfortunately, ITU-R 837-6 (2012) model prediction
overestimate the rain rate of these mentioned sites and does not satisfies the local sta-
tistical data. The received decade 1-min rainfall amounts are arranged for other time
integrations period as 5-, 10-, 20-, 30- and 60-min. These data are sorted and required
rainfall amount are extracted for several times percentages as mentioned by ITU-R
P.311-15 (2015). For example, for Gwangju site, at 0.01 % of time, 1-min rainfall amount
for 526 ((10 x 365 x 24 x 60 x 0.01)/100) instance was taken which is converted to
rain rate expression as mentioned in Kestwal et al. (2014). The result of 1-, 5-, 10-, 20-,
30- and 60-min rainfall rate of selected nine major cities as Gwangju, Daegu, Daejeon,
Busan, Seogwipo, Seoul, Ulsan, Incheon and Chuncheon, are calculated from experi-
mental 1-min rainfall amount as obtained from KMA which are summarized in Table 4.
These data are used as a basis for comparison with estimated 1-min rain rate from
ITU-R P.837-6 (2012) and to propose local prediction model. In order to generate esti-
mated 1-min rain rate from the software as recommended by ITU-R P.837-6 Annex 3,
we have selected Mode A operational mode in which rain rate values for several source
integration times as stated in Table 4 along with sites latitude and longitude informa-
tion as mentioned in Table 2 is given as an input source data. The T-min integrated
percentage values are 0.1, 0.05, 0.03, 0.02, 0.01, 0.005, 0.003, 0.002, and 0.001 %. Since
the calculated rain rate values for greater time percentages beyond 0.1 % is very low and
tend to be negligible, so we have not included for analyses purpose.
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Table 4 Calculated rainfall rate statistics over various integration times (unit: mm/h)

Station ID Time 1-min 5-min 10-min 20-min 30-min 60-min
percentage
Gwangju 0.1 45.60 42.96 42.06 41.52 40.56 38.11
0.05 60.00 50.88 49.26 47.88 47.04 43.82
0.03 60.00 57.72 55.68 52.77 5136 48.79
0.02 63.60 63.48 60.00 56.34 56.28 5134
0.01 90.00 72.00 69.78 65.58 65.30 60.46
0.005 90.00 84.00 78.00 7413 74.82 7230
0.003 105.60 90.00 83.94 79.59 79.52 7256
0.002 120.00 102.00 90.00 82.50 84.00 7257
0.001 120.00 114.00 102.00 93.00 94.00 74.10
Daegu 0.1 3840 36.48 36.00 3534 35.12 3432
0.05 43.20 41.16 39.60 3891 38.16 37.28
0.03 49.20 43.80 4242 4134 4046 39.00
0.02 60.00 48.00 45.12 43.68 42.78 41.16
0.01 60.00 54.00 51.00 47.70 45.00 43.54
0.005 90.00 72.00 60.00 55.50 49.00 46.73
0.003 90.00 78.00 69.00 60.00 54.00 47.50
0.002 90.00 84.00 75.00 67.50 56.00 4773
0.001 120.00 102.00 96.00 81.00 84.00 62.50
Daejeon 0.1 41.40 38.88 38.16 37.26 3648 3572
0.05 5340 4548 43.80 42.00 40.78 39.23
0.03 60.00 54.00 51.00 48.00 45.68 43.14
0.02 60.00 60.12 5844 56.97 56.48 52.50
0.01 79.80 69.36 66.36 63.27 63.26 61.74
0.005 90.00 78.00 75.00 68.28 65.38 64.22
0.003 90.00 84.00 81.00 72.00 66.98 64.39
0.002 120.00 96.00 84.00 78.00 68.20 65.75
0.001 120.00 114.00 117.00 88.50 73.00 67.59
Busan 0.1 57.60 55.56 55.14 54.75 54.68 5384
0.05 64.20 62.88 62.04 61.11 60.56 60.20
0.03 70.20 67.68 67.14 66.24 65.44 64.57
0.02 76.20 71.64 69.78 69.00 68.06 67.37
0.01 90.00 78.00 76.74 76.50 75.60 73.50
0.005 90.60 88.44 84.54 83.25 80.96 84.81
0.003 108.00 96.00 90.00 87.21 86.16 85.00
0.002 120.00 104.28 96.00 94.02 92.36 91.00
0.001 150.00 126.00 117.00 111.00 106.00 98.50
Seogwipo 0.1 46.20 45.96 44.46 4254 42.00 41.59
0.05 60.00 57.84 55.26 54.00 52.10 52.70
0.03 68.40 66.00 64.44 61.77 62.34 62.17
0.02 78.60 72.00 69.00 67.11 66.38 66.29
0.01 90.00 84.00 77.58 76.32 77.08 76.33
0.005 100.80 96.00 94.50 97.50 91.60 95.72
0.003 114.00 102.00 102.60 102.66 104.80 101.70
0.002 120.00 107.52 107.58 110.52 107.26 103.23
0.001 120.00 114.00 120.00 123.00 113.00 199.80
Seoul 0.1 48.60 46.80 45.18 4443 43.50 4212
0.05 58.20 53.88 51.54 50.52 5040 48.20
0.03 60.00 5832 55.80 54.60 5334 51.08

