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Background
This study explores the optimal production run time for a producer–retailer inte-
grated economic manufacturing quantity (EMQ) model with rework failures, random 
machine breakdown, and a discontinuous inventory issuing policy. The EMQ model 
employed mathematical techniques to balance the production setup cost and inventory 
holding cost in a production cycle to derive the most economic manufacturing quan-
tity that minimizes the long-run average production–inventory costs per unit time (Taft 
1918; Wagner and Whitin 1958; Nahmias 2009). The classic EMQ model implicitly 
assumes that production equipment is in perfect condition and all items produced are 
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of perfect quality. However, in real manufacturing environments, due to process dete-
rioration or other uncontrollable factors, both production of items of imperfect quality 
and machine breakdown are inevitable. Unsurprisingly, many studies have been carried 
out to enhance the classic EMQ model by addressing issues of imperfect product qual-
ity and random machine breakdowns (Barlow and Proschan 1965; Shih 1980; Bielecki 
and Kumar 1988; Grosfeld-Nir and Gerchak 2002; Inderfurth et  al. 2006; Hishamud-
din et al. 2014; Chiu and Chang 2014; Lin et al. 2014; Wu et al. 2014; Khedlekar et al. 
2014; Pal et al. 2015; Ocampo 2015; Chiu et al. 2015a, b, c). Henig and Gerchak (1990) 
conducted a comprehensive analysis of a general periodic review production/inventory 
model with variable yield. Groenevelt et al. (1992) proposed two production control pol-
icies to cope with machine breakdown. The first policy considers that the production 
of an interrupted lot will not be resumed after a breakdown (i.e., the no resumption or 
NR policy), while the second assumes that the production of an interrupted lot resumed 
immediately after production is restored and if the current on-hand inventory is below 
a certain threshold level (i.e., the abort-resume or AR policy). Wee (1993) proposed an 
economic production policy for deteriorating items with partial back-ordering. Two 
numerical examples were used to illustrate this proposed theory, and the computational 
results indicated that the policy led to a lower cost. Gopalan and Kannan (1994) exam-
ined a two-stage transfer-line production system with inspection and rework. Transient 
state characteristics were analyzed for the system, subject to an initial buffer of infinite 
capacity, inspection at both inter- and end-stages, and rework. A stochastic model was 
developed to study the system, and as a result, some explicit analytical expressions of 
system characteristics were revealed. Moinzadeh and Aggarwal (1997) investigated a 
production–inventory system with random disruptions. They proposed an (s, S) pol-
icy for the system in which the time between breakdowns is exponential, restoration 
times are constant, and excess demand is backordered. A procedure for deriving opti-
mal values from the policy was developed, and the system parameters that minimize the 
expected total cost per unit time were examined. Jabal Ameli et al. (2008) proposed a 
multi-objective integer linear programming approach for cell formation problems with 
alternative process routings and machine reliability issues. Their study aimed to simulta-
neously minimize total cost and maximize system reliability. Unlike the traditional reli-
ability evaluation approaches, the approach used in their study was to model machine 
unreliability in terms of cost and time-based effects. Using the e-constraint method as 
an optimization tool for multi-objective programming, a numerical example was pro-
vided to demonstrate the capability of the proposed model to evaluate various effects of 
reliability issues. Chiu et al. (2009) studied the optimal production run time in an EMQ 
model with imperfect rework and Poisson machine breakdowns under the abort/resume 
(A/R) control policy. In their proposed system, a random defective rate is assumed and 
all defective items are reworked at the end of regular production, and there exists a cer-
tain percentage of rework failures. The system is subject to random breakdowns and the 
A/R inventory control policy is adopted when breakdowns occur. Mathematical mod-
eling was used, and theorems related to conditional convexity and bounds of optimal 
production run times were proposed and proved in their study. A recursive searching 
algorithm was developed to locate the optimal run time that minimizes the expected 
production–inventory costs.
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Unlike the implicit assumption of continuous inventory issuing policy in the classic 
EMQ model, in real-life supply chain systems, the most commonly adopted policy for 
distribution of finished products is the discontinuous (periodic) multiple delivery policy. 
Schwarz (1973) studied a deterministic one-warehouse N-retailer inventory problem 
with a continuous review policy. Schwarz’s study aimed to determine the stocking policy 
that minimizes the average system cost. Goyal and Gupta (1989) reviewed and classi-
fied the vendor–buyer coordinated inventory models. They not only provided a scheme 
for models classification but also identified a few possible directions for future research. 
Sarker and Parija (1994) derived the optimal batch size for a production system operat-
ing under a fixed-quantity and periodic delivery policy. They studied a manufacturing 
system where raw materials were procured from vendors, and then processed and con-
verted into finished items. An integrated inventory model was proposed and analyzed 
to simultaneously determine the optimal ordering policy for raw materials and the most 
economical production batch size so that total system costs could be minimized. Hill 
(1999) determined the optimal production and shipment policy for the single-vendor 
single-buyer integrated production–inventory problem. It was assumed that a ven-
dor manufactures a product in batches at a finite rate and ships it to a customer who 
then consumes the product at a fixed rate. The objective was to determine a purchasing 
and production schedule that minimizes the overall system costs. As a result, a global 
optimal solution was derived. Viswanathan and Piplani (2001) proposed a model with 
a specific vendor–buyer coordinating discipline to analyze the benefit of supply chain 
inventories by using common replenishment epochs or time periods. A one-vendor, 
multi-buyer supply chain for a single product was analyzed under a specific strategy, 
whereby the vendor specifies common replenishment periods and requires all buyers to 
replenish only at those time periods. In return, the vendor offers a price discount to con-
vince buyers to accept this strategy. As a result, they determined the optimal replenish-
ment period and the price discount to be offered by the vendor for the proposed model. 
Giri and Maiti (2012) studied a supply chain model for a deteriorating product with 
time-varying demand and production rate. A single-vendor single-buyer two-echelon 
supply chain model was examined, whereby the buyer sells a seasonal product and its 
inventory is subject to deterioration, and the vendor’s production rate is dependent on 
the buyer’s demand rate, which is a linear function of time. Further, some nonconform-
ing items may be randomly produced during a production run. Mathematical modeling 
was used to derive the average cost function of the proposed supply chain system. An 
algorithm for finding the optimal solution was developed. Additional studies (Kreng and 
Chen 2007; Gong and Chen 2012; Glock 2012; Wee and Widyadana 2013; Chiu et  al. 
2014; Glock et al. 2014; Tseng et al. 2014; Safaei 2014; Rodger 2014) focused on various 
aspects of supply chain optimization.

