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Background
 The main interest of algebraic topology is to study and understand the functional prop-
erties of spatial structures. Algebro-topological constructions have been applied success-
fully in the field of data science (Carlsson 2009) with the application of the framework of 
persistent homology, which has proved to be a powerful tool to understand the inner 
structure of a data set by representing it as a sequence of topological spaces. A network 
is a set of points satisfying precise properties of connectedness, which can be used to 
define a class of topological spaces. Network theory aims to understand and describe the 
shape and the structure of networks, and the application of the tools developed within 
the framework of algebraic topology can provide new insights of network properties in 
several research fields.

The directed clique complex is a rigorous way to encode the topological features 
of a network in the mathematical framework of a simplicial complex, allowing the 
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construction of a class of invariants which have only been recently applied for the first 
time in the context of network theory (Giusti et al. 2015; Hess 2015). Active nodes are 
those nodes whose state depend on a set of precise rules that depend on network topol-
ogy and dynamics. In a highly interconnected network of such nodes, the activity of each 
node is necessarily related to the combined activity of the afferent nodes transmitted 
by the connecting edges. Due to the presence of reciprocal connections between cer-
tain nodes, re-entrant activity occurs within such network. Hence, selected pathways 
through the network may emerge because of dynamical processes that may produce 
activity-dependent connection pruning. The overall goal of these studies is to under-
stand the properties of a network given the topology described by its link structure.

Neuronal networks are a complex system characterized by coupled nonlinear dynam-
ics. This topic is a long-standing scientific program in mathematics and physics (Abar-
banel et  al. 1996; Amit 1992; Freeman 1994; Guckenheimer and Holmes 1983). In 
general, the synchronization of two systems means that their time evolution is periodic, 
with the same period and, perhaps, the same phase (Malagarriga et al. 2015). This notion 
of synchronization is not sufficient in a context where the systems are excited by non-
periodic signals, representing their complex environment. Synchronization of chaotic 
systems has been discovered (Afraimovich et al. 1986; Fujisaka and Yamada 1983; Piko-
vsky 1984) and since then it has become an important research topic in mathematics 
(Ashwin et al. 1994), physics (Ott and Sommerer 1994) and engineering (Chen 1999). In 
interconnected cell assemblies embedded in a recurrent neural network, some ordered 
sequences of intervals within spike trains of individual neurons, and across spike trains 
recorded from different neurons, will recur whenever an identical stimulus is presented. 
Such recurring, ordered, and precise interspike interval relationships are referred to 
as “preferred firing sequences”. One such example can be represented by brain circuits 
shaped by developmental and learning processes (Edelman 1993). The application of 
tools from algebraic topology to the study of these systems and networks will be of great 
use for determining deterministic chaotic behavior in experimental data and develop 
biologically relevant neural network models that do not wipe out temporal information 
(Babloyantz et al. 1985; Celletti and Villa 1996; Celletti et al. 1997; Mpitsos et al. 1988; 
Rapp et al. 1986).

In the current study we introduce a mathematical object, called directed clique com-
plex, encoding the link structure of networks in which the edges (or links) have a given 
orientation. This object is a simplicial complex that can be studied with the techniques 
of algebraic topology to obtain invariants such as the Euler characteristic and the Betti 
numbers. We propose general constructions valid for any directed network, but we 
present an application to evolvable Boolean recurrent neural networks with conver-
gent/divergent layered structure (Abeles 1991) with an embedded dynamics of synaptic 
plasticity. The Euler characteristic, which is defined given the network connectivity, is 
computed during the network evolution. We show evidence that this topological invari-
ant predicts how the network is going to evolve under the effect of the pruning dynam-
ics. Despite being just a toy-example of the dynamics observed in biological neuronal 
networks, we suggest that algebraic topology can be used to investigate the properties 
of more refined biologically-inspired models and their temporal patterns. We show 
also that, for a directed network, the Euler characteristic computed on a sequence of 
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networks generated by filtrating its nodes by in- and out-degrees can provide a general 
metric helpful for a network classification. Hence, the topological invariants computed 
for each network in the filtration give a sequence of numbers that may be interpreted as 
a fingerprint of the complete network.

