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Background
Pretreatment cognitive dysfunction has been well documented in women diagnosed 
with breast cancer (Wefel et  al. 2008; Ahles et  al. 2012); however, the mechanisms 

Abstract 

Purpose:  The purpose of this exploratory candidate gene association study was to 
examine relationships between polymorphisms in oxidative stress and DNA repair 
genes and pre-adjuvant therapy cognitive function (CF) in postmenopausal women 
diagnosed with early stage-breast cancer.

Methods:  Using a neuropsychological test battery, CF was assessed in 138 women 
diagnosed with breast cancer prior to initiation of adjuvant therapy and 81 age- and 
education-matched controls and summarized across eight composites. Participants 
were genotyped for 39 functional or tagging single nucleotide polymorphisms (SNPs) 
of select oxidative stress (CAT, GPX1, SEPP1, SOD1, and SOD2) and DNA repair (ERCC2, 
ERCC3, ERCC5, and PARP1) genes. Multiple linear regression was used to determine if the 
presence or absence of one or more minor alleles account for variability in CF compos-
ite scores. Based on regression findings from the analysis of individual SNPs, weighted 
multi-gene, multi-polymorphism genetic risk scores (GRSs) were calculated to evaluate 
the collective effect of possession of multiple protective and/or risk alleles.

Results:  Each CF composite was significantly (p < 0.05) associated with one or more 
oxidative stress and DNA repair gene polymorphisms evaluated either by SNP main 
effects and/or SNP-by-prescribed breast cancer treatment group interactions. Each 
computed GRS was found to be significantly (p < 0.001) related to its corresponding CF 
composite. All associations were positive suggesting that as overall genetic protection 
increases, CF composite score increases (indicating better performance).

Conclusions:  These findings suggest that genetic variation in the oxidative stress and 
DNA repair pathways may play an important role in pre-adjuvant therapy CF in breast 
cancer survivors.
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underlying this phenomenon as well as the variability in the presence and severity of 
cognitive dysfunction experienced by breast cancer survivors remain largely unknown. 
One biologically plausible mechanism that may at least partially account for pretreat-
ment cognitive dysfunction and the observed variability is variation in response to oxi-
dative stress and DNA damage (Janelsins et al. 2012; Ahles and Saykin 2007; Vardy et al. 
2008). Evidence continues to build that supports the role of increased oxidative stress, 
insufficient antioxidant mechanisms, and/or deficient response to DNA damage in brain 
aging and cognitive decline (Coppedè and Migliore 2010; Jeppesen et al. 2012; Lillenes 
et al. 2011). Furthermore, oxidative damage and diminished DNA repair capacity have 
been implicated in more extreme cognitive dysfunction phenotypes, including mild cog-
nitive impairment and Alzheimer’s disease (Bucholtz and Demuth 2013; Migliore et al. 
2005; Jones et al. 1989).

The systemic environment and tumor microenvironment of a woman with breast 
cancer are characterized by increased, yet variable, levels of oxidative stress and DNA 
damage, with oxidative stress and subsequent DNA damage promoting breast cancer 
development and progression (Kang 2002; Jezierska-Drutel et  al. 2013; Nourazarian 
et  al. 2014). In one study of altered oxidative stress levels and breast cancer, Herrera 
et al. (2014) found evidence to support enhanced oxidative stress and reduced antioxi-
dant defenses in plasma of postmenopausal women with primary ductal carcinomas 
of the breast at diagnosis compared to women 6  months post tumor removal and to 
healthy controls. Wang et al. also found increased levels of lipid peroxidation in breast 
cancer tissue but, in contrast to the previous study, upregulated antioxidant levels com-
pared to tissue from healthy controls (Wang et al. 2014). In addition to being altered, 
research suggests that oxidative stress profiles are heterogeneous, differing between 
early and advanced stage breast cancers (Panis et  al. 2012) and varying by tumor size 
and lymph node involvement (Saintot et  al. 2002). In terms of DNA damage, chemo-
therapy naïve postmenopausal women with primary invasive ductal breast cancer were 
found to have higher basal levels of DNA damage and decreased DNA repair efficacy of 
peripheral blood lymphocytes (PBLs) compared to age-matched healthy women (Blasiak 
et al. 2004). Sanchez-Suarez et al. (2008) presented congruent findings: an assessment of 
PBLs from women with Stage 2 ductal carcinoma of the breast displayed higher DNA 
damage prior to initiation of adjuvant chemotherapy compared to age-matched healthy 
controls. Similar results were reported in a study of DNA damage and repair in PBLs in 
a heterogeneous sample of individuals (ages 1–59 years) with various cancer diagnoses 
compared to healthy controls (ages 22–50 years) with cells from cancer patients demon-
strating higher levels of basal DNA damage. Considerable individual variation was also 
noted (Nadin et al. 2006).

