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Introduction
With the popularity of image sensor, digital images play a key role in people’s daily life. 
Unfortunately, images are ineluctably contaminated by noise during acquisition, trans-
mission, and storage. Therefore, image denoising is still an open and complex problem 
in image processing and computer vision (Chatterjee and Milanfar 2010). Image denois-
ing aims to recovering the original image u from the observed noisy image u0, where 
u0 = u+ n, and n is the zero-mean Gaussian white noise with standard deviation σ.

During the past three decades, lots of approaches for removing noise have been developed 
from linear models to nonlinear models. Linear models perform well in the smooth area. 
However, they don’t preserve edges and corners. To overcome the disadvantages of the lin-
ear denoising models, nonlinear denoising models have been developed which have a good 
balance between noise removal and edge-preserving. Nonlinear models based on variation 
(Rudin et al. 1992) and partial differential equation (PDE) (Perona and Malik 1990) have been 
widely used for image denoising. The best known variational denoising model is the total vari-
ation (TV) model proposed by Rudin et al. (1992), which minimizes the following equation,

(1)min
u

{
∫

�

(

|∇u| +
�

2
(u− u0)

2

)

d�

}

Abstract 
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where � ⊆ R2 is a bounded open domain with Lipschitz boundary, ∇ denotes the gradi-
ent operator, |∇u| is the TV regularization term, (u− u0)

2 is the fidelity term, � > 0 is the 
regularization parameter, which measures the trade off between the regularization term 
and the fidelity term.

The classical TV model is efficient for removing noise and preserving the edges. How-
ever, it possesses some undesirable properties in the recovered image under some cir-
cumstances, such as the staircasing effect. To overcome the deficiency of the original TV 
model (Strong 1997), developed the adaptive TV regularization based variational model 
as,

where g(x) is an adaptive edge-stopping function, which is defined in Strong (1997) as 
follow,

where K > 0 is a threshold parameter for balancing the noise removal and edge preser-
vation, and Gρ(x) is the Gaussian filter with standard deviation ρ. Seen from (3), g(x) is 
smaller near the edges and larger away from the boundaries, so the model of (2) has the 
capability of preserving the edges while removing noise because the diffusion is stopped 
across edges.

In addition, Nikolova replaced the ℓ2-norm with the ℓ1-norm in the fidelity term of 
TV model in Nikolova (2002). Osher et al. (2005) proposed an iterative regularization 
method of TV model. Chen et al. (2010) presented an adaptive total variation method 
based on the difference curvature. Wang et al. (2011) put forward a modified TV model.

Numerical experiments demonstrate that the models mentioned above have good per-
formance in the terms of the trade-off between removing noise and preserving the edges. 
Unfortunately, the staircasing effects appear in the recovered image owing to using the 
TV-norm as the regularization term. To overcome this shortcoming, high-order PDE 
filters have been proposed and applied for image denoising successfully (Lysaker et al. 
2003; Liu et al. 2011). One of the most classical fourth-order PDEs (LLT) is introduced 
by Lysaker et al. (2003)

where ∇2 denotes the Laplacian operator. However, a major challenge is that higher-
order PDEs blur the edges during image denoising.

To make use of the advantages of both TV filter and high-order PDE filters, some 
hybrid regularization models are recently proposed, which combined the second-order 
partial differential equations and the fourth-order partial differential equations (Oh et al. 
2013). Li et  al. (2007) proposed the adaptive image denoising model based on hybrid 
regularizers combining the advantages of TV model and LLT model as follows,

(2)min
u

∫

�

(

g(x)|∇u| +
�

2
(u− u0)

2

)

d�

(3)g(x) =
1

1+K|∇Gρ(x) ∗ u0|2
,

(4)

∫

�

(

|∇2u| +
�

2
(u− u0)

2

)

d�

(5)min
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∫
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(1− g)|∇u| + g |∇2u| +
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where g(x) also denotes the edge-stopping function defined as in (3). The results of 
experiments indicate that the model of (5) performs better than the pure second-order 
or hight-order models.

In recent years, efficient computational algorithms for solving the denoising mod-
els have emerged in large numbers, for instance, fixed point iteration, gradient descent 
methods, primal-dual methods, relaxation methods, Bregman iteration and split Breg-
man method, and so on. These methods are efficient for image denoising while preserv-
ing the edges.