Page 8 of 34
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Table 4 continued

Station ID Time 1-min 5-min 10-min 20-min 30-min 60-min
percentage
0.02 66.00 60.96 59.34 57.00 56.04 53.94
0.01 90.00 72.48 69.00 61.95 60.48 56.67
0.005 90.00 84.00 78.00 70.50 70.00 63.37
0.003 120.00 90.00 87.00 76.50 72.00 65.00
0.002 120.00 96.00 93.00 81.00 74.18 70.66
0.001 150.00 114.00 105.00 85.50 77.00 74.00
Ulsan 0.1 44.40 4272 4212 4149 41.14 40.77
0.05 50.40 48.00 47.58 46.50 46.18 46.46
0.03 55.80 51.84 51.00 49.53 4922 49.18
0.02 60.00 54.84 54.24 53.10 51.84 54.00
0.01 65.40 62.04 61.32 59.73 59.80 69.13
0.005 78.00 72.00 7062 70.53 85.00 146.66
0.003 90.00 84.00 8142 376.59 264.98 15248
0.002 90.00 101.04 12216 389.28 265.70 17742
0.001 120.00 231.60 74574 412.74 354.84 20342
Incheon 0.1 60.00 57.72 57.00 55.89 55.60 55.26
0.05 66.60 64.68 63.36 6291 63.02 62.87
0.03 7320 70.92 69.36 6891 67.86 66.32
0.02 78.60 74.52 73.02 7347 71.50 71.39
0.01 89.40 80.16 78.30 77.88 77.20 76.60
0.005 90.00 8544 82.62 79.23 79.92 82.27
0.003 96.00 91.20 85.20 83.58 82.50 83.50
0.002 106.20 96.00 90.00 86.28 82.70 83.60
0.001 120.00 108.00 93.00 87.51 85.60 84.18
Chuncheon 0.1 31.20 30.72 30.30 30.00 29.24 2838
0.05 36.00 36.00 35.76 33.66 33.08 31.23
0.03 4140 42.00 40.74 37.50 36.00 3497
0.02 58.80 48.00 45.00 4044 3862 35.50
0.01 60.00 60.00 57.00 46.50 48.00 3852
0.005 90.00 78.00 69.00 60.00 53.00 49.00
0.003 90.00 90.00 75.00 69.00 63.00 51.00
0.002 120.00 102.00 84.00 75.00 63.00 52.50
0.001 120.00 108.00 105.00 81.00 73.00 75.20

