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Background
Expansion of a hollow cylinder is one of the classical problems of elasticity and plasticity. 
The first strict elastic/plastic solution for the expansion of a hollow cylinder of elastic/
plastic material at large strains has been provided by Hill et al. (1947). Subsequent limit 
analysis has been used by Leu (2007, 2009), Leu and Li (2012) to find solutions for sev-
eral rigid plastic models. A constitutive equation for nonlinear viscoelasticity has been 
adopted by Wineman and Min (1996). The location of yield in rotating thick-walled cylin-
drical shells made of functionally graded materials has been determined by Fatehi and 
Nejad (2014). A great number of solutions at small elastic/plastic strains have been pro-
posed for various material models (see, for example, Bland 1956; Chen 1986; Megahed 
and Abbas 1991; Rees 1987, 1990; Stacey and Webster 1988; Lazzarin and Livieri 1997; 
Livieri and Lazzarin 2002; Loghman and Wahab 1994; Farrahi et al. 2013). However, in 
many cases elasticity is not so important at large strains, i.e. the elastic portion of the 
strain rate tensor may be neglected. In particular, rigid plastic models are used even in 
conjunction with finite element methods (see, for example, Guo and Kamitani 2010; 
Cheong et al. 2014; Eom et al. 2014). On the other hand, it is important to predict the 
evolution of internal variables since these variables control material properties. A typical 
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model capable of such predictions is based on the conventional system of equations of 
plasticity theory (i.e. a yield criterion and its associated flow rule) and evolution equations 
for internal variables. These equations should be solved simultaneously. Commonly used 
internal variables are the equivalent strain, various damage parameters (Lemaitre 1985; 
Chandrakanth and Pandey 1993; Besson 2010 among many others), dislocation density 
(Ganapathysubramanian and Zabaras 2004; Lin and Dean 2005; He et al. 2012; Hore et al. 
2015) and many other parameters that characterize the microstructure of material.

It is shown in the present paper that for a generic set of evolution equations for inter-
nal variables the initial/boundary value problem for an expanding hollow cylinder is 
reduced to a hyperbolic system of equations. The characteristic curves of this system 
are coordinate lines of a Lagrangian coordinate system. Therefore, a very high accuracy 
of numerical solutions can be easily achieved using a finite difference method and these 
solutions can serve as simple benchmark tests for numerical packages that deal with the 
prediction of the evolution of internal variables in metal forming processes. A necessity 
of such tests has been pointed out by Roberts et al. (1992). Note that even in the case of 
linear elasticity numerical results often depend on a particular method adopted to solve 
the problem (Helsing and Jonsson 2002). Therefore, reliable benchmark tests are impor-
tant for large strain plasticity models that include internal variables.

The method proposed is an extension of the method developed in Alexandrov and 
Jeng (2011). In this paper, the evolution of damage in an expanding/contracting hollow 
sphere has been investigated.

Statement of the problem
Consider a long thick-walled tube of initial outer radius b0 and initial inner radius a0 . 
The tube is subject of uniform pressure p0 applied over its inner radius. It is assumed 
that the magnitude of p0 is high enough to initiate plastic yielding everywhere in the 
tube. Since the model adopted is rigid plastic, the magnitude of p0 is determined from 
the solution. The current inner and outer radii of the tube will be denoted by ac and bc, 
respectively. It is convenient to introduce a cylindrical coordinate system (r, θ , z) with its 
z-axis coinciding with the axis of symmetry of the tube. The state of strain is two-dimen-
sional in this coordinate system (εz = 0). Here εz is the axial strain. The initial/boundary 
value problem is axisymmetric and its solution is independent of θ. The circumferential 
velocity vanishes everywhere. The normal stresses in the cylindrical coordinate system 
are the principal stresses. The stress boundary condition is

for r = bc. Here σr is the radial stress (σθ will stand for the circumferential stress). Mod-
els of rate-independent plasticity will be considered in the present paper. Therefore, it is 
possible, with no loss of generality, to arbitrarily prescribe the radial velocity at r = bc. It 
is convenient to put

for r = bc. Here u is the radial velocity and u0 is constant.
According to a widely used model of hardening plasticity the yield stress depends on 

the equivalent strain, εeq, and the latter is defined by the following equation

(1)σr = 0

(2)u = u0
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Here t is the time, d
/

dt denotes the convected derivative and ξeq is the equivalent 
strain rate. In the case under consideration, the latter is expressed in terms of the physi-
cal components of the strain rate tensor in the cylindrical coordinate system as

where ξr and ξθ are the radial and circumferential strain rates, respectively. It has been 
taken into account here that the axial strain rate vanishes everywhere since εz = 0. The 
constitutive equations include the yield criterion, its associated flow rule and internal 
variable evolution equations. The von Mises yield condition modified to account for the 
effect of internal variables on the yield stress is written as

where σeq is the equivalent stress, σ0 is a reference stress, αp are internal variables other 
than εeq (1 ≤ p ≤ k), �

