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Background
Heart failure (HF) is characterized by decreased cardiac function and associated with 
pathological left ventricular remodeling (Gerdes 2002). Based on population attributable 
risks, hypertension has the greatest impact, accounting for 39 % of HF events in men and 
59 % in women (Kannel 2000). Hypertensive heart disease involves alterations in cardiac 
structure and function, including interstitial and perivascular fibrosis, leading eventually 
to impaired myocardial performance and coronary haemodynamics (Bartha et al. 2009).

Radix Scrophularia (Xuanshen) is a traditional Chinese herb medicine derived from 
the Scrophularia ningpoensis Hemsl, has been widely used in many prescriptions for 
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treating cardiovarcular diseases, including hypertension and myocardial ischemia (Wag-
ner et al. 2011). In the previous study, we revealed that active extract of Radix Scrophu-
laria (ACRS) exhibited beneficial effects on ventricular remodeling in rats induced by 
coronary artery ligation (Huang et al. 2012). And ACRS also exhibited the effect on low-
ering the blood pressure (Chen et al. 2012). However, the influence of ACRS on ventric-
ular remodeling induced by hypertension is not clear. In this paper, the effect of ACRS 
on ventricular remodeling in spontaneously hypertensive rat (SHR) is investigated.

Results
Blood pressure

As illustrated in Fig. 1, ACRS at 140 mg/kg had no adverse effects on mean arterial pres-
sure (MAP) in normotensive age-matched Wistar–Kyoto rats (WKY). MAP was signifi-
cantly elevated from ten weeks old (the beginning of treatment) in SHR model group but 
not in WKY rats (P < 0.05).

MAP declined as animals became older by chronic treatment with ACRS at doses of 
70, 140 and 280 mg/kg each day, for 21 weeks (P < 0.05, P < 0.01), and also with captopril 
(P < 0.01).

Cardiac mass index

The physical characteristics of each group are presented in Table 1, ACRS at 140 mg/kg 
had no adverse effects on left ventricular mass index (LVMI, mg/g) and heart mass index 
(HMI, mg/g) in normotensive age-matched WKY. However, the LVMI and HMI of SHR 
control were significantly greater than WKY control (P < 0.01). Treated with ACRS sig-
nificantly lowed LVMI and HMI obviously, as well as captopril (P < 0.05, P < 0.01).

Collagen accumulation

As illustrated in Fig. 2, the collagen showed red or deep red in myocardial interstitial and 
perivascular, pink or orange was myocytes. There was little interstitial and perivascular 
collagen in WKY rats with or without ACRS. There was a large amount of interstitial and 

Fig. 1  Effects of active components of Radix Scrophulariae (ACRS) on mean arterial pressure (MAP) of spon-
taneously hypertensive rats (SHR) and Wistar–Kyoto rats (WKY) (x̄ ± SE, n = 8). Compared with WKY control 
group, ††P < 0.01. Compared with SHR control group, *P < 0.05; **P < 0.01
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perivascular collagen appeared in SHR model. Collagen deposition in SHR with ACRS 
or captopril was less than that in SHR model (Table 2).

Under the polarized light microscope, collagen of type III appeared red or yellow, col-
lagen of type III appeared green. There was little accumulation of types I and III collagen 
in WKY rats with or without ACRS. The collagen I and III distribution of SHRs was 
significantly increased compared with WKY rats. ACRS or captopril reduced it signifi-
cantly (Table 2; Fig. 3).

There was no change of the ratio of collagen type I/III in WKY with or without ACRS 
(Table 2). Higher ratio of collagen type I/III was found in SHR model than compared to 
WKY (P < 0.01). ACRS or captopril lowed it remarkably (P < 0.01).

Serum norepinephrine (NE) concentration

As depicted in Table 3, significant difference of NE concentration was not found in WKY 
with or without ACRS. The protein level of serum NE was significantly increased in SHR 
model than WKY rats (P < 0.05). Treated with ACRS (140, 280 mg/kg) or captopril sig-
nificantly lowed the protein level of serum NE (P < 0.05).

