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Background
Many researchers strive to introduce new families of distributions or to generalize exist-
ing distributions, which can be used to describe the lifetimes of devices or to describe 
sets of real data. In Marshall and Olkin (1997), Marshall and Olkin (M–O) introduced a 
new family of distribution in an attempt to add a parameter to a family of distributions. 
Let X be a random variable with survival function F(x) = 1− F(x), then

is a proper survival function called M–O family of distributions where α = 1− α. 
Clearly, Eq. (1) provides a tool to obtain a parametric distribution from existing one. The 
probability density function (pdf) of the general M–O family, say g(x), takes the form

where f(x) is the pdf corresponding to F(x). Applications, properties and applications of 
M–O extended distributions can be found in Alshangiti et al. (2014, 2016), Okasha and 

(1)

G(x;α) =
αF(x)

1− αF(x)

=
αF(x)

F(x)+ αF(x)
, −∞ ≤ x ≤ ∞, α > 0,

(2)g(x;α) =
αf (x)

[

1− αF(x)
]2
, −∞ ≤ x ≤ ∞,

Abstract 

The purpose of this paper is to provide further study of the Marshall–Olkin log-logistic 
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Kayid (2016), Ghitany et  al. (2007), Ristic et  al. (2007), El-Bassiouny and Abdo (2009, 
2010), Srinivasa et al. (2011), Jose and Krishna (2011), Lin and Li (2012), Cordeiro and 
Lemonte (2012).

Recently, Gui (2013) introduced and studied the M–O log logistic distribution, 
denoted by M–O log-logistic. The paper’s objectives are to investigate some statistical 
and reliability properties of M–O log-logistic distribution and to illustrate its applica-
bility in different areas. The paper is organized into five sections. The density and the 
moment of the model are given in “Extended log-logistic distribution” section. In that 
section, we provide some new statistical and reliability functions (reversed hazard rate, 
mean residual life, mean inactivity time, etc.) and discuss their properties. Furthermore, 
maximum likelihood estimation problems are considered in “Maximum likelihood 
estimators” section. To indicate the adequacy of the model, some applications using a 
numerical example and an example with real data are discussed in “Fitting reliability 
data” section. Finally, in “Conclusion” section, we provide a brief conclusion and some 
remarks regarding the current and future research (Additional file 1).

Extended log‑logistic distribution
In probability and statistics, the log-logistic distribution (LLD) (known as the Fisk dis-
tribution in economics) is a continuous probability distribution for a non-negative ran-
dom variable. It is used in survival analysis as a parametric model for events whose rate 
increases initially and decreases later, for example mortality rate from cancer following 
diagnosis or treatment. It has also been used in hydrology to model stream flow and pre-
cipitation, and in economics as a simple model of the distribution of wealth or income. 
The LLD is obtained by applying the logarithmic transformation to the logistic distri-
bution in much the same way as the log-normal distribution is obtained from normal 
distribution or the log-Pearson distribution from the Pearson distribution. The LLD is a 
special case of Burr’s type-XII and also a special case of the Kappa distribution, that have 
been applied to precipitation (c.f. Burr 1942; Mielke and Johnson 1973). The survival 
function of the log-logistic distribution (β , γ ) takes the form

where γ > 0, β > 1. Here β is a shape parameter and γ is a scale parameter. According to 
Gui (2013), substituting (3) in (1) we get the M–O log logistic distribution, denoted by 
M–O log-logistic (α,β , γ ) with survival function

The corresponding CDF and pdf are obtained respectively as

(3)F(x;β , γ ) =
1

1+
(

x
γ

)β
, x ≥ 0,

(4)G(x;α,β , γ ) =
α

α +
(

x
γ

)β
, 0 ≤ x ≤ ∞, α, γ > 0, β > 1.