Inspired by Li et  al. (2007) and Liu (2015), we propose a novel adaptive anisotropic 
diffusion model, incorporating the advantages of the total variation filter and the fourth-
order filter, and develop an efficient computational algorithm. The main contributions of 
our paper can be generalized as follows. First of all, the hybrid regularization term of the 
novel model is composed of total variation regularization and a fourth-order filter. The 
fidelity term uses the H−1-norm as opposed to the more commonly used ℓ1-norm or ℓ2

-norm. The two above-mentioned filters can be adaptively selected according to the dif-
fusion function. When the pixels locate at the edges, the total variation filter is selected 
to filter the image, which can preserve the edges. When the pixels belong to the flat 
regions, the fourth-order filter is adopted to smooth the image, which can eliminate the 
staircase artifacts. Another main contribution is that the split Bregman and relaxation 
approach are successively employed in our numerical algorithm to speed up the com-
putation. Experimental results demonstrate that our proposed model achieves higher 
quality in both the qualitative and quantitative aspects than that of the state-of-the-art 
models cited in the paper.

The remainder of this paper is organized as follows. In “Preliminaries” section, we 
give some definitions. In “The new model and algorithms” section, we give the proposed 
model and numerical implementation in detail. The experimental results are given in 
“Experiments” section. Finally, this paper is concluded in the fifth section.

Preliminaries
In this section, we give a brief overview of some necessary notations and definitions for 
the proposed model, which will be used in the subsequent sections.

Definition 1  (Chen and Wunderli 2002). Let � be an open bounded subset of 
R
n(n ≥ 2) with Lipschitz boundary. Given a function u ∈ L1(�). Then the total variation 

of u in � is defined as,

where div is the divergence operator, C1
c (�,Rn) is the subset of continuously differen-

tiable vector functions of compact support contained in �, and L∞(�) is the essential 
supremum norm.

Remark 1  Let the Sobolev space be W 1,1(�) := {u ∈ L1(�)|∇u ∈ L1(�)}. If 
�u�BV 2(�) =

∫

�
|∇u| + �u�W 1,1(�), the space BV 2(�) is a Banach space.

(6)

∫

�

|∇u| := sup

{
∫

�

udivφd�|φ ∈ C1
c (�,Rn), �φ�L∞(�) ≤ 1

}

,
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Definition 2  (Liu et al. 2007). Let � be an open bounded subset of Rn(n ≥ 2) with Lip-
schitz boundary. Given a function u ∈ L1(�). Then the BV 2 seminorm of u is defined as,

where

with ∀i,ϕi = {ϕ1
i , · · · ,ϕ

n
i ) and div(ϕi) =

∑n
j=1

∂ϕ
j
i

∂xj
, and �ϕ� =

√

∑n
i,j=1(ϕ

j
i)
2.

Definition 3  (Liu 2015). Let � be an open subset of Rn(n ≥ 2) with Lipschitz bound-
ary. Given a function u ∈ L1(�), and let α(x) ≥ 0 be a continuous real function. Then the 
α−total Variation of u in � is defined by,

where the vector valued function φ = (φ1,φ2, . . . ,φn). Moreover, the α − BV  seminorm 
is characterized by �u�α−BV =

∫

�
α|∇u| + �u�L1(�).

Definition 4  (Liu 2015). Let � be an open subset of Rn(n ≥ 2) with Lipschitz bound-
ary. Given a function u ∈ L1(�), and let β(x) ≥ 0 be a continuous real function. Then the 
weighted BV 2 seminorm of u in � is defined as,

and �u�β−BV 2(�) =
∫

�
β|∇2u| + �u�W 1,1(�).

Definition 5  (Jia et  al. 2011). For � > 0 and c ∈ R, the soft thresholding operator 
cut(c, 1

�
) is defined as,

The new model and algorithms
The proposed model

Meyer analyzed that there exists no oscillation function in the space L2(�) and a weaker 
H−1-norm is appropriate to represent textured or oscillatory patterns (Meyer 2001), so 
that we replace ℓ2-norm of the fidelity term (u0 − u) with H−1-norm. Therefore, a novel 
adaptive image denoising model is proposed,

(7)
∫

�

|∇2u| := sup

{
∫

�

< ∇u, div(ϕ) >Rn |ϕ ∈ C2
c (�,Rn×n), �ϕ�L∞(�) ≤ 1

}

,

(8)div(ϕ) := (div(ϕ1), div(ϕ2), · · · , div(ϕn)),

(9)
∫

�

α|∇u| := sup

{
∫

�

udivφd�|φ ∈ C1
c (�,Rn), �φi�L∞(�) ≤ α, 1 ≤ i ≤ n

}

,

(10)
∫

�

β|∇2u| := sup

{
∫

�

< ∇u, div(ϕ) >Rn |ϕ ∈ C2
c (�,Rn×n), �ϕ�L∞(�) ≤ β

}

,

(11)cut

�

c,
1

�

�

=







1
�

if c > 1
�
,

c if − 1/� ≤ c ≤ 1
�
,

− 1
�

if c < − 1
�
.