(

εeq
)

 is an arbitrary function of its argument satisfying the condi-
tions �(0) = 1 and d�

/

dεeq ≥ 0 for all εeq. In the case under consideration, the equiva-
lent stress is defined by

It has been taken into account here that σθ > σr in the case of tube expansion. The 
associated flow rule reduces to

Here � is a non-negative multiplier. The magnitude of � is not important for appli-
cations. It is evident that ξθ > 0 in the boundary value problem under considera-
tion. Therefore, the inequality � > 0 is satisfied and Eq.  (7) reduces to the equation of 
incompressibility

Using this equation, it is possible to transform Eq. (4) to

It has been taken into account here that ξθ > 0. A typical evolution equation for internal 
variables can be written in the form (Lemaitre 1985; Chandrakanth and Pandey 1993; 
Ganapathysubramanian and Zabaras 2004; Lin and Dean 2005; Besson 2010; He et al. 
2012; Hore et al. 2015)

where σ is the hydrostatic stress and F is quite an arbitrary function of its arguments.

(3)
dεeq

dt
= ξeq .

(4)ξeq =
√

2

3

√

ξ2r + ξ2θ ,

(5)σeq = σ0�
(

εeq
)

�(α1, . . . ,αk),

(6)σeq =
√
3

2
(σθ − σr).

(7)ξθ = �, ξr = −�.

(8)ξr + ξθ = 0.

(9)ξeq =
2
√
3
ξθ .

(10)
dαp

dt
= F

(

σ

σeq
, εeq , α1, . . . ,αk

)

ξeq , 1 ≤ p ≤ k ,
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In the case under consideration the hydrostatic stress is defined as

The initial conditions to Eqs. (3) and (10) are

and

for t = 0 or bc = b0. The constitutive equations are supplemented by the only non-trivial 
equilibrium equation of the form

It is convenient to introduce the following dimensionless quantities

Analytic treatment
By definition, u0 = dbc

/

dt and u = dr
/

dt. Therefore, using Eq. (15)

Since ξr = ∂u
/

∂r and ξθ = u/ r, Eq.  (8) becomes ∂u
/

∂r + u/ r = 0. Integrating this 
equation and using the boundary condition (2) lead to u = u0bcr

−1 or using Eq. (15) to

Equations  (16) and (17) combine to give dρ
/

db = bρ−1. Integrating this equation 
yields

Here R is a Lagrangian coordinate and ρ = R at b = 1 (or bc = b0). It follows from 
Eq. (18) that

Using Eqs. (9), (15), (17) and (18), Eq. (3) can be rewritten in the Lagrangian coordi-
nates as

(11)σ =
σr + σθ

2
.

(12)εeq = 0

(13)αp = αp0, 1 ≤ p ≤ k

(14)
∂σr

∂r
+

σr − σθ

r
= 0.

(15)ρ =
r

b0
, a =

ac

b0
, b =

bc

b0
, β =

a0

b0
.

(16)u = u0
dρ

db
.

(17)
u

u0
=

b

ρ
.

(18)ρ2 = b2 + R2 − 1.

(19)
∂R

∂ρ
=

ρ

R
.

(20)
∂εeq

∂b
=

2
√
3

b
(

b2 + R2 − 1
) .