Results and discussion

In order to better visualize the 1-min rain rate distribution data against ITU-R P.837-6
(2012) predicted values for several time percentage over the nine sites in the South
Korea at equiprobable exceedance probability (0.001 < P < 0.1 %), CCDFs of rain rate
are plotted which are shown from Figs. 4a—c, 5a, b. The plots include the value of Dae-
jeon (also called as Taejon) site, which was chosen by ITU-R P.837-6 (2012) model in
its ERA-40 database (Uppala et al. 2005). For the experimental purpose, Taejon site is
included within Daejeon site by KMA. ITU-R P.837-6 (2012) model does not accurately
predict the 1-min rain rate distribution for nine sites even though this model shows fair
well statistics at lower time conversion. In addition, this model dramatically overesti-
mate 1-min rain rate at higher time conversion. For instance, as depicted in Fig. 4a for 5-
to 1-min integration time, ITU-R P.837-6 (2012) models seems to give fairy satisfactory
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=< = Calculated 1-min. Rain Rate (Seoul)
—<— Estimated 1-min. Rain Rate (Seoul)
=P = Calculated 1-min. Rain Rate (Ukan)
—— Estimated 1-min. Rain Rate (Ulan)
—®- = Calculated 1-min. Rain Rate (Incheon)
—#— Estimated 1-min. Rain Rate (Incheon)
=% = Calculated 1-min. Rain Rate (Chuncheon)
~—&— Estimated 1-min. Rain Fate (Chncheon)

i
10°

107

Time Percentage [%]

Fig. 4 a Cumulative distributions of 1-min rainfall rate compared with 5-min integration rainfall rate data. b
Cumulative distributions of 1-min rainfall rate compared with 10-min integration rainfall rate data. € Cumula-
tive distributions of 1-min rainfall rate compared with 20-min integration rainfall rate data

result but chances of error is still remain, particularly for Seogwipo site. As integration
times increase to 10-, 20-, 30-, and 60-min the probability of overestimating 1-min rain
rate is increased as highlighted from Figs. 4b, ¢, 5a, b. The reason behind this difference
could be the fact that the matrices used to obtain the parameters might have low spatial
resolution. This indicates that ITU-R P.837-6 (2012) model performance statistics does
not shows good pattern with calculated rainfall rate from experimental 1-min rainfall
amount of the South Korea regions. In this concern, there is the immediate need for
1-min rain rate prediction model that can show greater efficiency against the local 1-min
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Calculated 1-min. rain rate against (30-min. to 1-min.) distribution
T T T T T T T T

a =

=0 = Callted 1-min. Rain Rate (Grang)
—O— Estimated L-min. Rain Rae (Grangn)
~ = Calrulated 1-min. Rain Rate (Daegn)
—f— Estimated 1-min.Rain Rate (Daegu)
=4 = Calulted 1-min. Rain Rate (Dasjeon)
—0— Estimated 1-min. Rain Rate (Dagjeor))
~ = Calrulated 1-min. Rain Rate (Busan)
—— Estimated 1-rin. Rain Rate (Busar)
=4 = Callted 1-min. Rain Rate (Seogripo)
A Estimated |-nin. B

=< = Calulated 1-in. Rain Rate (Seoul)
< Estimated 1-uin. Rsin Rate (Seoul)
=P = Caleulated 1 min. Rain Rate (Ulsax)
= Estimated 1-min Rain Rate (Ulsax)
=% = Calrulated 1-in. Rain Rate (Tncheor)
—#— Estimated 1-tin. Rein Rate (Incheon)
=9 = Calulated 1-nin. Rain Rate (Chuncheor)
—&— Estimated 1-nuin. Rain Rate (Chancheon)

30

Time Percentage [%]

b Calculated 1-min. rain rate against (60-min. to 1-min.) distribution
500 T T T T T T T

=@ = Calmlated L-min. Rain Rate (Grrangis)
—0— Estimated 1-min. Rain Rate (Grrangi)
B — Calolated 1-min, Rsin Rate (Dege)
450~ —#— Estimated 1-min, Rain Rate (Daegs)
=4 = Calculated l-min, Rain Rate (Daejeon)
—0— Estimated 1-min. Rain Rate (Dajeon)
100 . . R . - . . iovveiorr. =W Calaulated ]-in, Rain Rate (Busan)
—9— Estimated L-min. Rain Rate (Busax)

=4 = Caleuated 1-uin. Rain Rate (Seogipo)
—f— Estimated 1-min. Rain Rate (Seogipo)
3504 SRR, ST fieiiitd ik ’ (HH it o st S Gl bt it e ot

E —<— Estimated 1-min. Rain Rate (Seoul)
=P = Calelated 1-min. Rain Rate (Ulsax)
—— Estimated 1-min. Rain Rate (Ulan)
= = Caleulated 1-uin. Rain Rate (Tncheon)
—— Estimated 1-min. Rain Rate (Incheon)
=% = Calulated 1-uin. Rain Rate (Chancheon)
—$— Estimated 1-min. Rain Rate (Cluncheon)

Rainfall rate [mm/h]
B
Sa
T

0 i i | i i i i i i
10’ 10* 10!