Results and discussion
Dynamics of artificial neural networks

We considered a directed graph representing a simplified model of feedforward neu-
ral network with convergent/divergent layered structure with few embedded recurrent 
connections. In this model, the nodes represent individual neurons and the connections 
between them are oriented edges with a weight given by the connection strength. We 
have computed the Euler characteristic and its variation during the evolution of such 
networks, both for the entirety of the nodes in the network and for the sub-network 
induced by the nodes that are active at each time step in order to detect how the struc-
ture changes as the network evolves. The Betti numbers and their variation during the 
network evolution were also computed but we do not discuss further this topological 
measurement. Notice that activation of the networks follows a very simple dynamics. 
The nodes of the input layer are activated at regular time intervals, which is not meant 
to be biologically realistic, but has been adopted to favor the simplicity of the model. 
It was shown elsewhere (Iglesias and Villa 2007, 2008) that a stable activity level in a 
network like this could be achieved only with an appropriate balance of excitatory and 
inhibitory connections. The networks studied here are oversimplified and formed only 
by excitatory nodes. We selected the ranges of the parameters such that the simulations 
maintained a level of activity for 100 steps without neither saturation nor extinction of 
the activity, thus suggesting that connection pruning enabled topological changes. How-
ever, notice that even within selected areas of the parameter space of the simulations we 
observed that the activity level tended either to increase towards paroxysmal activation 
(i.e., saturation) or to decrease towards complete inactivation (i.e., extinction).

We observed that the Euler characteristic of the entire network could detect the prun-
ing activity during the neural network evolution (Fig. 1a). In particular, the step to step 
variation of the Euler characteristic matched the number of connections pruned over 
time. If we considered only the sub-network of the active nodes, we observed that the 
Euler characteristic decreased or increased if the number of active nodes increased or 
decreased, respectively (Fig. 1b). Then, the Euler characteristic is a good estimator of the 
activity level within the network. These results confirmed that the Euler characteristic 
gives a precise measure of the topological changes in a network associated with connec-
tion pruning for the entire network and associated with activation patterns for the active 
sub-network.

The type of dynamics undergoing the neural network evolution and the structure of 
the directed clique complex of that network at the very beginning of the simulation (i.e. 
before the occurrence of connection pruning) were correlated. This was possibly the 
most unexpected and significant result regarding the dynamics of artificial neural net-
works. In the simulations leading to the activation of at least 5 % of the nodes, the aver-
age number of active units was correlated to the number of simplices, in the directed 
clique complex, of dimension two (Pearson correlation coefficient r(370) = 0.560, 



Page 4 of 12Masulli and Villa ﻿SpringerPlus  (2016) 5:388 

p < 0.001) and dimension three (r(370) = 0.445, p < 0.001). This may appear surpris-
ing because the topology of the directed clique complex of a network a priori ignores 
any dynamics of pruning, the evolution of the network topology and how this is going 
to influence the activation level. However, the rationale is that directed cliques are fully 
connected sub-networks, i.e. sub-networks with an initial and a final node that are con-
nected in the highest possible number of ways. Then, a high number of directed cliques 
leads to a higher chance of propagation of the activation through the network. Notice the 
fact that it is essential to consider here only directed cliques, because the activation of a 
node occurs only if the connected upstream nodes are activated. Activation is indeed 
a phenomenon happening in a directional way prescribed by the connectivity pattern. 
The invariant presented should also be considered as a complementary measurement of 
complexity for the assessment of the computational power of Boolean recurrent neural 
networks (Cabessa and Villa 2014).

Network filtrations and invariants

The in- and out-degrees of nodes are important factors in shaping the network topol-
ogy. We applied our topological construction to devise invariants for any directed net-
works. We compute the Euler characteristic on a sequence of sub-networks defined by 
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Fig. 1  Variation of the Euler characteristic during the neural network evolution. a Differences of the Euler 
characteristic in subsequent steps of the simulation over time (blue curve) compared to the pruning level 
(red curve), i.e. the number of pruned connections. Notice that the two curves overlap almost completely, 
then the variation of the Euler characteristic is a precise measure of the changes in the topology due to the 
pruning activity. b Evolution of the Euler characteristic of the active sub-network (blue curve) compared to the 
number of active units during the network evolution (red curve). Notice that the two curves are negatively 
correlated
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directed degeneracy of their nodes, or in other words the in- and out-degrees of the ver-
tices, as described in detail in the Methods section. Two separate sequences are defined 
because in- and out-degrees represent different aspects in the network connectivity. 
The sequences of sub-networks of a given network are a filtration in the sense that each 
network appearing in the sequence is contained in all those that follow. The values of 
the Euler characteristic for each network of the sequences gives rise to two separate 
sequences of integers that give a measure of the shape and the topology of the complete 
network. We propose this invariant to describe general directed networks.