Serum tumor necrosis factor α (TNF‑α) concentration

As depicted in Table  3, significant difference of TNF-α concentration was not found 
in WKY with or without ACRS. The protein level of serum TNF-α was significantly 
increased in SHR model than WKY rats (P < 0.05). Treated with ACRS (140, 280 mg/
kg) or captopril significantly lowed the protein level of serum TNF-α (P < 0.01, P < 0.05).

Tissue angiotensin II (Ang II) concentration

As depicted in Table  3, significant difference of Ang II concentration was not found 
in WKY with or without ACRS. The protein level of tissue Ang II was significantly 
increased in SHR model than WKY rats (P < 0.05). Treated with ACRS (140, 280 mg/kg) 
or captopril significantly lowed the protein level of tissue Ang II (P < 0.05).

mRNA expression of collagen types I, III, transforming growth factor‑β1 (TGF‑β1) 

and angiotensin converting enzyme (ACE)

As depicted in Table 4, significant difference of collagen type I mRNA expression was 
not found in WKY with or without ACRS. The mRNA expression of collagen I was 

Table 1  Effects of active components of Radix Scrophulariae (ACRS) on cardiac mass index 
of spontaneously hypertensive rats (SHR) and Wistar–Kyoto rats (WKY) (x̄ ± SE, n = 8)

Compared with WKY control group: ††  P < 0.01; compared with SHR control group: * P < 0.05; ** P < 0.01

LVMI left ventricular mass index (mg/g), HMI heart mass index (mg/g)

Group LVWI (mg/g) HWI (mg/g)

WKY control 2.36 ± 0.15 3.02 ± 0.19

WKY+ 140 mg/kg ACRS 2.49 ± 0.43 3.28 ± 0.85

SHR control 3.09 ± 0.24†† 3.75 ± 0.24††

SHR+ 40 mg/kg captopril 2.50 ± 0.09** 3.15 ± 0.13**

SHR+ 70 mg/kg ACRS 2.80 ± 0.11** 3.35 ± 0.11**

SHR+ 140 mg/kg ACRS 2.90 ± 0.16* 3.46 ± 0.20**

SHR+ 280 mg/kg ACRS 2.87 ± 0.14** 3.45 ± 0.16**
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Fig. 2  Effects of active components of Radix Scrophulariae (ACRS) on cardiac collagen in the interstitial (a) 
and perivascular (b) space of the left ventricle in spontaneously hypertensive rats (SHR) and Wistar–Kyoto rats 
(WKY) (Sirius red stain, ×400). A WKY control; B WKY+ 140 mg/kg ACRS; C SHR control; D SHR+ 40 mg/kg 
captopril; E SHR+ 70 mg/kg ACRS; F SHR+ 140 mg/kg ACRS; G SHR+ 280 mg/kg ACRS
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increased in SHRs than WKY rats obviously (P < 0.01). Treated with ACRS inhibited the 
mRNA over-expression of collagen type I (P < 0.01). Captopril decreased mRNA expres-
sion of collagen type I as well (P < 0.01). However, there was no significant difference of 
collagen type III mRNA expression among all the groups.

As depicted in Table 4, significant difference of TGF-β1 and ACE mRNA expression 
was not found in WKY with or without ACRS. TGF-β1 and ACE mRNA expressions in 
SHRs were increased in SHRs than WKY rats obviously (P < 0.05). Treated with ACRS 
or captopril suppressing the mRNA over expression of TGF-β1 and ACE (P < 0.05).

Mitogen‑activated protein kinases (MAPKs) pathways

As illustrated in Fig.  4, significant differences of the phosphorylation of extracellular 
signal regulated kinase (ERK1/2) Thr202-Tyr204, c-Jun N-terminal kinase (JNK/SAPK) 
Thr183–Tyr185 and p38 MAPK Thr180–Tyr182 were not found in WKY with or without 
ACRS. The phosphorylation of ERK1/2 Thr202–Tyr204, JNK Thr183–Tyr185 and p38 MAPK 
Thr180–Tyr182 was significantly increased in SHR model than that in WKY rats (P < 0.01), 
treated with ACRS or captopril attenuated the phosphorylation obviously (P < 0.01).