Page 5 of 10Alexandrov et al. SpringerPlus  (2016) 5:378 

Integrating this equation and using the initial condition (12) yield

Equations (5) and (6) combine to give

Using Eqs. (15), (18), (19) and (22), Eq. (14) can be transformed to

The equivalent strain in this equation should be eliminated by means of Eq.  (21). 
Therefore, the right hand side of Eq. (23) is a function of b, R and αp (1 ≤ p ≤ k). In the 
Lagrangian coordinates Eq. (10) is

Here Eqs. (9), (15), (17) and (18) have been used. The first argument of the function F is 
determined from Eqs. (5), (6) and (11) as

The equivalent strain in Eqs. (24) and (25) should be eliminated by means of Eq. (21). 
Therefore, the right hand side of Eq. (24) is a function of b, R, σr and αp (1 ≤ p ≤ k). Thus 
Eqs.  (23) and (24) constitute the system of equations for σr and αp in the Lagrangian 
coordinates. It is evident that the characteristic curves of this system are R = constant 
and b = constant. The boundary condition (1) becomes

for R = 1. Using this condition Eq. (24) can be integrated along the characteristic curve 
R = 1. In particular, substituting Eq. (26) into Eqs. (21) and (25) and, then, the resulting 
expressions for σr and εeq into Eq. (24) yield

The initial conditions to these equations follow from Eq. (13) in the form

for b = 1. It is evident that Eq. (27) can be solved for any given function F. Analogously, 
Eq.  (23) can be integrated along the characteristic curve b = 1. In particular, using 
Eqs. (12) and (13)

(21)εeq =
1
√
3
ln

(

b2 + R2 − 1

R2

)

.

(22)σθ − σr =
2σ0√
3
�
(

εeq
)

�(α1, . . . ,αk).

(23)
∂σr

∂R
=

2σ0√
3

�
(

εeq
)

�(α1, . . . ,αk)R
(

b2 + R2 − 1
) .

(24)
∂αp

∂b
=

2
√
3
F

(

σ

σeq
, εeq ,α1, . . . ,αk

)

b
(

b2 + R2 − 1
) , 1 ≤ p ≤ k .

(25)
σ

σeq
=

σr

σ0�
(

εeq
)

�(α1, . . . ,αk)
+

1
√
3
.

(26)σr = 0

(27)b
dαp

db
=

2
√
3
F

(

1
√
3
,

2
√
3
ln b, α1, . . . ,αk

)

, 1 ≤ p ≤ k

(28)αp = αp0 (1 ≤ p ≤ k)

dσr

dR
=

2σ0√
3

�(α10, . . . ,αk0)

R
.
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Integrating this equation and using the boundary condition (26) yield

The solution of Eqs. (27) and (29) facilitate a numerical treatment of Eqs. (23) and (24).

Numerical treatment
A finite difference method is adopted to solve Eqs. (23) and (24). N + 1 nodes are chosen 
on the spatial coordinate and T + 1 nodes on the time-like coordinate. Therefore, the 
mesh used is

The value of β has been introduced in Eq. (15) and the value of bm should be prescribed.
The calculation starts from the point j = N  and i = 2. The first approximation to the 

values of σr and αp at this point is determined as

where the derivatives can be found from Eqs. (23) and (24) with no difficulty since the 
distributions of σr and αp along the lines j = N + 1 and i = 1 are known from Eqs. (26), 
(28), (29) and the solution of Eq. (27). Having the values of σr |

pr
N ,2 and αp|

pr
N ,2 and using 

Eqs. (23) and (24) the derivatives ∂σr
/

∂R and ∂αp
/

∂b can be found at the point j = N  
and i = 2, 

(

∂σr
/

∂R
)

|N ,2 and 
(

∂αp
/

∂b
)

|N ,2, 1 ≤ p ≤ k. Then, the derivatives within the 
intervals 1−�R ≤ R ≤ 1 and 1 ≤ b ≤ 1+�b are approximated by

Replacing the derivatives in Eq.  (31) by the values given in Eq.  (32) a more accurate 
approximation of σr and αp at the point j = N  and i = 2 is determined. It is obvious that 
this procedure can be extended to N − 1 ≥ j ≥ 1. As a result, the distribution of σr and 
αp along the line i = 2 is obtained. The line i = 3 can be treated in a similar manner since 
the solution of Eq.  (27) is available for any b. This procedure can be extended to any 
number i.

Illustrative example
Assume that k = 1, α1 = D and α10 = D0 where D is a damage parameter and D0 is its 
initial value. In this case typical functions F and � are given by Hartley et al. (1997)

(29)
σr

σ0
=

2
√
3
�(α10, . . . ,αk0) ln R.

Rj = β +�R
(

j − 1
)

, �R =
1− β

N
, 1 ≤ j ≤ N + 1,

(30)bi = 1+�b(i − 1), �b =
bm − 1

T
, 1 ≤ i < T + 1.