The sequences of the Euler characteristic of the in-degree and the out-degree filtra-
tions are plotted as a function of the normalized minimum degree of vertices for rep-
resentative types of a scale-free network (SF) (Barabási and Albert 1999), a random 
network (RN) (Erdös and Rényi 1959; Gilbert 1959), and a small world network (SW) 
(Newman 2000; Watts and Strogatz 1998) (Fig.  2). This normalization is necessary to 
compare networks of different sizes at each filtration level posing the maximum degree 
of the vertices in the network to 1, as described in the Methods section. Each network 
type was simulated 50 times using different random seeds. In the case of a SF network 
the values of the Euler characteristic of the in-degree filtration (dotted red line) is always 
larger than the curve of the out-degree filtration (solid blue line, Fig. 2a). Moreover, for 
SF networks the curve of the in-degree increases sharply at near 0.4 and reaches a maxi-
mum value of the Euler characteristic approximately at 0.6 of the normalized maximum 
value of the vertex minimum degree. The out-degree curve increases monotonically 
after this level of vertex minimum degree but does not reach the in-degree curve. In 
the case of a RN network the curves of in- and out-degrees overlap at all levels of the 
filtration (Fig. 2b). It is interesting to notice that the maximum value of the Euler charac-
teristic is observed for the smallest values of the vertex minimum degree. Then, for RN 
networks, both curves decrease to a minimum at approximately 0.8 of the normalized 
maximum value of the vertex minimum degree, followed by a monotonic increase. For 
a SW network both curves of in- and out-degrees start from the minimal value of the 
Euler characteristic with the least vertex minimum degree, followed by a non monotonic 
increase and a tendency of overlap between the two curves (Fig. 2c). The monotonicity 
of the curves and the differences between in- and out-degree filtration differ greatly for 
the three types of networks, thus suggesting that this invariant is a good descriptor of 
network topology.

A distinct topological invariant defined for non-directed networks, referred to the 
Betti curves, was recently proposed by Giusti et al. (2015) following the idea of filtering 
the network by the weight of connections. This invariant appears well suited for continu-
ously distributed connection weights, for instance when the weights are related to the 
distances of points and represent a symmetric relation between nodes. In the case of 
directed networks with modifiable values of connection weights restricted to a limited 
set (Iglesias et al. 2005), the network dynamics evolves towards a bimodal distribution of 
the connection weights densely grouped near the minimum and maximum values of the 
range. This is a general behaviour in neuronal networks (Song et al. 2000). In this kind of 
networks, filtering the network by the connection weights following Giusti et al. (2015) 
is not suitable, because most connections would have the same weight. Our approach 
for directed networks is to filter the connections by the in- and out-degrees separately 
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in order to measure how the nodes of each degree shape the topology of the network. 
It is important to point out that other methods are based on spectral properties of the 
adjacency matrix and therefore only make sense if all the transformations of the network 
data are linear (Brouwer and Haemers 2012).
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Fig. 2  Plots of the degree-filtered Euler characteristic for different networks. All networks were generated 
with n = 40 nodes chosen with a fixed ordering. a Barabasi–Albert Scale Free (SF) network (m = 10). b Erdős–
Rényi Random Network (RN) (p = 0.2). c Newman–Watts–Strogatz Small World (SW) network (k = 20, p = 0.4