Discussion
SHR is a useful experimental model of essential hypertension (Boluyt and Bing 2000; 
Bing et al. 2002). SHRs are characterized by the fact that they suffer from pre-hyperten-
sion during the first 6–8 weeks of their life and then develop many features of hyper-
tensive end-organ damage: cardiac hypertrophy, cardiac failure and so on (Abbate et al. 
2006). MAP is obviously increased in 16 weeks old (Shi et al. 2007). In agreement with 
the literature, we observed that MAP was much higher in SHR from 10 to 31 weeks of 
age than that in normotensive age-matched WKY. Administration of ACRS resulted in 
persistently lower MAP.

The increase in pressure overload was associated with a progressive left ventricular 
hypertrophy, as reflected by increased left ventricular mass to body mass ratio (Rysä 
et al. 2005). Cerutti et al. (2006) indicated that left ventricular mass index was highly and 
positively correlated to BP in the SHR. Other investigators also observed that SHR group 
had significantly greater HMI or/and LVMI than age-matched WKY group accompa-
nied by blood pressure significantly increasing (Levick et  al. 2006; Schultz et  al. 2007; 

Table 2  Effects of  active components of  Radix Scrophulariae (ACRS) on  interstitial colla-
gen volume fraction (ICVF), perivascular collagen area to luminal area ratio (PVCA), colla-
gen types I and III volume fraction of the left ventricle in spontaneously hypertensive rats 
(SHR) and Wistar–Kyoto rats (WKY) (x̄ ± SE, n = 6)

Compared with WKY control group: ††  P < 0.01; compared with SHR control group: * P < 0.05; ** P < 0.01

Group ICVF (%) PVCA (ratio) Collage I (%) Collage III (%) I/III

WKY control 6.53 ± 4.10 0.78 ± 0.33 0.22 ± 0.20 0.06 ± 0.04 3.56 ± 2.24

WKY+ 140 mg/kg ACRS 4.29 ± 2.71 1.01 ± 0.66 0.26 ± 0.20 0.11 ± 0.07 2.89 ± 2.30

SHR control 22.55 ± 5.88†† 10.36 ± 4.38†† 7.78 ± 2.06†† 0.49 ± 0.44† 33.58 ± 26.93†

SHR+ 40 mg/kg captopril 5.72 ± 4.08** 0.92 ± 0.37** 0.15 ± 0.10** 0.11 ± 0.05 2.76 ± 3.90*

SHR+ 70 mg/kg ACRS 7.51 ± 3.35** 1.59 ± 0.52** 0.42 ± 0.31** 0.13 ± 0.04 3.97 ± 4.18*

SHR+ 140 mg/kg ACRS 6.54 ± 2.08** 0.76 ± 0.42** 0.38 ± 0.31** 0.08 ± 0.05* 6.54 ± 7.79*

SHR+ 280 mg/kg ACRS 10.23 ± 7.20** 1.21 ± 0.75** 0.48 ± 0.65** 0.07 ± 0.06* 7.38 ± 10.37*
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Fig. 3  Effects of active components of Radix Scrophulariae (ACRS) on collagen type I, type III in the interstitial 
(a) and perivascular (b) space of the left ventricle in spontaneously hypertensive rats (SHR) and Wistar–Kyoto 
rats (WKY) (Sirius red stain and polarized light, ×400). A WKY control; B WKY+ 140 mg/kg ACRS; C SHR 
control; D SHR+ 40 mg/kg captopril; E SHR+ 70 mg/kg ACRS; F SHR+ 140 mg/kg ACRS; G SHR+ 280 mg/kg 
ACRS
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Shi et al. 2007). Consistently with these reports, in the present study, SHR exhibited an 
increased LVMI and HMI accompanied by increasing blood pressure, ACRS decreased 
blood pressure, LVMI and HMI.

Left ventricular hypertrophy (LVH) is one of the major risk factors underlying cardio-
vascular morbidity and mortality, which frequently observed in essential hypertension 
(Fortuño et  al. 2003; Weber 2000). The development of LVH in hypertension is often 
regarded first as an adaptation to increased workload, while the transition to heart 
failure reflects the loss of efficacy of this process (Cerutti et  al. 2006). Cingolani et  al. 
reported that spontaneous hypertensive rats with compensated hypertrophy presented 
with a profile of compromised left ventricular diastolic function (Cingolani et al. 2003). 
In agreement with it, a progressive LVH was seen in SHR in our research, treatment with 
ACRS could obviously attenuate ventricular hypertrophy.