The reported variability in oxidative stress and DNA damage profiles warrants investi-
gation of genetic variation to account for differences in cognitive phenotypes of women 
diagnosed with breast cancer. Considering how increased oxidative stress and decreased 
DNA repair capacity impacts more extreme cognitive phenotypes as well as the vulner-
ability of the brain within the context of increased oxidative stress due to breast can-
cer, we hypothesize that variability in protection from oxidative damage and capacity to 
repair DNA may inform variability in the extent of cognitive dysfunction among breast 
cancer survivors. Thus, the purpose of this exploratory candidate gene association study 
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was to examine relationships between variation in genes involved in oxidative stress 
(CAT, GPX1, SEPP1, SOD1, and SOD2) and DNA repair (ERCC2, ERCC3, ERCC5, and 
PARP1) and pre-adjuvant therapy CF in postmenopausal women with early stage breast 
cancer. Furthermore, cumulative multi-gene, multi-polymorphism genetic risk scores 
(GRSs) were calculated to evaluate the collective effect of possessing multiple significant 
polymorphisms.

Methods
Study participants

Participants in this candidate gene association study were recruited from a larger parent 
study investigating the effect of the adjuvant aromatase inhibitor therapy, anastrozole, 
on changes in CF in postmenopausal women with breast cancer (Bender et al. 2015). The 
sample (N = 219) was comprised of 138 women diagnosed with breast cancer and 81 
age- and education-matched controls with no personal history of breast cancer. All par-
ticipants were no greater than 75 years of age, able to speak and read English, completed 
at least 8 years of education, and had no previous history of cancer, psychiatric illness, 
or neurologic disease/trauma at time of enrollment into the parent study. In addition, 
women with breast cancer had a diagnosis of estrogen receptor positive, early-stage 
breast cancer (stages 1, 2, or 3a) based on the Tumor, Nodes, Metastasis Classification 
of Malignant Tumors with no clinical evidence of distant metastases (Edge et al. 2010). 
This study was approved by the University of Pittsburgh Institutional Review Board. 
Informed consent was obtained from all individual participants included in both the 
parent and genetic ancillary study.

Evaluation of cognitive function

A battery of neuropsychological tests was used to assess cognitive function (CF). 
Women with cancer completed cognitive assessment after primary surgery but prior to 
initiation of adjuvant therapy. Control women completed the same cognitive assessment. 
The neuropsychological test battery was individually administered to study participants 
by trained research nurses. The selection of neuropsychological tests for the battery and 
reduction of individual neuropsychological test data into the eight following CF com-
posites based on exploratory factor analysis have been described in detail previously 
(Bender et al. 2015):

1.	 Attention—Cambridge Neuropsychological Test Automated Battery (CANTAB) 
Rapid Visual Information Processing (Robbins et al. 1994)

2.	 Concentration—Digit Vigilance (Layfayette Clinical Insturments Company 1989)
3.	 Mental Flexibility—Delis Kaplan Executive Function System Color-Word Interfer-

ence (Delis et al. 2001)
4.	 Executive Function—CANTAB Stockings of Cambridge (Robbins et  al. 1994) and 

CANTAB Spatial Working Memory (Robbins et al. 1994)
5.	 Psychomotor Speed—Grooved Pegboard (Klove 1963) and Digit Symbol Substitu-

tion (Wechsler 1998)
6.	 Verbal Memory—Rey Auditory Verbal Learning (Rey 1964), Verbal Fluency Test, and 

Rivermead Story (Cockburn and Smith 1993)
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7.	 Visual Memory—CANTAB Paired Associates Learning (Robbins et  al. 1994) and 
Rey Complex Figure (Osterrieth 1944)

8.	 Visual Working Memory—CANTAB Stockings of Cambridge (Robbins et al. 1994) 
and Rey Complex Figure (Osterrieth 1944)

Covariate assessment

In order to control for the potential effects of age, intelligence, mood, and pain on CF, 
age, estimated verbal intelligence (National Adult Reading Test-Revised) (Nelson 1981), 
and levels of depressive symptoms (Beck Depression Inventory-II) (Beck et  al. 1996), 
anxiety (POMS tension-anxiety subscale) (McNair et al. 1992), fatigue (POMS fatigue-
inertia subscale) (McNair et al. 1992), and pain (Brief Pain Inventory) (Cleeland 1989) 
were also assessed. All participants in this study had complete covariate/confounder 
information.