(12)min
u

{

E(u) =

∫

�

((1− g(x))|∇u| + g(x)|∇2u|)d�+
�

2
�u0 − u�2

H−1

}

,
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where u and u0 are the recovered image and the noisy image, respectively. Seen from  
Eq. (12), the H−1-norm is considered as the fidelity term and the regularization term is 
composed of a total variation regularization and a fourth-order filter in the proposed 
model. �u0 − u�2

H−1 =
∫

�
|∇(�−1(u0 − u))|2d�, and �−1 is the inverse Laplace opera-

tor. The diffusivity function g(x) is defined as,

where Gaussian filter Gρ(x) pre-smooths the noisy image. The larger standard deviation 
σ of the noise is, the larger standard deviation ρ of Gaussian filter is. We set ρ = Cσ, 
where C lies between 0 to 1. When g(x) → 0, it means that the pixels locate at the edges. 
Then total variation filter is selected to filter the image, which can preserve the edges. 
When g(x) → 1, it means that the pixels belong to the flat regions. Then the fourth-
order filter is adopted to smooth the image, which can eliminate the staircase artifacts. 
We replace g(x) with g in the next part of this article. Figure 1 shows the results of image 
denoising by our proposed model and model from Li et al. (2007), which demonstrates 
that the model whose fidelity term uses the H−1-norm yields better results in image 
denoising since H−1-norm is appropriate to represent textured or oscillatory patterns.

The numerical algorithm for the proposed model

We apply a split Bregman method (Cai et  al. 2009) to solve Eq. (12). The idea of split 
Bregman method is to use splitting operator and Bregman iteration to solve various 
inverse problems (Goldstein and Osher 2009).

We turn Eq. (12) into the following constrained minimization problem by introducing 
an auxiliary variable z,

The method of solving the constrained minimization problem is that it may be trans-
formed into the unconstrained minimization problem, so the constrained problem (14) 
can be turned into the following unconstrained problem by introducing an auxiliary var-
iable b,

By taking advantage of split Bregman method, Eq. (15) can be solved iteratively accord-
ing to the following equations,

where k is the number of iterations.

(13)g(x) = exp(−K|∇Gρ ∗ u0|
2),

(14)min
u

{
∫

�

(

(1− g)|∇u| + g |∇2u| +
�

2
|∇(�−1(u0 − z))|2

)

d�

}

, s.t.z = u.

(15)

min
u,z,b

{
∫

�

(

(1− g)|∇u| + g |∇2u| +
�

2
|∇(�−1(u0 − z))|2

)

d�+
µ

2
�u− z + b�22

}

,

(16)















uk+1 = minu
��

�
((1− g)|∇u| + g |∇2u|)d�+

µ
2
�u− zk + bk�22

�

,

zk+1 = minz

�

�

2

�

�
|∇(�−1(u0 − z))|2d�+

µ
2
�uk+1 − z + bk�22

�

,

bk+1 = bk + uk+1 − zk+1,



Page 6 of 24Liu et al. SpringerPlus  (2016) 5:404 

Solve the first subproblem in Eq. (16)

At present, the Euler–Lagrange equation method is usually used to solve the problem 
similarity to the first subproblem in Eq. (16). However, it works slowly. To accelerate the 
computation speed, the split Bregman algorithm and relaxation algorithm are adopted 
to solve the first subproblem in Eq. (16).

First, we define |∇u| = �∇xu�1 + �∇yu�1, and |∇2u| = ��xu�1 + ��yu�1, and then 
the first subproblem in Eq. (16) can be rewritten as follows,

(17)

uk+1 = min
u

{

(1− g)(�∇xu�1 + �∇yu�1)+ g(��xu�1 + ��yu�1)+
µ

2
�u− zk + bk�22

}

,

Fig. 1  Results of image denoising by our model and model from Li et al. (2007). a Original image, b noisy 
image with σ = 25, c result by our model, d noise, detecting by our model, e result by model from Li et al. 
(2007), f noise, detecting by model from Li et al. (2007)
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where ∇x, ∇y, �x and �y are the first-order difference operators and the second-order 
difference operators, respectively. All the difference operators are approximated using 
following formulas:

where M × N  represents the image size.
Second, we introduce four auxiliary variables υx, υy,ωx, and ωy, and then Eq. (17) can 

be transformed into the following constrained optimization problem,

with υx = ∇xu, υy = ∇yu,ωx = �xu, and ωy = �yu.
The above constrained problem (22) are turned into the unconstrained minimization 

problem,

where the parameters α > 0 and β > 0. Let F(υx, υy,∇xu,∇yu) =
α
2
�υx −∇xu− f kx �

2
2
+ 

α
2
�υy −∇yu− f ky �

2
2
 and E(ωx,ωy,�xu,�yu) =

β
2
�ωx −�xu− ckx�

2
2
+

β
2
�ωy −�yu−

cky‖
2
2
, and apply the split Bregman method, Eq. (23) can be solved by following equations,

with the update equations,

(18)∇xui,j =

{

0 if i = 1,
ui,j − ui−1,j if 1 < i ≤ M,

(19)∇yui,j =

{

0 if j = 1,
ui,j − ui,j−1 if 1 < j ≤ N ,

(20)�xui,j =







u1,j − u2,j if i = 1,
2ui,j − ui−1,j − ui+1,j if 1 < i < M,
uM−1,j − uM,j if i = M

(21)�yui,j =







ui,1 − ui,2 if j = 1,
2ui,j − ui,j−1 − ui,j+1 if 1 < j < N ,
ui,N−1 − ui,N if j = N .