(31)

σr |
pr
N ,2 = σr |N+1,2 −�R

∂σr

∂R

∣

∣

∣

∣

N+1,2

, αp
∣

∣

pr

N ,2
= αp

∣

∣

N ,1
+�b

∂αp

∂b

∣

∣

∣

∣

N ,1

, 1 ≤ p ≤ k ,

(32)

∂σr

∂R

∣

∣

∣

∣

N+1,N

2

=
1

2

(

∂σr

∂R

∣

∣

∣

∣

N+1,2

+
∂σr

∂R

∣

∣

∣

∣

N ,2

)

,
∂αp

∂b

∣

∣

∣

∣

N

1,2

=
1

2

(

∂αp

∂b

∣

∣

∣

∣

N ,1

+
∂αp

∂b

∣

∣

∣

∣

N ,2

)

, 1 ≤ p ≤ k .

F

(

σ

σeq
, εeq , D

)

= q exp

(

3

2

σ

σeq

)

ε2/Meq ,
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where M is the Ramberg–Osgood hardening exponent, and q and A are material con-
stants. Then, Eq. (27) becomes

Integrating this equation and using the initial condition (28) result in

at R = 1.
The values M = 2.4, A = 1.52 and q = 1 were used in all calculations. These values 

are representative for 2024-T351 aluminum alloy (Hartley et  al. 1997). It was initially 
assumed that N = 100 and T = 200. The accuracy of calculations was controlled by 
solving the boundary value problem at N = 200 and T = 400. The maximum difference 
was less than 1 %.

The fracture criterion is taken as D = Dc where Dc is constant. The effect of β on the 
evolution of damage at D0 = 0 and Dc = 0.8 is illustrated in Figs. 1, 2 and 3. In particu-
lar, β = 0.3 in Fig. 1, β = 0.5 in Fig. 2 and β = 0.7 in Fig. 3. In each figure, the distribu-
tion of D is depicted for several values of b. The maximum value of b corresponds to the 
initiation of ductile fracture at the inner radius of the tube.

Conclusions
The initial/boundary value problem for calculating the evolution of internal variables 
in an expanding hollow tube at large strains has been reduced to simple equations in 
characteristic coordinates. An advantage of the approach proposed is that an arbitrary 
hardening law and an arbitrary set of internal variable evolution equations are included 
in the formulation. The equilibrium equation has been integrated analytically at b = 1 

(33)
�
(

εeq
)

= 1+ Aε1/Meq ,

b
dD

db
=

2q
√
3

(

2
√
3

)2/M
exp

(√
3

2

)

(ln b)2/M .

(34)D =
2qM

√
3(2+M)

(

2
√
3

)2/M
exp

(√
3

2

)

(ln b)(2+M)/M + D0

Fig. 1  Variation of D with ρ at β = 0.3, q = 1, and several values of b
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[see Eq.  (29)]. The internal variable evolution equations can be integrated analytically 
or, in the most general case, reduced to numerical integration at R = 1 independently of 
the general solution of the initial/boundary value problem [see Eq. (27)]. These solutions 
have been used in the numerical scheme proposed. They can also be used in conjunction 
with any other numerical scheme to increase the accuracy of calculation and to reveal 
possible errors in numerical solutions.

The illustrative example deals with the evolution of damage. It is seen from Figs. 1, 2 
and 3 that the initiation of ductile fracture occurs at the inner radius of the tube in all 
the cases considered. It is worth noting here that the fracture initiation in an expanding 
thick ring may occur at mid-annulus (Tomkins and Atkins 1981). It is evident that the 
damaged model adopted in the present paper is not appropriate in such cases. However, 
the general solution found and the general numerical scheme developed are independ-
ent of the specific form of the functions � and F. The present general solution can be 
used to test various function involved in Eqs. (5) and (10) to find functions � and F that 
are in agreement with the experimental result presented by Tomkins and Atkins (1981).

The accuracy of the numerical solution is rather high. Therefore, the final result is use-
ful for verifying more general numerical codes, which can be used to solve arbitrary ini-
tial/boundary value problems.

Fig. 2  Variation of D with ρ at β = 0.5, q = 1, and several values of b

Fig. 3  Variation of D with ρ at β = 0.7, q = 1, and several values of b
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