(5)G(x;α,β , γ ) =

(

x
γ

)β

α +
(

x
γ

)β
, 0 ≤ x ≤ ∞, α, γ > 0, β > 1,
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and

Statistical and reliability properties

In this subsection, we investigate some statistical and reliability properties of the 
M–O log-logistic. Let X ≥ 0 be a random variable representing life with cdf G and rf 
G = 1− G and assume that G admits the probability density g. The reversed hazard rate 
(RHR) of X is defined by

The RHR function is well-known and useful tool in reliability theory and in other areas 
of applied probability and statistics. In addition, the RHR function has been receiving 
increasing attention in the recent literature of reliability analysis and stochastic mod-
eling. The RHR of a random variable X with M–O log-logistic (α,β , γ ) respectively is

The next result provide the behavior of the RHR of the M–O log-logistic (α,β , γ ) dis-
tribution, and can be verified using elementary calculus.

Lemma 1  Let X ∼ M–O log-logistic (α,β , γ ), then the reversed hazard rate is decreas-
ing if β > −1, independent of α and γ.

Figure 1 illustrates some of the possible shapes of the reversed hazard rate functions of 
M–O log-logistic (α,β , γ ) distribution for different values of the parameter α.

(6)g(x;α,β , γ ) =
α
β
γ

(

x
γ

)β−1

[

α +
(

x
γ

)β
]2

, 0 ≤ x ≤ ∞, α, γ > 0,β > 1.

rF (x) =
g(x)

G(x)
, x > 0.

(7)
r(x;α, σ ,β , γ ) =

α
β
γ

x
γ

[

(

x
γ

)β

+ α

] , 0 ≤ x ≤ ∞.

Fig. 1  Plot of RHR for α = 0.5, 1.5, 3 (plain, dashed, bold), β = 3, γ = 2
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The conditional reliability function is a measure of the equipment’s performance, indi-
cating the probability of survival during a period of time, knowing that the equipment 
has not failed yet. This probability can be used to calculate the mean residual lifetime 
(MRL), and the optimal replacement policy for the equipment. If the probability is cal-
culated while assuming that the equipment has not yet been put to work, it indicates 
the unconditional reliability of the equipment. When a condition monitoring system is 
available, analysts are interested in knowing the reliability based on the latest available 
information on the equipment’s degradation state, i.e. the conditional reliability, while 
taking into consideration the information obtained from the condition monitoring sys-
tem. The MRL function is very important in reliability and survival analysis because it 
describes the aging process. More specifically, if the random variable X represents the 
life of a component, then MRL is given by

Although the MRL function is defined for any random variable X, it is of particular 
interest when X is a non-negative random variable because it can then be thought of as 
a lifetime of a device, and then represents the conditional expected residual life of the 
device at time given that the device is still active at time t. In replacement and repair 
strategies, although the shape of the failure rate function plays an important role, the 
MRL function is found to be more relevant than the HR function because the former 
summarizes the entire residual life function, whereas the latter considers only the risk of 
instantaneous failure at some time. The MRL function of a random variable X with M–O 
log-logistic is

The value in Eq. (8) can be obtained numerically. Table 1 displays the mean residual life 
at point t = 2 for M–O log-logistic at β = 3, γ = 2 and different choices of parameter α.

From the above example, it is noted that the mean residual life is generally increasing 
for increasing values of α (Fig. 2).

Another interesting reliability function is the mean inactivity time (MIT) function 
(also known as the mean past lifetime and the mean waiting time functions). This func-
tion is well-known reliability measure which has several applications in many disciplines 
such as reliability theory, survival analysis, and actuarial studies. The MIT function of X 
is defined by

µ(t) = E[X − t|X > t]

=
1

G(t)

∫ ∞

t
G(x)dx, t > 0.

(8)µ(t) =
tβ + αγ β

αγ β

∫ ∞

t

αγ β

xβ + αγ β
dx.

Table 1  Mean residual life of M–O log-logistic

α β γ MRL at t = 2

0.3 3 2 1.16808

0.7 3 2 1.36339

1.5 3 2 1.69029

2.5 3 2 2.02493
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The MIT function of a random variable X with M–O log-logistic is

The value of the function in (9) can be obtained by a numerical calculation. Table 2 
displays the mean inactivity time at point t = 2 for M–O log-logistic at β = 3, γ = 2 and 
different choices of parameter α (Additional file 2).