(22)

uk+1 = min
u

{

(1− g)(�υx�1 + �υy�1)+ g(�ωx�1 + �ωy�1)+
µ

2
�u− zk + bk�22

}

,

(23)

uk+1 = min
υx ,υy,ωx ,ωy,u

{

(1− g)(�υx�1 + �υy�1)+ g(�ωx�1 + �ωy�1)

+
µ

2
�u− zk + bk�22 +

α

2
�υx −∇xu− f kx �

2
2 +

α

2
�υy −∇yu− f ky �

2
2

+
β

2
�ωx −�xu− ckx�

2
2 +

β

2
�ωy −�yu− cky�

2
2

}

,

(24)



















uk+1 = minu

�

µ
2
�u− zk + bk�22 + F(υk

x ,υ
k
y ,∇xu,∇yu)+ E(ωk

x ,ω
k
y ,�xu,�yu)

�

,

(υk+1
x ,υk+1

y ) = min
υx ,υy

{(1− g)(�υx�1 + �υy�1)+ F(υx ,υy,∇xu
k+1,∇yu

k+1)},

(ωk+1
x ,ωk+1

y ) = minωx ,ωy {g(�ωx�1 + �ωy�1)+ E(ωx ,ωy,�xu
k+1,�yu

k+1)},

(25)

{

f k+1
x = f kx − (υk+1

x − ∇uk+1
x ), f k+1

y = f ky − (υk+1
y −∇uk+1

y ),

ck+1
x = ckx − (ωk+1

x −�uk+1
x ), ck+1

y = cky − (ωk+1
y −�uk+1

y ),
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where k > 0. For k = 0, choose f 0x = f 0y = c0x = c0y = 0 and υ0
x = υ0

y = ω0
x = ω0

y = 0.
According to the relaxation algorithm (Jia et al. 2011), we may define,

So, we have

where ∇T
x , ∇T

y , �T
x  and �T

y  are respectively the adjoint operators of ∇x, ∇y, �x and �y. ∇T
x  

and ∇T
y  have the following discrete forms,

Definitely, �T
x = �x and �T

y = �y.

Solve the second subproblem in Eq. (16)

For the second subproblem in Eq. (16), we derive the Euler–Lagrange equation with 
respect to z, which is as follows,

This is a linear equation, so additional operator split (AOS) iteration and Gauss–Seidel 
(GS) iteration can be used to solve Eq. (30). We use AOS iteration to solve this equation.
In summary, the proposed algorithm for image denoising can be described as follows, 

Algorithm 1. The proposed algorithm for image denoising

Initialization:u0 = z0 = u0, b0 = 0, f0
x = f0

y = c0x = c0y = 0, and k = 0 ;
Step 1: Compute uk+1 according to Eq. (27);
Step 2: Compute zk+1 according to Eq. (30);
Step 3: Compute bk+1 according to the third term in Eq. (16);
Step 4: k=k+1.
Until the stop condition is satisfied.

(26)







f kx = cut(∇xu
k + f k−1

x , 1/α), f ky = cut(∇yu
k + f k−1

y , 1/α),

ckx = cut(�xu
k + ck−1

x , 1/β), cky = cut(�yu
k + vk−1

y , 1/β).

(27)

uk+1 = (1− t)uk + t

[

zk − bk −
α

µ
(1− g)(∇T

x f
k
x + ∇T

y f
k
y )−

β

µ
g(�T

x c
k
x +�T

y f
k
y )

]

,

(28)∇T
x ui,j =







−u2,j if i = 1,
ui,j − ui+1,j if 1 < i < M,
uM,j if i = M

(29)∇T
y ui,j =







−ui,2 if j = 1,
ui,j − ui,j+1 if 1 < j < N ,
ui,N if j = N

(30)(�− µ�)z = �u0 − µ�(uk + bk).
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Experiments
In this section, we experimentally compare our proposed model with the state-of-the-art 
models. All experiments are performed under Matlab R2009a on a PC with an Intel CPU 
of 1.7 GHz and 4 GB memory. Six grayscale images viz. “Manmade”, “Lena”, “Peppers”, 
“Barbara”, “Cameraman”, and “House” are selected as testing examples for both qualita-
tive and quantitative evaluations. The original test images are shown in Fig. 2. The per-
formances of all methods are compared quantitatively by using the peak signal to noise 
ratio (PSNR), structural similarity index measure (SSIM) (Wang et al. 2004), multi-scale 
structural similarity index (MS-SSIM) (Wang et  al. 2003), and feature-similarity index 
(FSIM) (Zhang et al. 2011). In addition, we also compare the computing time and itera-
tions of six models. PSNR is defined as follows,