Time Percentage [%]

Fig. 5 a Cumulative distributions of 1-min rainfall rate compared with 30-min integration rainfall rate data.
b Cumulative distributions of 1-min rainfall rate compared with 60-min integration rainfall rate data

rain rate distribution. Under this scenario, the paper presents new model that shall be
applicable in analyzing the 1-min rain fall rate distribution pattern.

As an initial step, regression analysis is performed to match the data to known distri-
bution. Regression analysis is a statistical method to estimate the values of dependent
variables that correspond to certain values of new independent variables once the mag-
nitude of the influence of independent variables on dependent variables is measured,
thereby determining the regression plane or line with regard to the independent vari-
ables. This model summarizes the large amount of data with minimum modeling error
(Crane 1996). The regression coefficients applicable for mentioned nine sites are gener-
ated through curve fitting approach using Matlab programming whose generated values
are listed in Tables 5, 6, 7 and 8 along with the average coefficients generated out of nine
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Table 6 Regression coefficients for Logarithmic model at different integration time

Sites 5-to 1-min 10-to 1-min 20-to 1-min 30- to 1-min 60-to 1-min
a a a a a

Logarithmic
Gwangju 1.0250 1.0410 1.0540 1.0560 1.0800
Daegu 1.0300 1.0510 1.0710 1.0870 1.1120
Daejeon 1.0300 1.0350 1.0580 1.0740 1.0860
Busan 1.0190 1.0290 1.0330 1.0360 1.0400
Seogwipo 1.0150 1.0180 1.0200 1.0260 1.0090
Seoul 1.0350 1.0470 1.0680 1.0780 1.0950
Ulsan 0.9876 0.9382 0.8882 09138 0.9407
Incheon 1.0160 1.0260 1.0300 1.0340 1.0350
Chuncheon 1.0180 1.0380 1.0690 1.0880 1.1160
Average 1.0195 1.0248 1.0324 1.0436 1.0571

sites. These regression coefficients are considered useful for obtaining 1-min rain rate
when rain rates are available at different integration times, especially when long-term
precipitation data from meteorological stations are utilized for obtaining short integra-
tion time rain rates for attenuation prediction. Thus using ten rain conversion methods
and coefficients from Tables 5, 6, 7 and 8, rain rates at different integration times are
converted to 1-min rain rate distribution.

The effectiveness of proposed model is observed from the coefficient of determina-
tion, R?, values as listed in Table 9. This statistical property of regression concerns the
relationship between the PD of the parameter estimates and the true values of those
parameters. The coefficient of determination, R?, describes the proportion of variance in
measured data explained by the models. It is the portion of total variation in dependent
variable that is explained by variation in independent variable (Steel and Torrie 1960).
R? ranges from 0 to 1, with higher values indicating less error variance whose values are
summarized in Table 9. Out of ten mentioned empirical methods only Burgueno et al,,
second order polynomial fit, third order polynomial fit, Model 1, Model 2 and Model 3
values are listed because of dependability on statistical analyses for regression values.

As noted from Table 9, the average regression values obtained while applying Model 1
are 0.9819, 0.9772, 0.9733, 0.9621 and 0.9495 for 5-, 10-, 20-, 30- and 60- to 1-min con-
version times respectively. These values are closer to unity as observed against the other
applied models. Hence, the proposed model gives less chances of error variance.