From the above example, it is noted that the mean inactivity time is generally decreas-
ing for increasing values of α (Fig. 3).

Recently, a reliability measure called strong mean inactivity time (SMIT) function has 
been introduced and studied (see Kayid and Izadkhah 2014). The SMIT function of a 
random variable X with M–O log-logistic is

Table 3 displays the strong mean inactivity time at point t = 2 for M–O log-logistic at 
β = 3, γ = 2 and different choices of parameter α (Additional file 3).

m(t) =
1

G(t)

∫ t

0
G(x)dx, t > 0.

(9)m(t) =
tβ + αγ β

tβ

∫ t

0

xβ

xβ + αγ β
dx.

(10)

MT (t) =
1

G(t)

∫ t

0
2xG(x)dx

=
2
[

tβ + αγ β
]

tβ

∫ t

0

xβ+1

xβ + αγ β
dx.

Fig. 2  Plot of MRL for α = 0.5, 1.5, 3 (plain, dashed, bold) , β = 3, γ = 2

Table 2  Mean inactivity time of M–O log-logistic

α β γ MIT at t = 2

0.3 3 2 0.84578

0.7 3 2 0.703955

1.5 3 2 0.614498

2.5 3 2 0.574372
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From the above example, it is noted that the strong mean inactivity time is generally 
decreasing for increasing values of α (Fig. 4).

Mean, variance

We consider a random variable X with M–O log-logistic (α, β, γ). The mean and variance 
are given, respectively, by

(11)E(X) =

∫ ∞

0

xα β
γ

(

x
γ

)β−1

(

(

x
γ

)β

+ α

)2
dx,

Fig. 3  Plot of MIT for α = 0.5, 1.5, 3 (plain, dashed, bold) , β = 3, γ = 2)

Table 3  Strong mean inactivity time of M–O log-logistic

α β γ SMIT at t = 2

0.3 3 2 2.48358

0.7 3 2 2.14164

1.5 3 2 1.911302

2.5 3 2 1.804316

Fig. 4  Plot of SMIT for α = 0.5,1.5, 3 (plain, dashed, bold), β = 3, γ = 2
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and

Hence

In general, the last integrals cannot be given explicitly in terms of α,β , γ. The mean 
E(X) and the variance Var(X) of M–O log-logistic are shown graphically in Figs. 5 and 6 
for different value of α and β = 3, γ = 2. These figures show the mean and variance 
increase as the value of α increases.

E(X2) =

∫ ∞

0

x2α β
γ

(

x
γ

)β−1

(

(

x
γ

)β

+ α

)2
dx.

(12)Var(X) =

� ∞

0

x2α β
γ

�

x
γ

�β−1

�

�

x
γ

�β

+ α

�2
dx −











� ∞

0

xα β
γ

�

x
γ

�β−1

�

�

x
γ

�β

+ α

�2
dx











2

.

Fig. 5  Plot of the mean of M–O log-logistic for different value of α and β = 3, γ = 2

Fig. 6  Plot of the variance of M–O log-logistic for different value of α and β = 3, γ = 2
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Median

Let X be a random variable with M–O log-logistic (α,β , γ ). The median of this distribu-
tion is the value m that satisfies

Table  4 displays the median for M–O log-logistic at β = 2, γ = 0.2 and different 
choices of parameter α. It is noted that the median is generally increasing for increasing 
values of α.

Renyi entropy

Entropy has been used in various situations in science and engineering. The entropy of a 
random variable X with density function g(x) is a measure of variation of the uncertainty. 
The Renyi entropy of order δ is defined by

Let X be a random variable with M–O log-logistic (α,β , γ ). The corresponding Renyi 
entropy is obtained as

Table 5 displays the Renyi entropy for M–O log-logistic at δ = 3,β = 1.5, γ = 1 and 
different choices of the parameter α. It is noted that the Renyi entropy is generally 
increasing for increasing values of α.