(31)PSNR = 10× log10

(

2552

MSE

)

(db),

Fig. 2  Original test images. a Manmade image, b lena image, c peppers image, d barbara image, e camera-
man image, f house image
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with

where u and ū are respectively the recovered image and the original image. Generally, 
the larger the value of the PSNR, the better the performance. However, PSNR is incon-
sistent with human visual judgments. SSIM, MS-SSIM, and FSIM are close to the human 
vision system, so we also use them to assess the noise removal quality. SSIM is defined 
by,

where µu and σ 2
u are the mean and variance of u, respectively, σuū is the covariance of u 

and ū, and c1 and c2 are two constants to avoid instability. MS-SSIM is defined by,

where the luminance distortion li(u, ū), the contrast distortion ci(u, ū) and the structure 
distortion si(u, ū) at scale i between images u and ū are defined as follows,

where µu and µū represent the mean intensity of u and ū at scale i; σu (resp. σū) is the 
standard deviation of u (and ū) at scale i, and σuū is the covariance between u and ū at 
scale i. c1, c2 and c3 are three small constants to avoid instability. In this paper, the values 
of the exponents αM, βi and γi are set as the same as those in Wang et al. (2003). FSIM is 
defined by,

where SL(x) at each location x is the similarity measure, which is defined as product of 
the similarity function SPC(x) on Phase Congruency (PC) and similarity function SG(x) 
on Gradient Magnitude (GM). SPC(x) and SG(x) are defined as follows,

where PCu and PCū denote the PC maps extracted from u and ū, respectively, and Gu and 
Gū denote the GM maps extracted from u and ū, respectively; T1 and T2 are two small 
positive constants to avoid instability.

(32)MSE(u, ū) =
1

M × N

∑

i

∑

j

(ui,j − ūi,j)
2,

(33)SSIM(u, ū) =
(2µuµū + c1)(2σuū + c2)

(µ2
u + µ2

ū + c1)(σ 2
u + σ 2

ū + c2)
,

(34)MS-SSIM(u, ū) = [lM(u, ū)]αM
M
∏

i=1

[ci(u, ū)]
βi [si(u, ū)]

γi ,

(35)























li(u, ū) =
2µuµū+c1

µ2
u+µ2

ū
+c1

;

ci(u, ū) =
2σuσū+c2

σ 2
u+σ 2

ū
+c2

;

si(u, ū) =
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


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ū
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u(x)+G

2
ū
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The termination condition for all experiments is defined as follows,

where un and un+1 are respectively denoising results at nth and (n+ 1)th iteration, and ε 
is a given positive number. We set ε = 10−3 in the experiments.

Figure 3 shows the results for the 8-bit gray-scale synthetic image with size 320× 320 
pixels, which is corrupted by zero-mean Gaussian white noise with σ = 30. In our 
experiments, we use the trial-and-error method for determining the optimal param-
eters. We set µ = 0.3, α = β = 0.15, t = 0.2, K = 0.005, and ρ = 1 in our algorithm, 
while all parameter values in TV model Rudin et  al. (1992), LLT model Lysaker et  al. 
(2003), non-local means (NLM) model Buades et  al. (2005), BLS-GSM Portilla et  al. 

(38)
�un+1 − un�22

�un+1�22

≤ ε,

Fig. 3  Results of the synthetic image by the six models. a Original image, b noisy image, c result by TV 
model, d result by LLT model, e result by NLM model, f result by BLS-GSM model, g result by hybrid model, h 
result by our model
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(2003), and hybrid model Liu (2015) are chosen manually by trial-and-error method 
to ensure the best results. Figure 3a, b are the original and noisy images, respectively. 
Figure 3c–h show that the denoising results of TV model, LLT model, NLM model, BLS-
GSM, hybrid model, and our proposed model, respectively. Figure 3c indicates that there 
exists the staircase effects in the recovered images by TV model. Although LLT model 
has the advantage on relieving the staircase effect, the edges are blurred and there are 
serious speckles in the recovered image. The computational efficiency of NLM model is 
very low. There exits the edges blurring in the result of BLS-GSM from Fig. 3f. We also 
find that there still exits a little stair-case effect by hybrid model from Fig. 3g. Our pro-
posed model relieves the staircasing effects and avoids the edges blurring. Table 1 shows 
the PSNR, SSIM, MS-SSIM, and FSIM values corresponding to Fig. 3. From Table 1 and 
Fig. 3, it is shown that our proposed model produces the best result. At the same time, 
the proposed method takes less computational time than LLT model, NLM model and 
hybrid model, but the computational time of our proposed method is slightly inferior to 
that of TV model and BLS-GSM.