SNP selection and genotyping

Functional polymorphisms for five candidate oxidative stress genes (Catalase, CAT; Glu-
tathione Peroxidase 1, GPX1; Selenoprotein P, Plasma 1, SEPP1; Superoxide Dismutase 
1, Soluble, SOD1; and Superoxide Dismutase 2, Mitochondrial, SOD2) and four can-
didate DNA repair genes (Excision Repair Cross-Complementation Group 2, ERCC2; 
Excision Repair Cross-Complementation Group 3, ERCC3; Excision Repair Cross-Com-
plementation Group 5, ERCC5; and Poly (ADP-ribose) Polymerase 1, PARP1) were iden-
tified from the literature (Hamanishi et  al. 2004; Valenti et  al. 2004; Islam et  al. 2007; 
Jiang et al. 2001; De Haan et al. 1998; Meplan et al. 2007; Spencer et al. 2008; Hooker 
et al. 2007; Mizutani 2007; Lockett et al. 2004). When a functional polymorphism was 
not identified or did not fully represent all of the variability in the gene, tagging SNPs 
were selected using the Phase III HapMap database. Criteria for selecting tagging SNPs 
included: R2 of ≥0.8; minor allele frequency ≥20 %; and selected for Caucasian and Afri-
can ancestry, which represents parent study subjects. In total, 39 functional or tagging 
SNPs were selected for evaluation (Table 1).

Genetic samples were collected from June 2008 to May 2014. Three milliliters of whole 
blood or two milliliters of saliva were obtained for genotyping. DNA was extracted from 
PBLs using a simple salting out procedure or from saliva utilizing the protocol and rea-
gents supplied with the Oragene DNA collection kits (DNA Genotek Inc 2012; Miller 
et al. 1988). Genotypes were determined using either an iPLEX MassARRAY multiplex 
assay platform (Sequenom, San Diego, CA) or a TaqMan allele discrimination platform 
(Thermo Fisher Scientific Inc., Waltham, MA). Genotypes were double called by indi-
viduals blinded to subject phenotypes and discrepancies addressed by reviewing raw 
data or re-genotyping. Participant genotypes were classified for data analysis based on 
the presence (i.e., homozygous variant genotype plus heterozygous genotype) or absence 
(i.e., wildtype genotype) of the minor allele.

Statistical analysis

Analyses were performed using IBM® SPSS® Statistics Version 23 (IBM Corp., Armonk, 
NY). A detailed descriptive analysis of all data was first performed to identify any 
anomalies prior to modeling. Each SNP was tested for Hardy–Weinberg equilibrium 
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using a Chi square goodness-of-fit test. To account for the heterogeneity of breast can-
cer tumors, women diagnosed with breast cancer were further classified prior to analy-
sis using prescribed treatment regimen as a surrogate for disease characteristics, such 
as disease stage and aggressiveness. Subsequently, the analysis featured two groups of 
women diagnosed with breast cancer, Group A (prescribed chemotherapy followed 
by anastrozole, n = 55) and Group B (prescribed anastrozole alone, n = 83), as well as 
the reference, healthy age- and education-matched control group (n = 81). Hierarchi-
cal multiple linear regression modeling was employed to estimate relationships between 
individual SNPs and each CF composite score. Both main SNP effect only and SNP-by-
group interaction models were fitted. In all models, the prescribed treatment groups, 
Group A and Group B, were compared to the reference, control group. Likewise, posses-
sion of one or more minor alleles (i.e., homozygous variant genotype plus heterozygous 
genotype) was compared to the reference, wildtype genotype. All models were adjusted 
for age, estimated verbal intelligence, and levels of depressive symptoms, anxiety, fatigue, 
and pain at study entry. Regression diagnostics were examined for each model. Poten-
tially influential cases were identified and sensitivity analyses were conducted to eval-
uate the robustness of findings. In order to retain cases found to be influential due to 
extreme CF scores, scores were modified to be less extreme but still the highest/lowest 
CF score(s) for the affected composite. Unstandardized regression b-coefficients were 
obtained and tested at a two-tailed significance level of 0.05.