Histologically, the progression to heart failure is typically associated with increased 
fibrosis and disruption of normal cellular organization (Heyen et al. 2002). This leads ini-
tially to deleterious effects on diastolic function and subsequently to depressed systolic 
function due to interference with coordinated myocyte contraction. Hence, the amount 
of collagen in the myocardium seems to be a major determinant of the development of 
cardiac dysfunction in hypertension (Joseph et  al. 2002). In an experimental setting, 

Table 3  Effects of active components of Radix Scrophulariae (ACRS) on serum concentra-
tion of norepinephrine (NE), myocardium Angiotensin II and serum level of tumor necrosis 
factor α (TNF-α) concentration in spontaneously hypertensive rats (SHR) and Wistar–Kyoto 
rats (WKY) (x̄  ± SE, n = 6)

Compared with WKY control group: †  P < 0.05; compared with SHR control group: * P < 0.05; ** P < 0.01

Group NE (ng/ml) Ang II (pg/mg·prot) TNF-α (ng/L)

WKY control 0.15 ± 0.03 89.61 ± 29.51 24.95 ± 1.26

WKY+ 140 mg/kg ACRS 0.14 ± 0.01 62.75 ± 13.56 24.53 ± 0.92

SHR control 0.36 ± 0.20† 195.23 ± 113.35† 27.63 ± 1.96†

SHR+ 40 mg/kg captopril 0.16 ± 0.02* 91.07 ± 8.28* 24.11 ± 1.11*

SHR+ 70 mg/kg ACRS 0.37 ± 0.15 94.43 ± 58.96 22.89 ± 2.33**

SHR+ 140 mg/kg ACRS 0.15 ± 0.02* 71.86 ± 14.41* 24.08 ± 2.36*

SHR+ 280 mg/kg ACRS 0.18 ± 0.05* 72.79 ± 20.81* 23.04 ± 3.69*

Table 4  Effects of active components of Radix Scrophulariae (ACRS) on mRNA expression 
of collagen types I and III, angiotensin converting enzyme (ACE) and transforming growth 
factor-β1 (TGF-β1) in spontaneously hypertensive rats (SHR) and Wistar–Kyoto rats (WKY) 
(x̄ ± SE, n = 6)

Values are expressed as the relative integrated intensity, and normalized to that of the GAPDH. Compared with WKY control 
group: ††  P < 0.01; compared with SHR control group: * P < 0.05; ** P < 0.01

Group Collage I mRNA Collage III mRNA TGF-β1 mRNA ACE mRNA

WKY control 1.03 ± 0.59 1.29 ± 0.86 0.62 ± 0.37 1.20 ± 0.59

WKY+ 140 mg/kg ACRS  1.47 ± 0.60 1.28 ± 0.85 0.85 ± 0.27 1.30 ± 0.42

SHR control 4.85 ± 2.60†† 1.47 ± 0.68 1.58 ± 1.05† 5.51 ± 3.83†

SHR+ 40 mg/kg captopril 1.17 ± 0.28** 0.79 ± 0.34 0.77 ± 0.18* 1.35 ± 0.24*

SHR+ 70 mg/kg ACRS 1.39 ± 0.44** 1.32 ± 0.44 0.94 ± 0.22* 1.21 ± 0.23*

SHR+ 140 mg/kg ACRS 1.22 ± 0.51** 1.15 ± 0.51 0.60 ± 0.34* 1.25 ± 0.24*

SHR+ 280 mg/kg ACRS 1.22 ± 0.49** 1.08 ± 0.60 0.88 ± 0.18* 1.07 ± 0.20*
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PVCA/LA (perivascular collagen area-to-lumen area ratio) and the myocardial intersti-
tial collagen volume fraction (CVF) are indexes of perivascular and interstitial fibrosis, 
they were significantly increased in SHR compared with that in the WKY control (Shi 
et al. 2007). This is consistent well with our results that the interstitial and perivascular 
collagen in left ventricles was significantly increased in SHR compared with that in WKY 
rats at 31 weeks of age. And ACRS possessed the effect on maintaining a more advanta-
geous mass, PVCA and CVF, which suggested that ACRS could attenuate the myocar-
dium collagen accumulation in the SHR.