Evaluation of proposed method

In order to measure the goodness of fit of proposed model, paper present several error
analyses. Mean, standard deviation (SD) and root mean square (RMS) values of error
probability, €(P), are gathered, where they are compared to the performance of the
ITU-R P.837-6 (2012) model. Data for comparison of prediction methods are tabulated
at fixed probability levels over decades where preferred values are 0.001, 0.002, 0.003,
0.005, 0.01, 0.02, 0.03, 0.05, and 0.1 % of time. Furthermore, mean, SD and RMS error
values have been weighted over the probability levels of 0.001, 0.002, 0.003, 0.005, 0.01,
0.02, 0.03, 0.05, and 0.1 % of time, as recommended in ITU-R P.311-15 (2015).
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Table 9 Coefficient of determination R? as obtained from statistical program

Sites 5-to 1-min 10- to 1-min 20- to 1-min 30-to 1-min 60- to 1-min
R? R? R? R? R?
Burgueno et al.
Gwangju 0.9495 0.9519 0.9443 0.9538 0.8999
Daegu 0.9744 0.9400 0.9289 0.8449 0.8870
Daejeon 09519 0.8738 0.9361 0.8511 0.8334
Busan 0.9872 0.9863 0.9862 0.9888 0.9275
Seogwipo 0.9903 0.9730 0.9694 0.9901 0.7423
Seoul 09723 0.9793 0.9562 09128 0.9353
Ulsan 0.8929 0.7757 0.8040 0.8885 0.8956
Incheon 0.9892 0.9610 0.9245 0.9040 0.8475
Chuncheon 0.9742 0.9341 0.9643 09147 0.8118
Average 0.9647 0.9306 0.9349 09165 0.8645
Second order polynomial fit
Gwangju 0.9556 0.9551 0.9542 0.9559 0.9006
Daegu 0.9757 0.9582 0.9574 0.9594 0.9519
Daejeon 0.9558 0.9079 0.9374 0.9014 0.8874
Busan 0.9877 0.9863 0.9877 0.9930 09517
Seogwipo 0.9913 0.9868 0.9851 0.9938 0.9799
Seoul 09722 0.9802 0.9610 0.9289 0.9392
Ulsan 0.9801 0.9097 0.7809 0.8828 0.9294
Incheon 0.9894 0.9801 0.9659 0.9481 0.8655
Chuncheon 09743 0.9508 0.9674 09217 0.9348
Average 0.9758 0.9572 0.9441 0.9428 0.9267
Third order polynomial fit
Gwangju 0.9638 0.9677 0.9603 0.9603 0.9007
Daegu 0.9811 0.9653 0.9613 0.9597 0.9830
Daejeon 0.9694 09333 0.9459 09157 0.9605
Busan 0.9877 0.9877 0.9884 0.9930 0.9683
Seogwipo 0.9920 0.9898 0.9860 0.9938 0.9835
Seoul 0.9725 0.9803 0.9635 0.9446 0.9393
Ulsan 0.9922 0.9929 0.989% 0.9947 0.9797
Incheon 0.9894 0.9871 0.9749 0.9685 0.8754
Chuncheon 0.9756 0.9653 0.9682 0.9238 0.9491
Average 0.9804 0.9744 0.9709 09616 0.9488
Model 1
Gwangju 0.9651 0.9703 09617 09617 0.9009
Daegu 0.9841 0.9707 0.9672 09611 0.9841
Daejeon 0.9746 0.9394 0.9540 09119 0.9587
Busan 09877 0.9880 0.9886 0.9931 0.9698
Seogwipo 0.9922 0.9900 0.9860 0.9938 0.9836
Seoul 0.9725 0.9804 0.9644 0.9482 0.9391
Ulsan 0.9957 0.9974 0.9936 0.9938 0.9806
Incheon 0.9894 0.9884 0.9762 0.9710 0.8783
Chuncheon 0.9754 0.9705 0.9681 0.9241 0.9504
Average 0.9819 09772 0.9733 0.9621 0.9495
Model 2
Gwangju 0.9496 0.9503 0.9493 0.9524 0.9004
Daegu 0.9742 0.9386 0.9331 0.8393 0.8826
Daejeon 0.9521 0.8815 0.9369 0.8566 0.8381
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Table 9 continued