In order to demonstrate that our model can also work well for natural images, the next 
experiments are conducted for different images corrupted by zero-mean Gaussian white 
noise with σ = 30. The experimental results are shown in Figs. 4, 5, 6, 7 and 8, where the 
experimental results of TV model, LLT model, NLM model, BLS-GSM, hybrid model, 
and our proposed model are illustrated, respectively. The figures show that our model 
produces the visually most appealing results among the six models. The quantitative 
PSNR, SSIM, MS-SSIM, and FSIM values are presented in Fig. 9, which depicts that the 
performance of our proposed model are better than those of TV model, LLT model, 
NLM model, BLS-GSM, and hybrid model. In order to verify the better performance of 
our proposed method, Fig. 10 shows the enlarged regions cropped from Fig. 4.      

We also use six images corrupted with different levels of Gaussian noise to examine 
the performance of the proposed model and the alternative models. Tables 2, 3, 4 and 5 
give the PSNR, SSIM, MS-SSIM, and FSIM values obtained by the proposed model and 
the alternative models, respectively. From Tables 2, 3, 4 and 5, it can be observed that 
our model is greater than or equal to the other five models in PSNR, SSIM, MS-SSIM, 
and FSIM for the same standard deviation, which demonstrate that our model provides 
the best noise removal performance at different noise level.

Conclusions
To eliminate the so-called staircase effect in total variation filter and avoid the edges 
blurring for fourth-order PDE filter, we propose an adaptive anisotropic diffusion 

Table 1  Performance comparison of the recovered results with different methods in Fig. 2

Method PSNR SSIM MS-SSIM FSIM Iterations Time(s)

TV model 31.97 0.91 0.97 0.94 246 11.20

LLT model 30.62 0.86 0.95 0.75 216 87.21

NLM model 32.15 0.89 0.97 0.89 1 275.42

BLS-GSM 31.94 0.92 0.96 0.91 1 4.68

Hybrid model 32.67 0.92 0.96 0.90 197 93.72

Proposed model 33.49 0.93 0.97 0.93 147 81.72
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model for image denoising, which is composed of a hybrid regularization term combin-
ing a total variation filter and a fourth-order filter and the fidelity term using the H−1

-norm. We also develop an efficient algorithm to solve our proposed model. Numerical 

Fig. 4  Results of Lena image by the six models. a Original image, b noisy image, c result by TV model, d result 
by LLT model, e result by NLM model, f result by BLS-GSM model, g result by hybrid model, h result by our 
model
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Fig. 5  Results of Peppers image by the six models. a Original image, b noisy image, c result by TV model, d 
result by LLT model, e result by NLM model, f result by BLS-GSM model, g result by hybrid model, h result by 
our model
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Fig. 6  Results of Barbara image by the six models. a Original image, b noisy image, c result by TV model, d 
result by LLT model, e result by NLM model, f result by BLS-GSM model, g result by hybrid model, h result by 
our model
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Fig. 7  Results of Cameraman image by the six models. a Original image, b noisy image, c result by TV model, 
d result by LLT model, e result by NLM model, f result by BLS-GSM model, g result by hybrid model, h result 
by our model
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Fig. 8  Results of House image by the six models. a Original image, b noisy image, c result by TV model, d 
result by LLT model, e result by NLM model, f result by BLS-GSM model, g result by hybrid model, h result by 
our model
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Fig. 9  Comparison results in a PSNR, b SSIM, c MS-SSIM and d FSIM for Gaussian noise with σ = 30



Page 19 of 24Liu et al. SpringerPlus  (2016) 5:404 

Fig. 10  The enlarged detail regions cropped from Fig. 3. a Original image, b noisy image, c result by TV 
model, d result by LLT model, e result by NLM model, f result by BLS-GSM model, g result by hybrid model, h 
result by our model
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Table 2  Comparison results in PSNR(dB) for different levels of Gaussian noise