GRSs were then calculated for each participant to evaluate the collective effect of mul-
tiple DNA repair and oxidative stress polymorphisms on CF composite scores. Separate 
GRSs were calculated for each CF composite. SNP minor alleles found to be significantly 
(p < 0.05) negatively or positively associated with CF composites in the individual main 
effect only and/or interaction effect models were utilized in GRS calculations. In order 
to assign greater risk/protection to alleles with stronger associations, a weighted method 
was employed. Unstandardized regression b-coefficients from the individual SNP mod-
els were multiplied by 0 (absence) or 1 (presence) based on a participant’s genotype and 

Table 1  Candidate DNA repair and oxidative stress genes and associated SNPs

SNP single nucleotide polymorphism
a  Functional polymorphism

DNA repair genes Oxidative stress genes

ERCC2 ERCC5 CAT SEPP1

 rs13181  rs11069498  rs1001179a  rs230819

 rs1799786  rs2296147  rs10488736  rs28919892

 rs1799787  rs2296148a  rs2179625  rs3877899a

 rs238406  rs4150355  rs511895

 rs238416  rs4150360  rs525938

 rs3916874  rs4771436  rs566979 SOD1

 rs50871  rs751402  rs769214a  rs1041740

 rs50872  rs873601

ERCC3 PARP1 GPX1 SOD2

 rs2134794  rs1136410a  rs1050450a  rs4880a

 rs4150402  rs2271347  rs5746136

 rs4150407  rs3219058  rs8031

 rs4150477  rs3219090
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prescribed treatment group membership and then summed. For example, the equation 
to calculate the verbal memory GRS would be as follows:

Thus, a participant prescribed chemotherapy plus anastrozole (Group A) who pos-
sessed the minor alleles for CATrs566979 and ERCC5rs4150360 would have a verbal 
memory GRS of 0.43 calculated as follows:

A lower GRS indicates greater genetic risk for poorer CF and a higher GRS indicates 
greater genetic protection. Please note that if influential observations were identified by 
the sensitivity analysis, b-coefficients from the models with modified extreme CF scores 
were used. The unique contributions of GRSs in explaining the variance in CF compos-
ite scores were evaluated in the final block in a hierarchical multiple linear regression 
model, adjusted for age, estimated verbal intelligence, and levels of depressive symp-
toms, anxiety, fatigue, and pain. Participants missing genetic data necessary for comple-
tion of a GRS calculation were not included in the GRS analysis.

Results
Genotyping rates of the 39 SNPs ranged from 85.5 to 100  %. When considering the 
entire cohort (cases and controls), six SNPs were not in Hardy–Weinberg equilib-
rium: ERCC2rs1799786 (χ2 = 4.77, p = 0.029), ERCC2rs238416 (χ2 = 3.92, p = 0.048), 
ERCC2rs50871 (χ2 =  4.37, p =  0.037), PARP1rs1136410 (χ2 =  4.78, p =  0.029), PAR-
P1rs3219090 (χ2 =  6.04, p =  0.014), and SEPP1rs28919892 (χ2 =  4.29, p =  0.038). Of 
these six SNPs, only one, ERCC2rs238416 (χ2 =  4.29, p =  0.038) was not in Hardy–
Weinberg equilibrium when considering the control group alone. This deviation is most 
likely due to lack of random sampling from the population for both the cases and con-
trols. Group-wise comparisons of participant characteristics revealed that study groups 
differed statistically, but not clinically significantly by age and estimated verbal intelli-
gence (Table 2).

Results from the individual SNP variant regression analyses are reported in the table 
found in Additional file 1. Individual polymorphisms significantly (p < 0.05) associated 
with a particular CF composite by a SNP main effect and/or SNP-by-group interaction 
effect are listed in Table 3. A selection of results from the individual SNP analysis has 
been highlighted by CF composite in the text to follow; please note that all reported 
b-coefficients indicate the magnitude and direction of possession of one or more minor 

Verbal Memory GRS = (−.346 ∗ CAT rs566979−G)

+ (.282 ∗ CAT rs566979−G ∗ GroupA)+ (.387 ∗ CAT rs566979−G ∗GroupB)

+ (−.129 ∗ ERCC5rs11069498−G)+ (.536 ∗ ERCC5rs11069498− G ∗ GroupA)

+ (.190 ∗ ERCC5rs11069498−G ∗ GroupB)+ (−.075 ∗ ERCC5rs751402− C)

+ (.486 ∗ ERCC5rs751402− C ∗ GroupA)+ (.255 ∗ ERCC5rs751402− C ∗ GroupB)

+ (−.074 ∗ ERCC5rs4150360− T)+ (.568 ∗ ERCC5rs4150360− T ∗ GroupA)

+ (.104 ∗ ERCC5rs4150360− T ∗ GroupB)

Verbal Memory GRS

= (−.346 ∗ 1)+ (.282 ∗ 1 ∗ 1)+ (.387 ∗ 1 ∗ 0)+ (−.129 ∗ 0)+ (.536 ∗ 0 ∗ 1)