SHRs are characterized by sympathetic hyperactivity (Head 1989). There is evidence 
that the sympathetic nervous system (SNS) mediates hypertension-induced cardiac 
fibrosis and hypertrophy through α- and β-adrenergic receptors respectively. Perlini 
et  al. (2005) further demonstrated that chemical sympathectomy in hypertensive rats 
prevented cardiac fibrosis. In the present study, an increased concentration of serum NE 
was detected in SHRs, and ACRS seemed to inhibit the sympathetic nerves to release 
NE. According to the results, we deduced that ACRS may slow down or even inhibit the 
process of cardiac fibrosis and hypertrophy by reducing sympathetic hyperactivity.

An important role for the renin-angiotensin system (RAS) in promoting hyperten-
sion and related end-organ damage is well established (Shigenaga et  al. 2008). Ang II 
is the central role of the RAS. It is an octapeptide that induces multiple physiological 
responses in different cell types. In addition to its well-known vasoconstrictive effects, 
growing evidence supports the notion that Ang II may play a central role not only in 
hypertension but also in cardiovascular and renal diseases (Tamura et al. 2000). And the 
study of Varagic et al. (2008) provided evidence that Ang II mediated collagen deposition 

a b

c d

Fig. 4  Effects of active components of Radix Scrophulariae (ACRS) on phospho-specific extracellular signa 
lregulated kinase (ERK 1/2), phospho-specific c-Jun N-terminal kinase (JNK) and phospho-p38 mitogen-acti-
vated protein kinases (p38 MAPK) in spontaneously hypertensive rats (SHR) and Wistar–Kyoto rats (WKY). a 
Representative western blot analysis is shown. b Densitometric evaluation of ERK 1/2 is shown. c Densitomet-
ric evaluation of JNK is shown. d Densitometric evaluation of p38 MAPK is shown. A WKY control; B WKY+ 
140 mg/kg ACRS; C SHR control; D SHR+ 40 mg/kg captopril; E SHR+ 70 mg/kg ACRS; F SHR+ 140 mg/kg 
ACRS; G SHR +280 mg/kg ACRS. x̄ ± SE, n = 6. Compared with WKY control group, ††P < 0.01. Compared 
with SHR control group, *P < 0.05; **P < 0.01
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within the ventricles could be independent of pressure. In the present study, treatment 
with ACRS showed its importance in lowering hypertension as well as reducing Ang II 
concentration. The results indicated that the function of ACRS in antagonizing myocar-
dial remodeling correlated well with its inhibition of the RAS.

Inflammation is also an important component in the development of hypertension-
induced cardiac fibrosis (Kuwahara et  al. 2004). TNF-α is among the most important 
inflammatory cytokines, plays a harmful role in progression of ventricular remodeling 
(Kassiri et al. 2005). It can depress cardiac function directly and indirectly by induction 
of nitric oxide synthase produced by macrophages, cardiac myocytes and other cells 
(Negrusz-Kawecka 2002). Our results showed that serum TNF-α concentration in SHRs 
was obviously higher than that in the WKY control rats, treatment with ACRS decreased 
the serum TNF-α concentration significantly, suggesting that antagonizing fibrosis and 
myocardial hypertrophy by ACRS may be at least partially correlated with its decreasing 
of the TNF-α concentration in SHRs.

Classically, genetic hypertension implies that abnormal gene expression in a normal 
environment in early life results in hypertension. Solid evidence indicates that Ang II 
directly stimulates left ventricular TGF-β1, and collagen gene expression independently 
of its hemodynamic effect (Kim et al. 1995; 1996). Collagen type I and type III are major 
fibrillar collagens involved in tissue repair (Sun and Weber 1996). An association of 
TGF-β1 over-expression with cardiac fibrosis has been reported in SHR (Shiota et  al. 
2003). Some studies showed that TGF-β1 could induce an increased collagen type I and 
type III synthesis in rats (Lijnen et al. 2000). And TGF-β1 was the major growth factor 
responsible for cardiac fibrosis (Berk et al. 2007). In our study, an increased accumula-
tion of collagen type I and type III, the over-expression of collagen type I mRNA and 
TGF-β1 mRNA in SHR were significantly suppressed by ACRS as well as captopril. The 
results indicated that the function of ACRS in inhibiting cardiac fibrosis might be medi-
ated by its inhibition of TGF-β1 and collagen type I mRNA over-expression.