Method Lena Peppers Barbara Cameraman House

σ = 5

 Noise 35.76 34.18 33.15 33.97 35.17

 TV model 37.46 36.86 35.96 35.95 37.12

 LLT model 36.92 35.94 35.67 35.67 36.34

 NLM model 37.41 36.48 36.72 36.76 37.81

 BLS-GSM 37.16 36.37 36.18 36.63 37.53

 Hybrid model 37.07 36.19 36.11 36.07 37.25

 Proposed model 37.44 36.52 36.82 36.81 37.89

σ = 10

 Noise 27.72 28.18 28.15 28.12 28.12

 TV model 33.72 33.19 30.07 32.39 34.27

 LLT model 32.61 31.98 30.12 31.87 32.14

 NLM model 34.79 33.35 33.81 33.41 35.41

 BLS-GSM 34.64 33.25 33.57 33.26 35.32

 Hybrid model 34.56 33.13 33.41 33.22 35.25

 Proposed model 35.07 33.86 34.15 34.27 35.64

σ = 20

 Noise 22.17 22.16 22.15 22.20 22.18

 TV model 31.51 30.54 28.78 29.47 31.21

 LLT model 30.67 29.37 27.79 29.32 30.29

 NLM model 31.69 31.02 29.92 30.82 31.82

 BLS-GSM 31.54 30.76 29.64 30.59 31.54

 Hybrid model 31.45 30.71 29.19 30.38 31.43

 Proposed model 31.97 31.17 30.32 30.98 32.29

σ = 40

 Noise 16.11 16.09 16.12 16.08 16.14

 TV model 29.22 27.95 26.93 27.62 28.85

 LLT model 28.46 26.07 25.92 27.19 27.95

 NLM model 29.57 28.19 27.89 28.59 29.42

 BLS-GSM 29.36 28.13 27.67 28.35 29.17

 Hybrid model 29.49 28.12 27.86 28.47 29.23

 Proposed model 30.13 28.94 28.42 29.15 30.27

σ = 50

 Noise 14.17 14.23 14.21 14.16 14.19

 TV model 27.51 26.05 24.77 25.89 27.73

 LLT model 26.89 25.07 23.91 25.11 26.84

 NLM model 27.95 26.21 25.69 26.32 27.06

 BLS-GSM 27.67 26.03 25.43 26.13 26.74

 Hybrid model 27.76 26.14 25.17 26.27 26.97

 Proposed model 28.21 26.97 25.88 26.62 27.37
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Table 3  Comparison results in SSIM for different levels of Gaussian noise

Method Lena Peppers Barbara Cameraman House

σ = 5

 Noise 0.85 0.85 0.89 0.84 0.80

 TV model 0.93 0.91 0.92 0.93 0.97

 LLT model 0.91 0.89 0.93 0.92 0.94

 NLM model 0.94 0.92 0.96 0.94 0.97

 BLS-GSM 0.94 0.92 0.96 0.96 0.98

 Hybrid model 0.94 0.93 0.96 0.96 0.98

 Proposed model 0.94 0.93 0.97 0.97 0.97

σ = 10

 Noise 0.61 0.61 0.71 0.63 0.53

 TV model 0.89 0.88 0.87 0.86 0.90

 LLT model 0.87 0.86 0.85 0.86 0.89

 NLM model 0.90 0.89 0.90 0.90 0.92

 BLS-GSM 0.91 0.88 0.91 0.92 0.92

 Hybrid model 0.91 0.88 0.90 0.90 0.91

 Proposed model 0.91 0.89 0.91 0.91 0.90

σ = 20

 Noise 0.34 0.43 0.48 0.41 0.35

 TV model 0.86 0.85 0.82 0.83 0.84

 LLT model 0.84 0.83 0.80 0.82 0.83

 NLM model 0.87 0.86 0.83 0.85 0.85

 BLS-GSM 0.86 0.84 0.83 0.84 0.87

 Hybrid model 0.87 0.85 0.82 0.83 0.85

 Proposed model 0.89 0.87 0.84 0.86 0.87

σ = 40

 Noise 0.15 0.21 0.26 0.22 0.16

 TV model 0.79 0.77 0.75 0.77 0.80

 LLT model 0.75 0.74 0.73 0.74 0.76

 NLM model 0.82 0.80 0.76 0.76 0.82

 BLS-GSM 0.79 0.77 0.74 0.76 0.83

 Hybrid model 0.81 0.79 0.76 0.78 0.81

 Proposed model 0.82 0.79 0.75 0.79 0.83

σ = 50

 Noise 0.11 0.17 0.15 0.18 0.13

 TV model 0.73 0.72 0.69 0.71 0.73

 LLT model 0.70 0.69 0.65 0.69 0.70

 NLM model 0.73 0.74 0.71 0.70 0.75

 BLS-GSM 0.74 0.73 0.69 0.72 0.75

Hybrid model 0.73 0.73 0.70 0.71 0.74

Proposed model 0.74 0.74 0.72 0.73 0.76
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Table 4  Comparison results in MS-SSIM for different levels of Gaussian noise