+ (.190 ∗ 0 ∗ 0)+ (−.075 ∗ 0)+ (.486 ∗ 0 ∗ 1)+ (.255 ∗ 0 ∗ 0)+ (−.074 ∗ 1)

+ (.568 ∗ 1 ∗ 1)+ (.104 ∗ 1 ∗ 0) = 0.43
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alleles on CF. For attention, possession of one or more ERCC3rs2134794 (b = −0.309, 
p  =  0.010) or ERCC5rs873601 (b  =  −0.288, p  =  −0.015) minor alleles was associ-
ated with poorer performance regardless of group membership. SNP main effects also 
influenced mental flexibility, psychomotor speed, and concentration performance. For 
mental flexibility, a number of significant SNP main effects were observed over multi-
ple oxidative stress and DNA repair genes: ERCC2rs13181 (b = −0.179, p =  0.031), 
ERCC3rs4150407 (b  =  0.234, p  =  0.016), ERCC3rs4150477 (b  =  0.190, p  =  0.038), 
PARP1rs2271347 (b =  0.202, p =  0.034), SEPP1rs230819 (b =  0.255, p =  0.018), and 
SOD1rs1041740 (b = 0.254, p = 0.006). Significant SNP main effects were also observed 
for psychomotor speed: CATrs511895 (b = 0.237, p = 0.031), CATrs769214 (b = −0.421, 
p = 0.020), ERCC5rs11069498 (b = −0.236, p = 0.044), ERCC5rs751402 (b = −0.224, 
p = 0.050), ERCC5rs873601 (b = −0.227, p = 0.037), and SEPP1rs3877899 (b = −0.327, 
p = 0.005). For concentration, possession of one or more minor alleles for every SOD2 
polymorphism evaluated, SOD2rs4880 (b  =  −0.303, p  =  0.024), SOD2rs5746136 
(b = −0.257, 0.023), SOD2rs8031 (b = −0.332, p = 0.011), contributed to poorer con-
centration performance regardless of group membership. In addition, the combination 
of Group B membership and possession of one or more ERCC2rs3916874 (b = 0.533, 
p  =  0.050), ERCC2rs50872 (b  =  −0.882, p  =  0.001), ERCC3rs4150407 (b  =  0.546, 
p  =  0.047), or ERCC5rs2296147 (b  =  0.585, p  =  0.043) minor alleles contributed 

Table 2  Participant characteristics (N = 219)

SD, standard deviation; Group A, prescribed chemotherapy plus anastrozole; Group B, prescribed anastrozole alone; NART-R, 
National Adult Reading Test-Revised; BDI-II, Beck Depression Inventory-II, POMS, Profile of Mood States; BPI, Brief Pain 
Inventory. One-way ANOVAs utilized to compare study cohort means of continuous variables. Pearson’s Chi square tests of 
independence used to examine the general associations between categorical variables

* p < .05

Characteristic  
(measure)

Group A (n = 55) 
Mean ± SD  
or n (%)

Group B (n = 83) 
Mean ± SD  
or n (%)

Healthy controls 
(n = 81)  
Mean ± SD or n (%)

F or χ2 test  
statistic p value

Age (years) 58.76 ± 5.47 62.47 ± 5.96 60.06 ± 6.08 <.001*

Education (years) 15.67 ± 2.78 14.95 ± 3.06 14.84 ± 2.91 .232

Estimated verbal 
intelligence (NART-
R)

108.94 ± 8.87 107.04 ± 8.84 114.72 ± 7.84 <.001*

Depression (BDI-II) 5.24 ± 6.61 4.60 ± 4.65 4.83 ± 5.52 .760

Anxiety (POMS 
tension-anxiety 
subscale)

9.61 ± 6.14 6.97 ± 4.65 6.61 ± 5.63 .004*

Fatigue (POMS 
fatigue-inertia 
subscale)

5.11 ± 5.33 5.84 ± 6.35 5.74 ± 5.99 .759

Pain (BPI) 1.47 ± 1.96 1.55 ± 2.27 0.94 ± 2.07 .144

Marital status,  
married

38 (69.1) 54 (65.1) 46 (56.8) .306

Number of children 1.75 ± 1.22 2.05 ± 1.39 2.12 ± 1.53 .283

Race, Caucasian 52 (94.5) 81 (97.6) 75 (92.6) .337

Cancer stage

 Stage 1 25 (45.5) 69 (83.1) – –

 Stage 2a 19 (34.5) 12 (14.5) – –

 Stage 2b 5 (9.1) 2 (2.4) – –

 Stage 3a 6 (10.9) 0 (0.0) – –
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Table 3  Genetic risk score (GRS) and  cognitive function composite regression analysis 
results