To address real-life production–shipment situations, this study first extends Chiu 
et  al.’s work (2009) by incorporating a discontinuous multi-delivery policy into their 
model in lieu of a continuous policy assumption to examine situations in real supply 
chain environments, where finished products are transported to retail stores (or cus-
tomers) outside the production units. Next, the retailer’s stock holding cost is incorpo-
rated into the proposed model in the second part of the study to explicitly deal with 
situations in present-day manufacturing firms where finished products are distributed 
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to companies’ own retail stores (or regional sales offices) and stocked there for sale. 
Accordingly, two separate extended EMQ models are developed, and with the aid of 
mathematical modeling and optimization techniques, we derive the optimal production 
run times that minimize the expected total system costs, including the costs incurred in 
production units, transportation, and retail stores, for these integrated EMQ systems. 
This study intends to fill the research gap in this specific area.

Model 1: Description, modeling, and solution process
The first proposed model in this study explores the optimal production run time for an 
economic manufacturing quantity model with a discontinuous inventory issuing policy, 
random machine breakdown, and rework failures. The first model extends the work 
of Chiu et  al. (2009) by incorporating a discontinuous multi-delivery policy into their 
model in lieu of a continuous policy assumption. This enhanced model can be used to 
address the situations in real supply chain environments, where finished products are 
transported to the retail store or customer outside the production units.

Consider that a manufacturing system can produce a product at an annual production 
rate P1 and the demand rate for this product is λ units per year. The production process 
may randomly produce x portion of defective items at a rate d1, where d1 = P1x. In order 
to sustain regular operations (i.e., avoid the occurrence of shortage) (P1 − d1 − λ) > 0 
must be satisfied. All products manufactured are screened and the unit inspection cost 
is included in the unit production cost C. All nonconforming items are reworked at a 
rate of P2, and the rework process starts immediately after the completion of the regular 
process. Since 100 % of reworks are not successful, a θ1 portion (where 0 ≤ θ1 < 1) of 
reworked items fails and becomes scraps.