Method Lena Peppers Barbara Cameraman House

σ = 5

 Noise 0.97 0.98 0.98 0.97 0.97

 TV model 0.99 0.99 0.99 0.98 0.99

 LLT model 0.96 0.99 0.95 0.96 0.97

 NLM model 0.98 0.99 0.99 0.98 0.98

 BLS-GSM 0.99 0.99 0.98 0.98 0.98

 Hybrid model 0.98 0.98 0.98 0.97 0.97

 Proposed model 0.99 0.99 0.99 0.99 0.99

σ = 10

 Noise 0.93 0.95 0.95 0.93 0.92

 TV model 0.97 0.98 0.97 0.97 0.97

 LLT model 0.96 0.97 0.95 0.96 0.96

 NLM model 0.98 0.98 0.98 0.98 0.98

 BLS-GSM 0.98 0.98 0.97 0.98 0.98

 Hybrid model 0.97 0.97 0.98 0.99 0.98

 Proposed model 0.98 0.98 0.98 0.99 0.98

σ = 20

 Noise 0.83 0.89 0.88 0.83 0.82

 TV model 0.95 0.97 0.92 0.93 0.96

 LLT model 0.94 0.95 0.92 0.91 0.93

 NLM model 0.97 0.97 0.96 0.96 0.97

 BLS-GSM 0.96 0.96 0.96 0.95 0.97

 Hybrid model 0.96 0.95 0.96 0.95 0.96

 Proposed model 0.97 0.96 0.97 0.96 0.96

σ = 40

 Noise 0.66 0.76 0.73 0.68 0.65

 TV model 0.91 0.93 0.87 0.89 0.92

 LLT model 0.88 0.89 0.85 0.82 0.85

 NLM model 0.93 0.94 0.92 0.93 0.94

 BLS-GSM 0.93 0.93 0.91 0.93 0.94

 Hybrid model 0.92 0.93 0.90 0.92 0.93

 Proposed model 0.93 0.94 0.92 0.94 0.94

σ = 50

 Noise 0.60 0.70 0.67 0.63 0.60

 TV model 0.89 0.91 0.85 0.89 0.90

 LLT model 0.84 0.86 0.82 0.80 0.82

 NLM model 0.91 0.92 0.89 0.91 0.92

 BLS-GSM 0.91 0.92 0.88 0.90 0.92

 Hybrid model 0.90 0.91 0.88 0.89 0.91

 Proposed model 0.92 0.92 0.90 0.91 0.92
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Table 5  Comparison results in FSIM for different levels of Gaussian noise

Method Lena Peppers Barbara Cameraman House

σ = 5

 Noise 0.99 0.96 0.99 0.95 0.95

 TV model 0.99 0.97 0.99 0.97 0.97

 LLT model 0.99 0.97 0.99 0.97 0.97

 NLM model 0.99 0.98 0.99 0.98 0.97

 BLS-GSM 0.99 0.97 0.99 0.98 0.97

 Hybrid model 0.99 0.97 0.98 0.97 0.96

 Proposed model 0.99 0.99 0.99 0.98 0.98

σ = 10

 Noise 0.95 0.87 0.96 0.86 0.86

 TV model 0.98 0.95 0.96 0.93 0.93

 LLT model 0.97 0.94 0.97 0.93 0.93

 NLM model 0.98 0.97 0.98 0.95 0.95

 BLS-GSM 0.98 0.96 0.97 0.95 0.94

 Hybrid model 0.97 0.95 0.96 0.94 0.94

 Proposed model 0.98 0.96 0.97 0.96 0.95

σ = 20

 Noise 0.86 0.73 0.88 0.72 0.71

 TV model 0.95 0.91 0.92 0.88 0.88

 LLT model 0.94 0.90 0.92 0.86 0.88

 NLM model 0.96 0.94 0.94 0.91 0.92

 BLS-GSM 0.95 0.93 0.94 0.90 0.91

 Hybrid model 0.94 0.92 0.93 0.89 0.91

 Proposed model 0.96 0.93 0.94 0.91 0.92

σ = 40

 Noise 0.72 0.54 0.74 0.56 0.53

 TV model 0.93 0.86 0.89 0.81 0.84

 LLT model 0.91 0.81 0.86 0.76 0.82

 NLM model 0.93 0.89 0.92 0.85 0.88

 BLS-GSM 0.92 0.88 0.92 0.84 0.87

 Hybrid model 0.92 0.87 0.91 0.84 0.87

 Proposed model 0.94 0.89 0.92 0.85 0.88

σ = 50

 Noise 0.65 0.48 0.67 0.51 0.48

 TV model 0.89 0.83 0.87 0.79 0.82

 LLT model 0.86 0.78 0.84 0.73 0.79

 NLM model 0.91 0.88 0.90 0.83 0.85

 BLS-GSM 0.90 0.87 0.89 0.82 0.85

 Hybrid model 0.89 0.86 0.88 0.81 0.84

 Proposed model 0.91 0.88 0.90 0.82 0.85
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experiments show that our proposed model has the highest PSNR, SSIM, MS-SSIM, and 
FSIM values among the six methods, and can preserve important structures, such as 
edges and corners.
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