A number of specific candidate genes are implicated in the pathogenesis of hyperten-
sion in SHR. These include components of the renin-angiotensin system such as ACE 
(Zhang et al. 1996). Not surprisingly, the beneficial action of ACE inhibitors on target 
organ damage in the heart has been shown in a variety of clinical settings (Enseleit et al. 
2001). Chronic treatments with ACRS at doses of 70, 140, and 280 mg/kg per day for 
21 weeks were all effective in reducing the mRNA expression of ACE in SHR. It indi-
cated that the inhibitory effects of ACRS on ACE might be one of the contributing fac-
tors in restraining ventricular remodeling in SHR.

Many studies have revealed an increase of MAPK (ERKs, p38, and JNKs) during 
hypertension (Takeishi et al. 2001; Aoyagi and Izumo 2001). Growing evidence suggests 
that modulation of the complex network of MAPKs cascades should be a rewarding 
approach to the treatment of ventricular hypertrophy and HF (Luedde et al. 2006). In 
this study, we surveyed tyrosine/threonine phosphorylation of the major MAP kinases 
and the data showed that the activity of ERK1/2 was significantly increased in SHR 
compared with normotensive control. Similarly, p38 MAPK and JNK/SAPK phospho-
rylation activities were increased in SHRs compared with normotensive control. And the 
increased phosphorylation activations of ERK1/2, JNK and p38 MAPK in the SHR were 
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decreased by treatment with ACRS, which showed that ACRS played a beneficial role in 
ventricular remodeling may through alteration of MAP kinases signaling.

Conclusion
Treatment of ACRS for 21 weeks could beneficially reduce blood pressure, lower myo-
cardium hypertrophy, reduce amount of interstitial and perivascular collagen, lower the 
accumulation of collagen types I and III. The mechanism may be related to its restrain-
ing the hyperactivity of SNS and RAS, suppressing the over-expression of ACE, TGF-β1 
and collagen type I mRNA over-expression and the activation of signaling pathways of 
ERK 1/2, JNK and p38 MAPK.

Methods
Drugs and reagents

The preparation of ACRS was described as previous study (Huang et  al. 2012). Four 
main peaks shown in the HPLC chromatograms of ACRS were Harpagide, Harpagoside, 
angoroside C and cinnamic acid, account for 18.7, 13.4, 14.6, 5.7 % respectively. The rest 
main constituents were polysaccharides in ACRS.

Captopril tablets were suspended in distilled water before use (Jiangsu Huanghe River 
Pharmaceutical Co., Ltd. China. Lot Number: 090727).

Experimental schedule

Male SHR and control Wistar–Kyoto rats (WKY) (Shanghai Slac laboratory animal 
Co., Ltd. China) were housed in Laboratory Animal Center with a 12 h light/dark cycle 
and they had free access to chow and water. The temperature was at 22–24 °C and the 
humidity was at 40 ± 5 %. Sodium pentobarbital anesthesia was used in the surgery to 
minimize suffering.

All performance followed the Guide for the Care and Use of Laboratory Animals 
(1996, published by National Academy Press, 2101 Constitution Ave. NW, Washington, 
DC 20055, USA).

After 10 days of acclimatization to this facility, blood pressure was test in WKY rats 
and SHRs by tail cuff. And then SHRs were randomized divided into four groups: SHR 
model, SHR with ACRS (70,140, 280 mg/kg) and captopril (40 mg/kg), n = 8. WKY rats 
were randomized to two groups: WKY with ACRS (140 mg/kg) and WKY control, n = 8.

Then animals in every group were allowed free access to the same administered. Ani-
mals were treated with captopril or ACRS by gavage at corresponding doses daily, con-
tinued for 21 weeks. MAP was recorded every 3 weeks. Body mass (BM) was monitored 
weekly.