Sites 5-to 1-min 10-to 1-min 20-to 1-min 30- to 1-min 60-to 1-min
R? R? R? R? R?
Busan 0.9877 0.9861 0.9872 0.9906 09312
Seogwipo 0.9899 0.9751 0.9747 0.9912 0.9321
Seoul 09718 0.9801 0.9573 09122 0.9346
Ulsan 09778 0.8335 0.6145 0.3488 0.7466
Incheon 0.9893 0.9642 0.9285 0.9075 0.8498
Chuncheon 0.9743 0.9312 0.9623 09111 0.8012
Average 0.9741 09378 0.9160 0.8566 0.8685
Model 3
Gwangju 0.9556 0.9551 0.9542 0.9559 0.9006
Daegu 09757 0.9582 0.9574 0.9594 09519
Daejeon 0.9558 0.9079 0.9374 0.8446 0.6838
Busan 0.9877 0.9863 0.9877 0.9930 0.7995
Seogwipo 09913 0.9868 0.9851 0.9938 0.9799
Seoul 09718 0.9801 0.9573 09122 0.7831
Ulsan 0.9801 0.9097 0.7809 0.8828 0.9294
Incheon 0.9894 0.8479 0.9349 0.8971 0.6771
Chuncheon 0.9743 0.9508 09674 09217 0.9348
Average 0.9757 0.9425 0.9403 0.9289 0.8489

Absolute percentage relative error figure is given as,

Re(P)T — Rm(P)T
e(P)r = ————— x 100 (%) 10
Rm(P)7 ’ {10
where R,(P)r and R, (P); are the rain rate values of the estimated and the measured
T-min integrated rainfall CDF, respectively, at the same probability level P, in the per-
centage interval 1072 < P < 107! %.

RMS as defined by Owolawi and Afullo (2007),

N 1/2

RMS = |(1/N) x Z (Xest,i - Xmea,i)2
i=1

(11)

where N is the total number of available probability values, X, and X,,,, are the esti-

e. ea

mated and measured quantities respectively.
Similarly, SD, is calculated as,

1/2

N
SD=|(1/N) x ) (e(®); — )’ (12)

i=1

where N is the total number of available probability values, €(P); and y are each error
value and arithmetic mean of error quantities respectively.

The calculated error probabilities are presented in tabular form to accurately iden-
tify the obtained error values. The average error values thus obtained over all integra-
tion times using regional coefficient sets for each of the methods are listed in Table 10,
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which indicates that proposed model gives less relative error percentages which are <1 %
for all conversion times. This is justified from lower values of SD and RMS calculation
which is <7 % and 6 % in aggregate for all integration times respectively. In contrast,
ITU-R P.837-6 (2012) produces higher error percentage of 5.19, 13.73, 43.23, 71.19 and
115.36 % for 5-, 10-, 20-, 30- and 60- to 1-min conversion time respectively. Hence, pro-
posed model provides a better accuracy for all integration times. In addition, polynomial
fits of third and second orders can be considered as a second and third preferred method
because these models also show lower chances of error probabilities.

Furthermore, Table 11 presents the results of evaluation for average error probabil-
ity using regional coefficient sets at 0.01 %, which is considered to be suitable time per-
centage for calculation of rain induced attenuation (ITU-R 2015) and is very crucial for
system designers to obtain preliminary design of the satellite microwave link, satellite
payload design and to have broad idea of rain attenuation for microwave engineers.

Considering the variability of the rain rate predictions at 0.01 % time exceedance, the
third order polynomial fit does better result presenting the relative error values of —1.06,
0.1, —0.49, —0.37 and —1.81 % for 5-, 10-, 20-, 30- and 60—1-min conversion times
respectively. This is supported by less value of RMS errors as presented in Table 11.
Interesting, fair variability in error chances are observed from proposed model against
the third order polynomial fit. Under this condition, proposed model can be consider as
a second choice which is followed by second order polynomial fit as an third preferred
model at 0.01 % of time. In contrary, ITU-R P.837-6 and global coefficients method pro-
vide high error values for all time percentages. Even though, these models shows low
values of error probability at lower time percentage especially, 5- to 1-min conversion
time, but still this error is higher than other prediction models. In order to verify the
prediction performance of the models, relative error percentages along with SD and
RMS values are calculated using the average coefficients sets. Table 12 shows the average
values of relative error percentage, SD and RMS results as obtained by using the average
coefficient sets for all the measurement sites.