SNP single nucleotide polymorphism, GRS genetic risk score. All regression models are adjusted for age, estimated verbal 
intelligence, and levels of depression, anxiety, fatigue, and pain

* p < .001
a  GRS calculation based on b-coefficients from regression models with modified influential point values

Composite cognitive  
function composite

Gene-SNP used  
in GRS calculation

Minor 
allele

Wildtype  
reference allele

bGRS Model R2 R2 change 
for GRS

Attentiona (n = 214) ERCC3-rs2134794 C A 1.003* 0.236 0.048

ERCC5-rs873601 G A

Concentration (n = 206) ERCC2-rs3916874 C G 0.619* 0.218 0.150

ERCC2-rs50872 T C

ERCC3-rs2134794 C A

ERCC3-rs4150407 G A

ERCC5-rs2296147 C T

SOD2-rs4880 T C

SOD2-rs5746136 A G

SOD2-rs8031 T A

Executive functiona

(n = 215)
ERCC3-rs2134794 C A 0.535* 0.299 0.075

ERCC3-rs4150407 G A

ERCC3-rs4150477 T C

ERCC5-rs2296147 C T

PARP1-rs2271347 A G

PARP1-rs3219058 A G

Mental flexibilitya (n = 198) ERCC2-rs13181 G T 0.669* 0.342 0.094

ERCC3-rs4150407 G A

ERCC3-rs4150477 T C

PARP1-rs2271347 C T

SEPP1-rs230819 A C

SEPP1-rs3877899 A G

SOD1-rs1041740 T C

Psychomotor speeda

(n = 186)
CAT-rs511895 A G 0.741* 0.288 0.126

CAT-rs769214 G A

ERCC5-rs11069498 G A

ERCC5-rs2296148 T C

ERCC5-rs751402 T C

ERCC5-rs873601 G A

SEPP1-rs3877899 A G

SOD1-rs1041740 T C

Verbal memory (n = 214) CAT-rs566979 G T 0.567* 0.289 0.049

ERCC5-rs11069498 G A

ERCC5-rs4150360 C T

ERCC5-rs751402 T C

Visual memorya (n = 178) CAT-rs1001179 A G 0.691* 0.260 0.118

CAT-rs525938 G A

CAT-rs566979 G T

CAT-rs769214 G A

ERCC5-rs751402 T C

GPX1-rs1050450 G A

Visual working memorya 
(n = 210)

ERCC2-rs1799787 T C 0.766* 0.256 0.111

ERCC5-rs11069498 G A

ERCC5-rs4150355 T C

ERCC5-rs4150360 C T

ERCC5-rs873601 G A

PARP1-rs2271347 C T
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positively or negatively to concentration scores. The combination of DNA repair gene 
variation and Group A membership was found to be associated with executive function 
performance with multiple significant SNP-by-Group A interaction effects observed: 
ERCC3rs2134794 (b =  0.470, p =  0.023), ERCC3rs4150407 (b = −0.466, p =  0.035), 
ERCC3rs4150477 (b = −0.417, p =  0.046), ERCC5rs2296147 (b =  0.477, p =  0.034), 
and PARP1rs2271347 (b = −0.589, p = 0.006). In contrast, the combination of Group B 
membership and possession of one or more ERCC5rs2296148 (b = 1.075, p = 0.024) or 
SOD1rs1041740 (b = −0.619, p = 0.015) minor alleles was associated with psychomotor 
speed scores. The combination of group membership and genetic variation was found 
to be important for all three memory-related cognitive composites as well. Specifically, 
the combination of Group A membership and possession of one or more minor alleles 
for: ERCC5rs11069498 contributed positively to verbal memory (b = 0.536, p = 0.034) 
and visual working memory (b =  0.629, p =  0.027) scores; ERCC5rs4150360 contrib-
uted positively to verbal memory (b =  0.568, p =  0.031) and visual working memory 
(b =  0.673, p =  0.023); and ERCC5rs751402 contributed positively to verbal memory 
(b = 0.486, p = 0.038) and visual memory (b = 0.499, p = 0.023). Additionally, the com-
bination of Group A membership and CAT variation was found to be associated with 
visual memory: CATrs1001179 (b = −0.512, p = 0.032), and CATrs769214 (b = 0.480, 
p =  0.024). Two CAT SNP main effects, CATrs525938 (b = −0.282, p =  0.049) and 
CATrs566979 (b = −0.282, p = 0.049) were also observed with visual memory.

Each computed GRS was found to be significantly (p < 0.001) related to its respective 
CF composite (Table  3). All associations were found to be positive such that as GRSs 
increase, CF composite performance scores increase as well (Fig. 1).