Maximum likelihood estimators
In statistics, maximum-likelihood estimation (MLE) is a method of estimating the 
parameters of a statistical model. When applied to a data set and given a statistical 
model, MLE provides estimates for the model’s parameters. The method of maximum 
likelihood corresponds to many well-known estimation methods in statistics.

Let X1, . . . ,Xn be a random sample from M–O log-logistic (α,β , γ ), the likelihood 
function is given by

(13)

∫ m

0

α
β
γ

(

x
γ

)β−1
dx

[

(

x
γ

)β

+ α

]2
= 0.5

Hδ(x) =
1

1− δ
log

(∫ ∞

−∞

g(x)δdx

)

, δ ≥ 0, δ �= 1.

(14)Hδ(x) =
1

1− δ
log



















� ∞

0











α
β
γ

�

x
γ

�β−1

�

�

x
γ

�β

+ α

�2











δ

dx



















, δ ≥ 0, δ �= 1.

Table 4  Median of M–O log-logistic

α β γ Median

0.3 2 0.2 0.109545

0.7 2 0.2 0.167332

1.3 2 0.2 0.228035

2 2 0.2 0.282843
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The logarithm of the likelihood function is then given by

The maximum likelihood estimators (MLEs) of α,β and γ can be obtained by solving the 
nonlinear equations

There is no explicit solution for Eqs. (16)–(18), so they need to be solved numerically. 
For a given known scale parameter (γ = 1), 1000 different samples are simulated from 
M–O log-logistic with different sizes and different values of the scale parameter α. We 
studied the behavior of the MLEs from unknown scale parameter α and shape parameter 
β. The values of α are taken as 0.8, 1.5, and 2.5, while the value of β is 2. Tables 6 and 7 
represent MLEs of parameter α and β, respectively.

From Table 6 it is observed that the estimate, mean square error and the bias of the 
MLE of the parameter α are decreasing when the sample size(n) is increasing. From 
Table 7 it is observed that the estimate, mean square errors, and the bias of the MLE 

L(X1, . . . ,Xn|α, σ ,β , γ ) =
αn

(

β
γ

)n[
∏n

i=1(
xi
γ
)β−1

]

∏n
i=1

[

(

xi
γ

)β

+ α

]2
.

(15)

ℓ(X1, . . . ,Xn|α, σ ,β , γ ) = n ln α + n ln

(

β

γ

)

+ (β − 1)

n
∑

i=1

ln

(

xi

γ

)

− 2

n
∑

i=1

ln(

(

xi

γ

)β

+ α).

(16)
∂ℓ

∂α
=

n

α
− 2

n
∑

i=1

1
(

xi
γ

)β

+ α

= 0

(17)
∂ℓ

∂β
=

n

β
+

n
∑

i=1

ln

(

xi

γ

)

− 2

n
∑

i=1

(

xi
γ

)β

ln
(

xi
γ

)

(

xi
γ

)β

+ α

= 0

(18)
∂ℓ

∂γ
= −

n

γ
−

n(β − 1)

γ
+ 2

n
∑

i=1

βx
β
i

(

(

xi
γ

)β

+ α

)

γ β+1

= 0

Table 5  Renyi entropy of M–O log-logistic

α β γ Renyi entropy

0.3 1.5 1 0.12391

0.7 1.5 1 0.68877

1.5 1.5 1 1.19687

2 1.5 1 1.38866



Page 10 of 14Alshangiti et al. SpringerPlus  (2016) 5:385 

of the parameter β are decreasing when the sample size (n) is increasing. The second 
derivatives of (16)–(18) are

If we denote the MLE of θ = (α,β , γ ) by θ̂ = (α̂, β̂ , γ̂ ), the observed information 
matrix is then given by

∂2ℓ

∂α2
=

−n

α2
+ 2

n
∑

i=1

1
(

(

xi
γ

)β

+ α

)2
.

∂2ℓ

∂β2
=

−n

β2
− 2

n
∑

i=1

(

xi
γ

)β(

ln
(

xi
γ

))2
(

(

xi
γ

)β

+ α

)

−

(

(

xi
γ

)β

ln
(

xi
γ

)

)2

(

(

xi
γ

)β

+ α

)2
.