It is assumed that finished products can only be delivered to the retail store if the 
entire production lot is quality assured after rework. A multi-delivery policy is used for 
transporting finished items. Under such a discontinuous product issuing policy, n fixed 
quantity installments of the finished lot are delivered at a fixed interval of time during 
delivery time t ′3 (see Fig. 1). Furthermore, during production time the machine is subject 
to a random breakdown which follows a Poisson distribution. The abort/resume (A/R) 
inventory control policy is used when a breakdown takes place. Under such a policy, the 
machine goes under repair immediately after a breakdown occurs, a constant machine 
repair time is assumed, and the interrupted lot will be resumed right after the restora-
tion of machine (see Fig. 1).

In addition to the unit production cost C, other cost-related parameters used in the 
proposed modeling and analysis include the production setup cost K, a fixed cost M for 
machine repairing, unit holding cost h at the producer’s end, unit rework cost CR, hold-
ing cost h1 for each reworked item, disposal cost per scrap item CS, fixed delivery cost K1 
per shipment, unit shipping cost CT, and unit holding cost h2 at the retailer’s end. Addi-
tional notation used is listed below:

t1:	� the production time (i.e. uptime) to be determined in the proposed EMQ 
model,

t:	� production time before a random breakdown occurs,
β:	� number of breakdowns per year, a random variable which follows Pois-

son distribution,
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tr:	� machine repair time,
t
′

2:	� time needed to rework the defective items (in the case of breakdown 
occurrence),

t
′

3:	� the time needed to transport all available perfect quality items (in the 
case of breakdown occurrence),

H
′

2:	� the level of on-hand inventory in units when random breakdown takes 
place,

H
′

1:	� the level of on-hand inventory in units when regular production ends (in 
the case of breakdown occurrence),

H
′:	� the maximum level of on-hand inventory in units when regular produc-

tion ends (in the case of breakdown occurrence),
I(t):	� level of on-hand perfect quality items at time t,
Id(t):	� level of on-hand defective items at time t,
IS(t):	� level of on-hand scrap items at time t,
Q:	� production lot size per cycle,
T

′:	� cycle length (in the case of breakdown occurrence),
h3:	� unit holding cost for safety stock,
TC1(t1):	� the total production–inventory–delivery costs per cycle (in the case of 

breakdown occurrence),
E[TC1(t1)]:	� the expected production–inventory–delivery costs per cycle (in the case 

of breakdown occurrence),
t2:	� time required to rework the defective items (in the case of no breakdown 

occurrence),
t3:	� time required for transport all available perfect quality items (in the case 

of no breakdown occurrence),
H1:	� the level of on-hand inventory in units when regular production ends (in 

the case of no breakdown occurrence),
H:	� the maximum level of on-hand inventory in units when the rework pro-

cess ends (in the case of no breakdown occurrence),
TC2(t1):	� total production–inventory–delivery costs per cycle when no breakdown 

occurrence,
E[TC2(t1)]:	� the expected production–inventory–delivery costs per cycle (in the case 

of no breakdown occurrence),
T:	� cycle length (in the case of no breakdown occurrence),

Fig. 1  On-hand inventory level of perfect quality products in the extended EMQ model 1 with rework fail‑
ures, machine breakdown, and multi-delivery policy
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TCU(t1):	� the total production–inventory–delivery costs per unit time whether a 
breakdown takes place or not,

E[TCU(t1)]:	� the long-run expected production–inventory–delivery costs per unit 
time whether or not a breakdown takes place,

T:	� the cycle length whether or not a machine breakdown takes place.

Suppose t denotes time before a random breakdown taking place during production 
uptime t1, then the following two different cases must be analyzed, respectively.

Case 1: A breakdown occurs during uptime t1

In this case, t < t1. That is the time before a random breakdown taking place is shorter 
than the production uptime. In other words, a machine breakdown takes place during 
the production process. Under the AR inventory policy, the machine goes under repair 
immediately, and, once it is fixed and restored, the production of interrupted lot is 
resumed right away. The on-hand inventory level of perfect quality products at the time 
a breakdown occurs is H ′

2 (refer to Fig. 1), and the level of on-hand inventory remains 
at H ′

2 until the machine is repaired. While H ′

1 denotes the level of on-hand inventory in 
units when regular production of the remaining of interrupted lot is completed. Then, 
the reworking of defective products begins at a rate of P2 per year (see Fig. 2) and the 
maximum number of defective items per cycle is given in Eq. (1).