Discussion
To our knowledge, this study represents the first investigation of relationships between 
oxidative stress and DNA repair gene variation and pre-adjuvant therapy CF in post-
menopausal women diagnosed with early-stage breast cancer. Overall, our results 
revealed that performance for every CF composite was significantly (p < 0.05) associated 
with one or more oxidative stress and DNA repair gene polymorphisms by either SNP 
main effects (i.e., observed cognitive changes in both breast cancer survivors and healthy 
control women are associated with a certain genetic polymorphism) and/or SNP-by-
group interaction effects (i.e., observed cognitive changes were associated with a certain 
combination of genetic polymorphism and prescribed treatment group).

Out of all the genes included in our investigation, variation in ERCC5 appeared to 
influence cognitive performance most globally, with significant relationships noted 
between one or more ERCC5 SNPs and every CF composite with the exception of men-
tal flexibility. The function of ERCC5 has been most widely investigated in xeroderma 
pigmentosum and DNA excision repair following UV-induced damage. More gener-
ally, ERCC5 participates in nucleotide excision repair, encoding an endonuclease that 
makes 3’ incisions (US National Library of Medicine, National Institutes of Health 2014). 
ERCC5 also decreases cellular oxidative burden, functioning as a cofactor for a DNA gly-
cosylase that removes oxidized pyrimidines from DNA (US National Library of Medi-
cine, National Institutes of Health 2014). Although rare, mutations in the ERCC5 gene 
have also been associated with the development of Cockayne syndrome in combination 
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Fig. 1  Genetic risk score (GRS) partial regression plots. Note The partial regression plots were generated using 
IBM® SPSS® Statistics Version 23 (IBM Corp., Armonk, NY). GRS genetic risk score
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with xeroderma pigmentosum (US National Library of Medicine, National Institutes 
of Health 2014). Characteristic features of Cockayne syndrome include impaired nerv-
ous system development and mental retardation, highlighting the critical role ERCC5 
plays in normal CF. Within the context of this study, we postulate that as cancer creates 
a cellular environment of increased oxidative stress and DNA damage, certain polymor-
phisms in ERCC5 may decrease a survivor’s ability to repair damage and remove reac-
tive oxygen species, placing an already vulnerable brain at even higher risk for damage 
(Conroy et al. 2012; Joshi et al. 2005; Kasapović et al. 2010; Walker et al. 2012; Finkel and 
Holbrook 2000).

Another intriguing finding was the predominant negative effect of certain SOD2 alleles 
(rs4880-T, rs5746136-A, and rs8031-T) on concentration performance within our study 
sample regardless of cancer diagnosis or prescribed treatment group. The SOD2 gene 
encodes an enzyme, manganese-dependent superoxide dismutase, that confers cell pro-
tection by eliminating mitochondrial reactive oxygen species (NCBI Resource Coordina-
tors 2015). The functional rs4880 alanine-to-valine (C > T) single amino acid change has 
been found to influence enzyme activity with valine (T) associated with reduced SOD2 
activity in human breast cancer and hepatoma cell lines (Sutton et  al. 2005; McAteea 
and Yager 2010); contradictory findings have also been reported (Martin et  al. 2009; 
Bastaki et  al. 2006). Nevertheless, reduced SOD2 expression has been implicated in a 
number of neurodegenerative disorders (Flynn and Melov 2013). Likewise, decreased 
SOD2 mRNA and protein levels were found to be correlated with poorer memory, atten-
tion span, verbal fluency, and learning ability in a pooled sample of adults with recurrent 
depressive disorder and healthy controls (Talarowska et al. 2014). As our study was not 
designed to measure expression or protein levels of SOD2, we cannot expand upon how 
our results support or refute previous findings. While we found that possession of one or 
more SOD2 rs4880-T alleles was associated with poorer CF in all study participants, the 
antioxidant properties of SOD2 may have more impactful consequences for women with 
breast cancer throughout treatment with the introduction of adjuvant therapy regimens 
known to increase oxidative burden systemically. Thus, a remaining important question 
is if possession of one or more SOD2 rs4880-T alleles is also associated with greater risk 
for cognitive decline with therapy.