∂2ℓ

∂γ 2
=

n

γ 2
+

n(β − 1)

γ 2
+ 2

n
∑

i=1

βx
β
i

[

βx
β
i − (β + 1)γ β

(

(

xi
γ

)β

+ α

)]

(

(

xi
γ

)β

+ α

)2

γ 2(β+1)

∂2ℓ

∂α∂β
= 2

n
∑

i=1

(

xi
γ

)β

ln
(

xi
γ

)

(

(

xi
γ

)β

+ α

)2
.

∂2ℓ

∂α∂γ
= − 2

n
∑

i=1

βx
β
i

(

(

xi
γ

)β

+ α

)2

γ β+1

.

∂2ℓ

∂β∂γ
= −

n

γ
+ 2

n
∑

i=1

(

(

xi
γ

)β

+ α

)

(

βx
β
i ln

(

xi
γ

)

+x
β
i

γ β+1

)

−
βx

2β
i ln

(

xi
γ

)

γ 2β+1

(

(

xi
γ

)β

+ α

)2
.

Table 6  MLE of the parameter α

α n Estimate Bias MSE

0.3 20 0.296275 −0.00372454 0.0237631

50 0.231197 −0.0688027 0.0182828

70 0.252118 −0.047882 0.0128916

150 0.285643 −0.0143573 0.00492491

1.2 20 1.02572 −0.174276 0.291608

50 1.20359 0.00358953 0.103632

70 1.12847 −0.0715284 0.119474

150 1.19823 −0.00177408 0.0339848

2.5 20 2.34865 −0.151351 1.2994

50 2.59336 0.0933644 0.517638

70 2.57025 0.0702524 0.392246

150 2.53202 0.0320212 0.151326
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Hence the variance covariance matrix would be I−1(θ). The approximate (1− δ)100% 
confidence intervals (CIs) for the parameters α, β and γ are α̂ ± Z δ

2
V (α̂), β̂ ± Z δ

2
V (β̂) 

and γ̂ ± Z δ
2
V (γ̂ ) respectively, where V (α̂), V (β̂) and V (γ̂ ) are the variances of α̂, β̂ and γ̂ , 

which are given by the diagonal elements of I−1(θ), and Z δ
2
 is the upper (δ/2) percentile 

of standard normal distribution.

Fitting reliability data
In this section, we provide two data sets analysis to show how the model works in 
practice.

First data set

The first data set given in Gupta et al. (1999) is about days of survival for lung cancer 
patients 

Data set

389 18 22 10 112 63 100 13 151 467

162 117 122 33 42 99 283 80 314 112

Some properties of the data set were computed in Table 8.
From the above table, it is clear that the distribution of this data set is positively 

skewed right and leptokurtic. The parameter of the sample is estimated numerically. We 
used Eqs. (16)–(18) to obtain MLEs estimate and the results are given in Table 9.

I(θ) =









− ∂2ℓ

∂α2
− ∂2ℓ

∂α∂β
− ∂2ℓ

∂α∂γ

− ∂2ℓ
∂α∂β

− ∂2ℓ

∂β2 − ∂2ℓ
∂β∂γ

− ∂2ℓ
∂α∂γ

− ∂2ℓ
∂β∂γ

− ∂2ℓ

∂γ 2









Table 7  MLE of the parameter β

β n Estimate Bias MSE

α = 0.3 20 1.91064 −0.0893629 0.394056

50 2.02933 0.0293271 0.0744106

70 1.9975 −0.00249889 0.0850081

150 2.01348 0.0134826 0.0190133

α = 1.2 20 1.96364 −0.036358 0.341544

50 2.03782 0.0378182 0.0577503

70 2.02835 0.0283514 0.0409679

150 2.01348 0.0134826 0.0190133

α = 2.5 20 1.94389 −0.0561107 0.372105

50 1.9975 −0.00249889 0.0850081

70 2.02563 0.0283514 0.0409679

150 2.01095 0.0109501 0.0227298

Table 8  Some properties of data set

E(X) Var(X) Kurtosis Skewness

135.45 16,735.1 0.526142 1.26934
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If we want to test if this data fits the M–O log-logistic (α,β , γ ), our hypotheses is 
H0 : F  = FM–O log-logistic versus H1 : F �=  FM–O log-logistic. We use the Kolmogorov–Smirnov 
(K–S) distances between the empirical distribution function and the fitted distribution 
function to determine the appropriateness of the model. K–S at 95 % CIs value and the 
corresponding p value are presented in Table 10.