As noted from Table 12, the proposed model, have good result for 5- to 1-min time
conversion and error probability dramatically increases for other higher times conver-
sion especially at 60- to 1-min conversion time where negative values of rain rate are
obtained. This might be due to the exponential function that it includes. Similarly, ITU-R
P.837-6, Burgueno et al., global coefficients and model 3 show higher error chances and
are impracticable to use for 1-min rain rate derivation. In addition, Chebil and Rah-
man method and Third order polynomial fit produced increased error chances as per
the increasing conversion times. Segal method and second order polynomial fit result in
similar nature of error probabilities. Interestingly, logarithmic model is found to be best
while considering the average coefficient sets because the error probabilities are lower as
1.01, 5.42, 9.15, 7.06 and 6.08 % for 5-, 10-, 20-, 30-, and 60- to 1-min conversion times
respectively. This is verified from lower SD and RMS values of 9.08, 28.75, 28.53, 23.66
and 21.48 % along with 10.47, 36.63, 36.07, 31.11 and 29.96 % for 5-, 10-, 20-, 30- and 60-
to 1-min respectively. Additionally, performances of models are graded at 0.01 % of time
while using average coefficient sets whose results are shown in Table 13. As noted, third
order polynomial fit produces less error chances as compared to other models.
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As indicated in Table 14, third order polynomial model produces relatively less error
probabilities of —2.4, 0.65, 0.7, 4.43 and 0.96 % along with RMS values of 4.49, 4.55, 8.1,
11.06 and 13.06 % for 5-, 10-, 20-, 30- and 60- to 1-min respectively which indicates the
model suitability. The second most suitable model shall be Logarithmic model with simi-
lar error probabilities values. In other hand, ITU-R P.837-6, Burgueno et al., Chebil and
Rahman, global coefficients and model 3 result in greater error chances so these models
are not preferable at this time percentage. In addition, Segal method gives better esti-
mation from 5- to 1-min conversion time but the error chances increase as conversion
times get increased. Proposed model 1 produces higher error chances at higher conver-
sion time, especially 60- to 1-min and relative error values are <6 % for lower time con-
version. Second order polynomial fit and model 2 result higher error values as compared
to third order polynomial fit.

Furthermore, models performance is justified with the application of regional and
average coefficient sets in Daejeon site. As previously mentioned, this site is also consid-
ered in ERA-40 data base. Daejeon is the fifth largest metropolis with elevation of about
77 m above sea level and average precipitation is above 300 mm during the month of July
and August. The calculated rain rate from experimental 1-min rainfall amount in this
site at 0.01 % of time is 79.8 mm/h. Performance of error analysis in this site is done by
using regional coefficient sets and average coefficient sets which are listed in Tables 14
and 15 respectively while considering all integration times.

As noted from Table 14, proposed model 1 and third order polynomial fit exhibit
relatively less error chances which is <1 % for all integration times. In contrast, ITU-R
P.837-6 and global coefficients produce higher error probabilities which indicate that it is
not suitable for 1-min conversion process.

As indicated by error data listed in Table 15, logarithmic model and second order
polynomial fit produced low error values. Interestingly, second order polynomial fit
gives less error percentages of —2.16, 0.13, —1.7, —2.55 and —0.62 % for 5-, 10-, 20-,
30- and 60- to 1-min conversion time. This is supported by less values of SD obtained
as 6.53, 9.78, 8.99, 13.48 and 13.64 % along with RMS value of 6.03, 10.29, 8.34, 13.48
and 13.26 % for 5-, 10-, 20-, 30- and 60- to 1-min respectively. In contrary, Burgueno
et al., Chebil and Rahman, ITU-R P.837-6 and model 3 resulted in higher relative error
probabilities. This is justified through increased SD and RMS values as noted from
Table 15.

Moreover, the regional and average coefficients are further tested at 0.01 % of time
whose error values are depicted in Tables 16 and 17 respectively.