). The plots show the averaged curves (in-degrees as red dotted lines and out-degrees as blue solid lines) for 
N = 50 experiments for each type of network. Confidence bands correspond to 95 % intervals. The x-axis is 
normalized, expressing each filtration level as the degree of the vertices at that level divided by the maximum 
degree of vertices present in the network. This representation makes it possible to compare the plots for dif-
ferent networks. Notice that the variation range, the monotonicity and the comparison between the in- and 
the out-degree filtrations can be used to distinguish the different types of networks
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The results presented here open the way to further applications of the topological 
invariants. The analytic study of the values of the Euler characteristic in the filtrations 
framework can provide a metric of similarity between networks which is only depend-
ent on their internal topology, thus allowing the application of clustering algorithms for 
the detection of distinct functional classes of networks. The study of brain complex net-
works in clinical neuroscience offers as a particularly promising field of application of 
the new topological invariant, as suggested by other studies using different techniques 
to the same aim (Fallani et al. 2014; Stam et al. 2007). In particular we foresee to extend 
this application to the study of brain dynamics during decision-making tasks and neuro-
economic games (Fiori et al. 2013; Guy et al. 2016). Another promising application is the 
study of the temporal dynamics in neural activity. The finding of precise and repeating 
firing sequences in experimental and simulated spike train recordings has been discussed 
with respect to the existence of synfire chains Abeles (1982, 1991) or chaotic attractors 
Celletti and Villa (1996), Villa et al. (1998). In both cases the underlying network struc-
ture is assumed to be a directed graph. This hypothesis together with the assumption of 
spike-timing modifiable connections provide a rational basis for the application of topo-
logical invariants towards understanding the association between topological structures 
and neural coding.

Conclusions
We have developed new invariants for directed networks using techniques derived 
from algebraic topology, showing that this subject provides a very useful set of tools for 

dc
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Fig. 3  The directed clique complex. a The directed clique complex of the represented graph consists of a 
0-simplex for each vertex and a 1-simplex for each edge. There is only one 2-simplex (123). Note that ‘2453’ 
does not form a 3-simplex because it is not fully connected. ‘356’ does not form a simplex either, because the 
edges are not oriented correctly. b The addition of the edge (52) to the graph in a does not contribute to 
creating any new 2-simplex, because of its orientation. The edges connecting the vertices 2, 3 and 5 (respec-
tively 2, 4 and 5) are oriented cyclically, and therefore they do not follow the conditions of the definition of 
directed clique complex stated in Eq. (1). c By reversing the orientation of the new edge (25), we obtain two 
new 2-simplices: (235) and (245). Note that we do not have any 3-simplex. d We added a new edge (43), thus 
the sub-graph (2435) becomes fully connected and is oriented correctly to be a 3-simplex in the directed 
clique complex. In addition, this construction gives two other 2-simplices: (243) and (435)
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understanding networks and their functional and dynamical properties. Simple invari-
ants such as the Euler characteristic can already detect the changes in the network topol-
ogy. The promising results shown here are a contribution to the application of algebraic 
topology to the study of more complex networks and their dynamics, including models 
of neuronal networks that are biologically inspired. We believe that the framework pre-
sent here may open the way to many computational applications to unveil data struc-
tures in data and network sciences.

Methods
Graphs and clique complexes

An abstract oriented simplicial complex K (Hatcher 2002) is the data of a set K0 of verti-
ces and sets Kn of lists σ = (x0, . . . , xn) of elements of K0 (called n-simplices), for n ≥ 1, 
with the property that, if σ = (x0, . . . , xn) belongs to Kn, then any sublist (xi0 , . . . , xik ) of σ 
belongs to Kk. The sublists of σ are called faces.

We consider a finite directed weighted graph G = (V , E) with vertex set V and edge set 
E with no self-loops and no double edges, and denote with N the cardinality of V. Asso-
ciated to G, we can construct its (directed) clique complex K(G), which is the directed 
simplicial complex given by K (G)0 = V  and

In other words, an n-simplex contained in K (G)n is a directed (n+ 1)-clique or a com-
pletely connected directed subgraph with n+ 1 vertices. Notice that an n-simplex is 
though of as an object of dimension n and consists of n+ 1 vertices.

By definition, a directed clique (or a simplex in our complex) is a fully-connected 
directed sub-network: this means that the nodes are ordered and there is one source 
and one sink in the sub-network, and the presence of the directed clique in the network 
means that the former is connected to the latter in all the possible ways within the sub-
network (Fig. 3).

The topological invariants

The directed clique complex is the basic topological object that allows us to introduce 
invariants of the graph: the Euler characteristic of the directed clique complex K (G) of G 
is the integer defined by

or in other words the alternating sum of the number of simplices that are present in each 
dimension.