The small K–S distance and the large p value for the test indicate this data fits the M–O 
log-logistic quite well. Also we use likelihood ratio test (LRT) to determine the appropri-
ateness of the model. The hypotheses are as follows:

The log-likelihood value, likelihood ratio statistic (�) and corresponding p value are pre-
sented in Table 11.

We note that the calculated LRT statistic is greater than the critical point for this test, 
which is 6.635, and also that the p value is very small. According to the LRT, we conclude 
that this data fits the M–O log-logistic much better than the log-logistic distribution.

Second data set

The second data set obtained from www.isixigma.com represents a cycle time of a 
process. 
Data set

10 13 13 14 14 15 15 16 25 26 26 27 38 53

17 17 17 17 18 18 18 19 27 27 28 28 42

21 21 21 22 22 23 24 25 30 34 35 35 42

Some properties of the data set were computed in Table 12.
From the above table, it’s clear that the distribution of this data set is positively skewed 

right and leptokurtic. The parameter of the sample is estimated numerically. We used 
Eqs. (16)–(18) to obtain MLEs estimate and the results are given in Table 13.

We want to test if these data fit the M–O log-logistic or not, our hypotheses is 
H0 : F   =  FM–O log-logistic versus H1 : F �=   FM–O log-logistic. We use the K–S distances 

H0 : α = 1(log-logistic) versus H1 : α �= 1(M−O log-logistic).

Table 9  MLE for data set

Parameter MLE

α 10.833

β 1.58621

γ 19.7451

Table 10  The K–S and p value of data set

K–S p value

0.103124 0.131

Table 11  The result of likelihood ratio test

Log-likelihood � p value

−118.851 32.7814 1.03127 × 10−8

http://www.isixigma.com
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between the empirical distribution function and the fitted distribution function to deter-
mine the appropriateness of the model. K–S value at 99 % CIs and the corresponding p 
value are presented in Table 14.

The small K–S distance and the large p-value for the test indicate that this data fits the 
M–O log-logistic quite well. Also we use LRT to determine the appropriateness of the 
model. The hypotheses are as follow:

Log-likelihood value, likelihood ratio statistic (�) and corresponding p value are pre-
sented in Table 15.

We note that the calculated LRT statistic is greater than the critical point for this test, 
which is 6.635, and also that the p value is very small. According to the LRT, we conclude 
this data fits the M–O log-logistic much better than the log-logistic distribution.

Conclusion
In this paper, an extended model based on log-logistic distribution is investigated. Some 
reliability and statistical properties of this model are obtained. Through numerical simu-
lation, the MLE of the parameters are calculated and discussed. Finally, two sets of real 
data are fitted to this model and is shown to be appropriate. Further properties and 
applications of the model can be considered in the future of this research. In particular, 
the following topics are interesting and still remain as open problems:

1.	 Discuss the Bayesian analysis of the model.
2.	 Introduce and study a new class of weighted M–O bivariate log-logistic distribution.

H0 : α = 1(log-logistic) versus H1 : α �= 1(MO log-logistic).

Table 12  Some properties of data set

E(X) Var(X) Kurtosis Skewness

23.825 86.1481 0.934659 1.05974

Table 13  MLE for data set

Parameter MLE

α 0.457038

β 4.70536

γ 26.0741

Table 14  The K–S and p value of data set

K–S p value

0.0982563 0.212

Table 15  The result of likelihood ratio test

Log-likelihood � p value

−141.405 7.84139 0.00510632
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