It is assumed that 100 % of reworks are not successful, a θ1 portion of reworked items 
fails and becomes scrap during t ′2 (see Fig. 3) and Eq.  (2) shows maximum number of 
scrap items.

Upon the completion of rework, the on-hand inventory level perfect quality products 
is H ′ (Fig. 1). Next, in product delivery time t ′3, fixed quantity of n installments of fin-
ished batch is delivered to the customer at a fixed interval of time. It can be seen from 
Fig. 1 that production cycle time T ′ is

(1)d1t1 = xQ = xP1t1

(2)θ1xQ = d2t
′

2

(3)T
′

= t + tr + (t1 − t)+ t
′

2 + t
′

3

Fig. 2  On-hand inventory level of defective products in the extended EMQ model 1
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In the case of breakdown occurrence, the total production–inventory–delivery costs 
per cycle, TC1(t1) consists of (1) the variable production cost; (2) production setup cost; 
(3) machine repair cost; (4) rework cost; (5) disposal cost for scraps; (6) fixed and the 
variable product transporting costs; (7) inventory holding cost during rework; (8) hold-
ing cost for safety stocks (i.e., stocks to prevent shortage occurrence due to a machine 
breakdown); and (9) inventory holding costs during the entire production cycle. Thus, 
TC1(t1) can be expressed as

In this study, it is assumed that x is a random variable with a known probability density 
function, thus the expected values of x are used in our analysis to take the randomness 
of x into account. By substituting all related system parameters into Eq. (4) (Chiu et al. 
2009) and with further derivations, the expected system costs per cycle for the case of 
breakdown occurrence, E[TC1(t1)] can be obtained as

Case 2: No breakdown occurs during uptime t1

In this case, t > t1. That is the time before a random breakdown taking place is longer 
than the production uptime. In other words, no breakdown occurs during the produc-
tion process (Chiu et al. 2009).

In case 2 the production cycle length is T = t1 + t2 + t3, and total production–inven-
tory–delivery costs per cycle (in no breakdown occurrence case) TC2(t1) is

(4)

TC1(t1) = C(P1t1)+ K +M + CR(t1P1x)+ CS(t1P1xθ1)+ nK1

+ CT [t1P1(1− θ1x)]+ h1
d1t1

2
t
′

2 + h3(�tr)T
′

+ h

[

H
′

1
+ d1t1

2
t1 + (H

′

2 + d1t)tr +
H

′

1
+H

′

2
(t

′

2)+
n− 1

2n
H

′

t
′

3

]

(5)

E[TC1(t1)] = K +M + nK1 + htP1g +







CP1 + CRP1E[x] + CSP1θ1E[x] + CTP1(1− θ1E[x])

+h3P1g(1− θ1E[x])−
hP1g(1− θ1E[x])

2

�

1−
1

n

�






· t1

+











hP1θ1E[x]

2
+

hP2

1
E[x]

P2
(1− E[x])+

hP2

1

2�
(1− θ1E[x])

2

�

1−
1

n

�

+
hP1

2n
(1− θ1E[x])+

hP2

1
E[x]

2P2n
(1− θ1E[x])+

h1P
2

1
E[x]2

2P2











t21

Fig. 3  On-hand inventory level of scrap items in the extended EMQ model 1



Page 8 of 21Chiu et al. SpringerPlus  (2016) 5:339 

To take randomness of defective items into account and substitute all related param-
eters in Eq. (6), and with further derivations E[TC2(t1)] can be obtained as follows:

Integration of the proposed EMQ models with and without breakdown

This study assumes a breakdown can occur randomly and it follows a Poisson distribu-
tion with mean equals to β per year. Let f(t) represent the probability density function 
of random time t before a breakdown occurs and F(t) denote the cumulative density 
function of t. Then, the expected production–inventory–delivery costs per unit time, 
E[TCU(t1)] is

The expected cycle length E[T] is

Since the number of breakdown per unit time is a random variable that follows a 
Poisson distribution with mean equal to β. The time between breakdowns obeys the 
Exponential distribution with density function f(t) = βe−βt, and the cumulative density 
function F(t) = 1− e−βt.