Let us now consider, for each n, the vector space Z/2〈K (G)n〉 given by the linear com-
binations of n-simplices with coefficients in the field of two elements Z/2. We can define 
the boundary maps ∂n : Z/2�K (G)n� → Z/2�K (G)n−1� which are given by mapping each 
simplex to the sum of its faces. Then we can define the quantities:

(1)K (G)n = {(v0, . . . , vn) : (vi, vj) ∈ E for all i < j} for n ≥ 1.

χ(K (G)) =

N∑

n=0

(−1)n |K (G)n|,

βn(K (G)) = dim(ker ∂n)− dim(Im ∂n+1),
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given by the difference of the dimension of the space of the n-simplices whose bound-
ary is zero and the dimension of the space of boundaries of (n+ 1)-simplices. It can be 
checked that, if we apply a boundary map twice on any linear combination of simplices, 
we get zero, and so the quantities βn(K (G)) are always non-negative integers. These clas-
sically known numbers take the name of Betti numbers and, for each n, the n-th Betti 
number βn(K (G)) corresponds to the dimension of the n-th homology space (with Z/2
-coefficients) of the clique complex K (G) of G.

The intuitive sense of this construction is to count the “holes” that remain in the 
graph after we have filled all the directed cliques. In particular, the n-th Betti num-
ber is counting the n-dimensional holes. One can also see that β0 counts the number 
of connected components of the graph. A classical result in topology shows a connec-
tion between the Euler characteristic and the Betti numbers, expressed by the identity: 
χ(K (G)) =

∑N
n=0(−1)nβn(K (G)), which gives another way of computing the Euler 

characteristic.
Notice that the construction of the directed clique complex of a given network G does 

not involve any choice, and therefore, since the Betti numbers and the Euler characteris-
tic of a simplicial complex are well-defined quantities for a simplicial complex (Hatcher 
2002), our constructions produce quantities that are well-defined for the network G, and 
we shall refer to them simply as the Euler characteristic and the Betti numbers of G.

Boolean recurrent artificial neural networks

Network structure and dynamics

The artificial recurrent neural networks consist of a finite number of Boolean neurons 
organized in layers with a convergent/divergent connection structure (Abeles 1991). The 
networks are composed by 50 layers, each of them with 10 Boolean neurons. The first 
layer is the input layer and all its 10 neurons get activated at the same time at a fixed fre-
quency of 0.1, i.e. every 10 time steps of the history. Each neuron in a layer is connected 
to a randomly uniformly distributed number of target neurons f belonging to the next 
downstream layer. The networks include recurrence in their structure, meaning that a 
small fraction g of the neurons appears in two different layers. This means that a neuron 
k that is also identified as neuron l, is characterized by the union of the input connec-
tions of neurons k and l, as well as by the union of their respective efferent projections.

The state Si(t) of a neuron i take values 0 (inactive) or 1 (active) and all Boolean neu-
rons are set inactive at the beginning of the simulation. The state Si(t) is a function 
of the its activation variable Vi(t) and a threshold θ, such that Si(t) = H(Vi(t)− θ) . 
H is the Heaviside function, H(x) = 0 : x < 0, H(x) = 1 : x ≥ 0. At each time step, 
the value Vi(t) of the activation variable of the ith neuron is calculated such that 
Vi(t + 1) =

∑
j Sj(t)wji(t), where wji(t) are the weights of the directed connections from 

any jth neuron projecting to neuron i. The connection weights can only take four values, 
i.e. w1 = 0.1, w2 = 0.2, w3 = 0.4, w4 = 0.8. At the begin of the simulations all connection 
weights are randomly uniformly distributed among the four possible values. The weights 
of all the neurons are computed synchronously at each time step.

The network dynamics implements activity-dependent plasticity of the connection 
weights. Whenever the activation of a connection does not lead to the activation of its 
target neuron during an interval lasting a time steps, its weight is weakened to the level 
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immediately lower than the current one. Whenever the weight of a connection reaches 
the lowest level, the connection is removed from the network (Iglesias et al. 2005). Then, 
the pruning of the connections provokes the selection of the most significant ones and 
changes the topology of the network. Similarly, whenever a connection with a weight wm 
is activated at least m+ 1 consecutive time steps, the connection weight is strengthened 
to the level immediately higher than the current one. Hence, the parameter space of our 
simulations was defined by four parameters: the number f of layer-to-layer downstream 
connections in the range 3–10 by steps of 1, the small fraction g of the neurons appear-
ing in two different layers in the range 1–3 % by steps of 1%, the threshold of activation θ 
in the range 0.8–1.4 by steps of 0.1, and the interval a of the weakening dynamics of the 
connections in the range 7–9 by steps of 1.