As noted from Table 16, Third order polynomial fit and Segal method produced lower
relative error values among which earlier method generate less error chances. This is
indicated by Table 16 where Third order polynomial fit give values of —3.13, —2.3, 0.04,
3.58 and —1.27 % for 5-, 10-, 20-, 30- and 60- to 1-min conversion times respectively.
This is supported by lower RMS values of 2.5, 1.84, 0.03, 2.86 and 1.01 % for 5-, 10-,
20-, 30- and 60- to 1-min conversion times respectively. In contrast, ITU-R P.837-6 and
global coefficients generate larger error values for all integration times as indicted in
Table 16.
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Fig. 6 a 1-min rainfall rate compared with 5-min integration time rainfall rate data. b 1-min rainfall rate com-
pared with 10-min integration time rainfall rate data. ¢ 1-min rainfall rate compared with 20-min integration
time rainfall rate data. d 1-min rainfall rate compared with 30-min integration time rainfall rate data. e 1-min
rainfall rate compared with 60-min integration time rainfall rate data
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As indicated in Table 17, logarithmic method and Second order polynomial fit give
less error values among which former model shows less error variance for higher time
integration. Although second and third order polynomial show better result at lower
integration times especially 5-, 10-, 20- and 30- to 1-min but for higher integration time
their error chances are increased. Hence, Logarithmic model is more preferable at 0.01 %
of time. In contrary, ITU-R P.837-6, Burgueno et al., Chebil and Rahman methods and
model 3 generate higher error values as depicted in Table 17 which signifies their unsuit-
ability for prediction of 1-min rain rate at 0.01 % of time.

Estimated 1-min rainfall rate curves for Daejeon Sites from 5-, 10-, 20-, 30- and 60- to
1-min conversion times are highlighted in Fig. 6a—e respectively. These plots indicate
that empirical nature of models markedly follows the calculated 1-min rain rate pattern.
Figure 6a, b indicate that ITU-R P.837-6 method under estimate calculated 1-min rain
rate for lower times conversion especially 5- and 10- to 1-min. Additionally, Fig. 6¢c—e
highlight the overestimation shown by ITU-R P.837-6 method and global coefficient
approach against the calculated 1-min rain rate.

Conclusion

The results obtained will serve as effective tools for communication system designer
to understand the effect of rain in propagation medium. In this regard, this paper
estimates the suitable empirical conversion model based on a decade long rainfall dis-
tribution data from KMA (2004-2013) over nine regions of the South Korea. Several
rainfall rate conversion processes have been carried out for various integration times
using these cumulative rainfall distribution. Rain rates exceeded for 0.001 < P < 0.1 %
of the time was compared with prominent rain rate models analyzed in nine sites
rainfall data. In addition, specific to 0.01 % time percentage value, several error met-
rics are evaluated. The performance criteria are based on the estimated statistics for
Error percentage, SD and root mean square error over the nine different region’s rain-
fall data. The calculated 1-min rainfall rate from experimental 1-min rainfall amount
is compared with ITU-R P.837-6 method and five existing empirical rainfall rate mod-
els along with five different polynomial fits. ITU-R P.837-6 method underestimate
1-min rain rate at lower integration times especially 5-, 10- to 1-min conversion time
and overestimate at higher integration times mostly 20-, 30- and 60- to 1-min. Under
regional coefficients set, proposed model 1, show better estimation of 1-min rain
rate and at 0.01 % of time, third order polynomial fit hold satisfactory result with less
error probabilities. Interestingly, proposed model 1 and third order polynomial fit
shows same condition in Daejeon site. Similarly, while using average coefficients set,
Logarithmic model hold better estimation of 1-min rain rate and at 0.01 % of time,
Logarithmic model, second and third order polynomial fits give satisfactory result.
Same condition is noted in Daejeon site too under average coefficients set approach.
In overall, the paper emphasizes that ITU-R P.837-6 global 1-min rain rate estimation
performance did not significantly reflect the South Korea’s local rainfall character-
istics. On the basis of overall result, it can be concluded that the proposed model
seems to provide a better and more reliable alternative to the ITU-R P.837-6 method
for better estimation of 1-min rainfall rate. We hope this work will be milestone
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approach for system designer in improving communication satellite systems in the
South Korea.
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