Our analyses also revealed a number of significant allele effects specific to the groups 
of women with breast cancer compared to control women without cancer. For exam-
ple, significant SNP main effects and SNP-by-group interaction effects were observed 
for PARP1 rs2271347 and executive function performance. While the SNP effect regres-
sion coefficient for possession of one or more minor alleles contributed positively to 
executive function (b = 0.502, p < 0.001), the SNP-by-group interaction regression coef-
ficients for women in Group A (scheduled to received chemotherapy plus anastrozole) 
(b = −0.589, p = 0.006) and women in Group B (scheduled to receive anastrozole alone) 
(b = −0.498, p = 0.006) contributed negatively to the model, nullifying the main effect 
and contributing an overall negative input to executive function performance. Interac-
tions, like the one presented, illustrate how not only genetic variation, but the combi-
nation of genetic variation and a breast cancer diagnosis can impact CF at diagnosis; 
alternatively, these findings highlight how factors that increase one’s risk for develop-
ment of cancer may also contribute to changes in CF.
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In order to get a sense of the effect of the oxidative stress and DNA repair candidate 
pathway as a whole on pretreatment CF in women with breast cancer, we calculated 
weighted GRSs for each CF composite based on our individual SNP analysis. Similar 
to how a total score from an instrument (composed of individual items) summarizes a 
given concept, GRSs “summarize the potential multiple risk genetic influences into a 
single quantitative parameter and do not depend on single genetic variants” (Carreras-
Torres et al. 2014). Instead of using a simple count method where each SNP contributes 
equally to risk calculations, we employed a weighted method in order to assign greater 
risk/protection to minor alleles with stronger associations (Lu et al. 2010). Fascinatingly, 
each computed GRS was significantly and positively associated to its respective CF com-
posite. The amount of explained variance that each GRS contributed to its respective 
model was also notable, ranging from R2 = 0.048 to 0.150. These findings not only point 
to the potential importance of oxidative stress response and DNA repair capacity to pre-
treatment changes in CF in breast cancer survivors, but, more broadly, to the value of 
evaluating the effect of multiple SNPs at the same time in association studies in general.

To better interpret our findings, a gene–gene pathway analysis, using Ingenuity® 
Pathway Analysis software (IPA®, QIAGEN Redwood City, www.qiagen.com/ingenu-
ity), of the nine candidate oxidative stress and DNA repair genes analyzed within this 
study was conducted. This analysis reiterated the interconnectedness of the genes and, 
consequently, endorsed evaluation of the collective effect of multiple SNPs from a sin-
gle pathway simultaneously. Two unique networks were identified through our analysis 
(Additional file  2). The first network included CAT, GPX1, PARP1, SOD1, and SOD2. 
The main associated diseases and functions of this network were, not surprisingly, free 
radical scavenging, small molecule biochemistry, and neurological disease. The second 
network included ERCC2, ERCC3, ERCC5, and SEPP1 and was associated with DNA 
replication, recombination, and repair, energy production, and nucleic acid metabolism. 
The pathway analysis also reminds that our study featured a limited number of candi-
date genes and that there are many additional oxidative stress and DNA repair genes 
that warrant further investigation.

While this study had a number of strengths, including mechanistic pathway-driven can-
didate gene selection, inclusion of a matched control group of women without a breast 
cancer diagnosis, assessment of SNP-by-prescribed treatment group interaction effects, 
and evaluation of the collective effect of multiple SNPs using weighted GRSs, limitations 
should also be acknowledged. To begin, the small study sample size, while appreciable, did 
not allow for detection of small effect sizes (i.e., R2 < .01) often characteristic of genetic 
association studies. In addition, the small sample size did not allow for the evaluation of 
allelic dose–response relationships. Because the sample was comprised of postmenopau-
sal women with hormone receptor positive, early-stage breast cancer who were primarily 
white and married, the generalizability to other more diverse populations and breast can-
cers is unknown. Findings from this study should be replicated in a larger, more diverse 
sample. In addition, differences in anesthesia exposure (or lack thereof for control women 
who did not undergo surgery) and its potential confounding cognitive effects were not 
controlled for in our analysis. Future studies and analyses should also focus on the col-
lective effect of multiple oxidative stress and DNA repair gene variants on CF throughout 
and following completion of adjuvant therapy in women with breast cancer.

http://www.qiagen.com/ingenuity
http://www.qiagen.com/ingenuity
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In conclusion, our goal in this study was to provide data on a possible biologic mecha-
nism to account for variability in cognitive changes in breast cancer survivors. Results 
from this preliminary study reveal that genetic variation in the oxidative stress and DNA 
repair pathways appears to play an important role in CF in women with breast cancer 
prior to initiation of adjuvant therapy and give reason to investigate whether polymor-
phisms influence cognitive decline with therapy as well. In the future, evaluation of a 
panel of oxidative stress and DNA repair gene polymorphisms could offer healthcare 
providers a means of predicting which women diagnosed breast cancer are most at risk 
for poorer CF and candidates for additional interventions, such as antioxidant therapy.
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