Calculation of left ventricular mass index

The animals were anesthetized with urethane (1.0  g/kg) intraperitoneally and blood 
sample was collected. Then the hearts were isolated and weighed. The LVMI and HMI 
were calculated by the left ventricular mass to the BM ratios and the heart mass to the 
BM (Gao et al. 2010; Huang and Chen 2013). The lower part of the left ventricular was 
frozen at −70 °C before assaying. The upper part of the left ventricular was immersed in 
10 % formaldehyde.
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Histological analysis

Myocardial segments from the upper part were imbedded in the paraffin, sectioned 
(5 mm) and stained with Sirius red. Then CVF and PVCA were calculated. Accumula-
tion of types I and III collagen in the interstitial and perivascular space of the left ventri-
cle was assessed by polarized light microscopy (Gao et al. 2010; Huang and Chen 2013).

The microscope (Olympus BX51, Japan) was used to photograph each sample slice 
(400× magnification). The image-Pro  +  6.3 analyzing software (Media Cybernetics, 
Bethesda, MD, USA) was used to analyze all photos.

ELISA analysis

Serum level of NE was determined by enzyme-linked immunosorbent assay (ELISA) kit 
(Shanghai Xitang Institute of Bioengineering, Shanghai, China).

Radioimmunoassay determination

Radioimmunoassay was used to assay TNF-α concentration in serum and Ang II con-
centration in tissue. The supernatant of homogenized tissue was obtained by centrifu-
galization (4  °C, 1780g, 15 min) TNF-α and Ang II concentrations were analyzed with 
Iodine [125I] TNF-α kit and Iodine [125I] Ang II kit (Product of Beijing North Insti-
tute of Biological Technology, China). A Coomassie Brilliant Blue Kit (Nanjing Jiancheng 
Institute of Bioengineering, China) was applied to measure protein concentrations of the 
homogenate supernatants. Serum TNF-α was expressed as concentration per milliliter 
serum sample. Tissue Ang II was expressed as per milligram protein.

Real‑time RT‑PCR determination

Analysis of mRNA expression levels for collagen types I, III, TGF-β1 and ACE were 
performed with primers designed to detect rat gene products: Collagen type I used 
primers, FWD: 5′-CCTGCCGATGTCGCTATCC-3′, and REV: 5′-TTGCCTTCGCCC 
CTGAG-3′; Collagen type III used primers, FWD: 5′-GCCTCCCAGAACATTACAT 
ACC-3′, and REV: 5′-CTGTCTTGCTCCATTCACCAG -3′; TGF-β1 used primers, 
FWD: 5′-TGGCGTTACCTTGGTAACC-3′, and REV: 5′-GGTGTTGAGCCCTTTC 
CAG-3′; ACE used primers, FWD: 5′-ATGAGGCTATTGGAGATGTTTTG-3′, and 
REV: 5′-TCCTTGGTGATGCTTCCGT-3′; GAPDH used primers, FWD: 5′-TGGCATG 
GACTGTGGTCATG-3′, and REV: 5′-TGGGTGTGAACCACGAGAAA-3′.

Real-time RT-PCR and datum analysis were carried out with realplex 7500 (Applied 
Biosysems, USA).

All data obtained with collagen types I and III, TGF-β1, ACE primers were normalized 
to the GAPDH primers, namely the relative integrated intensity was taken.

Western blotting

Western blots were measured as previously described (Huang and Chen 2013). Briefly, 
active and total form of ERK1/2, JNK and p38 MAPK accumulation were detected by 
Western blot analysis with using the following antigenes: phospho-P44/42MAPK 
(ERK 1/2) Thr202–Tyr204 (1:2000), phospho-SAPK/JNK Thr183–Tyr185 (1:1000), phos-
pho-p38 MAPK (Thr180–Tyr182) (1:1000) (Cell Signaling Technology, Beverly, MA, 
USA), anti-GAPDH (Abmart, Shanghai, China), and a goat anti-rabbit horseradish 
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peroxidase-conjugated secondary antibody (1:5000 dilution, Santa Cruz). Bands were 
visualized by means of enhanced chemiluminescence. Then NIH Image J program was 
used to quantify the results after scanning.

Statistical analysis

Results were expressed as mean ± SD. For evaluating the difference between two groups, 
the Student–Newman–Keuls test and one-way analysis were used. Statistical analysis 
was performed by SPSS 13.0 software for multiple comparisons. *(#), **(##), and ***(###) 
denote P < 0.05, <0.01 and <0.001, respectively.
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