Implementation of the simulations

The simulation software was implemented from scratch in Python. The network evolved 
with the dynamics explained above and the program computed the directed clique com-
plex at each change of the network topology. For the entire network, the directed clique 
complex was computed each time the connectivity changed because of pruning. For the 
sub-network of the active nodes, the computation was carried out at each step of the 
simulation.

The computed directed clique complexes were used to compute the Euler character-
istic both for the complexes representing the entire network and for the sub-complexes 
of the active nodes. To compute the directed clique complex of a network we used the 
implementation of the algorithm of Tsukiyama et al. (1977) in the igraph Python pack-
age (Csardi and Nepusz 2006), adapted to find directed cliques. The experiments were 
run in parallel on several CPUs using the tool GNU Parallel (Tange 2011).

Network filtrations

Network structures

Many essential topological features of a network are determined by the distribution of 
edges over its graph. Different types of distributions result in different types of networks. 
For instance, pure random networks (RN) are formed assuming that edges in the net-
work are independent of each other and they are equally likely to occur (Erdös and Rényi 
1959; Gilbert 1959). For RN we have used the algorithm implemented in the Python 
package ‘NetworkX’ (https://networkx.github.io/) (Hagberg et  al. 2008) with the func-
tion ‘erdos_renyi_graph’ with parameters number of nodes n = 40 and the probability 
for edge creation p = 0.2.

These simple construction assumptions are generally not followed in networks 
obtained experimentally from ecological or gene systems, telecommunication networks 
or the Internet which are characterized by short average path lengths and high cluster-
ing, resulting in the so called small-world topology (SW) (Newman 2000; Watts and 
Strogatz 1998). For SW we used the same Python package ‘NetworkX’ (Hagberg et al. 
2008) with the function ‘newman_watts_strogatz_graph’ with parameters number of 
nodes n = 40 and the number of connected neighbours in ring topology k = 20 and the 
probability for adding a new edge p = 0.4.

https://networkx.github.io/
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Other real-world networks such as brain, social networks, power grids and transpor-
tation networks exhibit topologies where more connected nodes, hubs, are more likely 
to receive new edges. The presence of these hubs and a power law distribution for the 
degree of the nodes defines scale-free networks (SF) (Barabási and Albert 1999). For SF 
we used the same Python package ‘NetworkX’ (Hagberg et al. 2008) with the function 
‘barabasi_albert_graph’ with parameters number of nodes n = 40 and the number of 
edges to attach from a new node m = 10.

Network degree invariant

Given a directed network G, we define two filtrations by sub-networks (ordered 
sequences of networks in which each network is a sub-network of all the following ones) 
using the in- and out-degree of nodes. Let ODF (G) be the out-degree filtration of G: the 
i-th network ODF(G)i in this filtration is the sub-network of G induced by the vertices 
having out-degree at least i and all the target nodes of their outgoing connections. In the 
same way we define the in-degree filtration IDF (G): the i-th network IDF(G)i in this fil-
tration is the sub-network of G induced by the vertices having in-degree at least i and all 
the source nodes of their incoming connections.

We computed the Euler characteristic for each network of the two filtrations, obtain-
ing two sequences of integers, which are plotted to display a measure of the network 
topology, as a function of the degree levels of the filtration, normalized by the maximum 
degree present in the network. For example, let us consider the case illustrated in Fig. 2b: 
one of the random networks with n = 40 vertices that we have generated with a param-
eter p = 0.20, as described above, had a maximum out-degree of its vertices equal to 
19. Therefore all the filtration levels have been divided by this value to normalize them 
(between 0 and 1).

For each network family (SF, RN, SW), we generated N = 50 distinct networks with 
different seeds for the random numbers generator (the seeds were uniformly distributed 
integers in the interval [1, 10000]). We calculated the network degree filtration invariant 
sequences for in- and out-degree, which were then averaged for each network family and 
represented in Fig. 2 with the 95 % pointwise confidence bands.
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