By substituting E[TC1(t1)], E[TC2(t1)], and E[T] into Eq. (8) and solving the integration 
of the mean time to breakdown in E[TCU(t1)], we obtain

where

(6)

TC2(t1) = C(P1t1)+ K + CR(xt1P1)+ CS(θ1xt1P1)+ nK1 + CT [t1P1(1− θ1x)]

+ h1
d1t1

2
t2 + h3(�tr)T + h

[

H1 + d1t1

2
t1 +

H1 +H

2
(t2)+

n− 1

2n
Ht3

]

(7)

E[TC2(t1)] = K + nK1 +

�

CP1 + CRP1E[x] + CSθ1E[x]P1

+ CTP1(1− θ1E[x])+ h3P1g(1− θ1E[x])

�

t1

+











hP1θ1E[x]

2
+

hP2

1
E[x]

P2
(1− E[x])+

hP2

1

2�
(1− θ1E[x])

2

�

1−
1

n

�

+
hP1

2n
(1− θ1E[x])+

hP2

1
E[x]

2P2n
(1− θ1E[x])+

h1P
2

1
E[x]2

2P2











t21

(8)E[TCU(t1)] =

{

∫ t1
0 E[TC1(t1)]f (t)dt +

∫ ∞

t1
E[TC2(t1)]f (t)dt

}

E[T ]

(9)E[T ] =

∫ t1

0

E
[

T
′
]

f (t)dt +

∫ ∞

t1

E[T ] f (t)dt =
t1P1(1− θ1E[x])

�

(10)

E[TCU(t1)] =
�

(1− θ1E[x])
·



















(K + nK1)

t1P1
+ δ1 +

δ2t1

2
+

�

M

P1
+

hg

β

��

1− e−βt1

t1

�

−hg
�

e−βt1
�

−
hg(1− θ1E[x])

2

�

1−
1

n

�

�

1− e−βt1
�



















(11)δ1 = [C + CRE[x] + CSθ1E[x] + CT (1− θ1E[x])+ h3g(1− θ1E[x])]
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and

Determining the optimal production run time

With the aim of determining the optimal production run time t∗1, we first must prove 
that E[TCU(t1)] is convex. Let w(t1) represent the following:

Theorem 1  E[TCU(t1)] is convex if 0 < t1 < w(t1).

Equation (14) shows the second derivative of E[TCU(t1)] with respect to t1.

The first term in the right-hand side (RHS) of Eq.  (14) is positive because annual 
demand λ > 0. Therefore, we obtain

With further derivations, the left-hand size (LHS) in Eq. (15) becomes

Let

then we have Eq. (16) as

(12)δ2 =









hP1E[x]

P2
(1− E[x])+

hP1

�
(1− θ1E[x])

2

�

1−
1

n

�

+ hθ1E[x]

+
h

n
(1− θ1E[x])+

hP1E[x]

P2n
(1− θ1E[x])+

h1P1E[x]
2

P2









(13)w(t1) =
2(K + nK1)β + 2

(

1− e−βt1
)

δ4
[

t21P1β
2δ3 + δ4(2+ βt1)

]

βe−βt1

(14)

d2E[TCU(t1)]

d2t2
1

=
�

(1− θ1E[x])
·













2(K + nK1)

t3
1
P1

− hg

�

1−
(1− θ1E[x])

2

�

1−
1

n

��

�

β2e−βt1
�

+

�

M

P1
+

hg

β

�

�

2
�

1− e−βt1
�

t3
1

−
2βe−βt1

t2
1

−
β2e−βt1

t1

�













(15)

if













2(K + nK1)

t31P1
− hg

�

1−
(1− θ1E[x])

2

�

1−
1

n

��

�

β2e−βt1
�

+

�

M

P1
+

hg

β

�

�

2
�

1− e−βt1
�

t31
−

2βe−βt1

t21
−

β2e−βt1

t1

�













> 0

then
d2E[TCU(t1)]

dt21
> 0

(16)if







2(K + nK1)β − t31P1βhg

�

1−
(1− θ1E[x])

2

�

1−
1

n

��

�

β2e−βt1
�

+
�

Mβ + hgP1
�

�

2
�

1− e−βt1
�

− 2t1βe
−βt1 − β2t21e

−βt1
�






> 0

(17)δ3 = hg

[

1−
(1− θ1E[x])

2

(

1−
1

n

)]

and δ4 =
(

Mβ + hgP1
)
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Therefore, Eq. (15) becomes

or

If E[TCU(t1)] is convex, then to search for the optimal production run time t∗1, we can 
set the first derivative of E[TCU(t1)] = 0 as follows:

Again, the first term in the RHS of Eq. (21) is positive, so the second term equals to 
zero. In order to find the bounds for t∗1, let

Theorem 2  t∗1L < t∗1 < t∗1U

To prove t∗1 falls within bounds, we first multiply the second term of Eq.  (21) by 
(

2P1t
2
1β

)

 and obtain

Thus

(18)if







2(K + nK1)β − t31P1βδ3

�

β2e−βt1
�

+ δ4

�

2
�

1− e−βt1
�

− 2t1βe
−βt1 − β2t21e

−βt1
�






> 0

(19)if





2(K + nK1)β + 2
�

1− e−βt1
�

δ4

− t1

�

t21P1β
2δ3 + δ4(2+ βt1)

�

βe−βt1



 > 0 then
d2E[TCU(t1)]

dt21
> 0

(20)∴

d2 E[TCU(t1)]

dt21
> 0 if 0 < t1 <

2(K + nK1)β + 2
(

1− e−βt1
)

δ4
[

t21P1β
2δ3 + δ4(2+ βt1)

]

βe−βt1
= w(t1)

(21)

dE[TCU(t1)]

dt1
=

�

(1− θ1E[x])
·



















−(K + nK1)

t21P
+

δ2

2
+ δ3

�

βe−βt1
�

+

�

M

P1
+

hg

β

�

�

−
�

1− e−βt1
�

t21
+

βe−βt1

t1

�



















= 0

(22)t∗1U =

√

2[β(K + nK1)+ δ4]

P1βδ2

(23)t∗1L = the positive root of







−δ4 ±

�

δ24 + 2P1(δ2 + 2βδ3)(K + nK1)

P1(δ2 + 2βδ3)







(24)

{(

P1βδ2 + 2P1β
2δ3e

−βt1
)

t21 +
(

2δ4βe
−βt1

)

t1 − 2
[

β(K + nK1)+ δ4
(

1− e−βt1
)]

}

= 0

(25)

t
∗
1 = the positive root of







−
�

2δ4βe
−βt1

�

±

�

�

2δ4βe−βt1
�2

−
�

4
�

P1βδ2 + 2P1β2δ3e
−βt1

��

−2
�

β(K + nK1)+ δ4
�

1− e−βt1
����

2
�

P1βδ2 + 2P1β2δ3e
−βt1

�






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In order to search for the optimal t∗1, Eq. (24) can be rearranged as

or

Because e−βt1 is the complement of the cumulative density function F(t1) = 1− e−βt1 . 
As 0 ≤ F(t1) ≤ 1, so 0 ≤ e−βt1 ≤ 1. Let e−βt1 = 0 and e−βt1 = 1 represent bounds for 
e−βt1, respectively. By substituting them into Eq. (25), we obtain

and t∗1L < t∗1 < t∗1U.
It can be seen that although the optimal t∗1 cannot be expressed in a closed form, it 

falls within the aforementioned bounds, and it can be located with the use of a proposed 
recursive searching algorithm as follows.

Since e−βt1 is the complement of cumulative density function, thus, 0 ≤ e−βt1 ≤ 1.
Let

The proposed recursive searching algorithm to find t∗1 is listed below:

1.	 Let u(t1) = 0 and u(t1) = 1 initially and compute the upper and lower bounds for t∗1, 
respectively (i.e., to obtain the initial values of [t∗1L, t∗1U]).

2.	 Substitute the current values of [t∗1L, t∗1U] into e−βt1 and calculate the new bounds 
(expressed as uL and uU) for e−βt1. Hence, uL < u(t1) < uU.

3.	 Let u(t1) = uL and u(t1) = uU, and re-compute the new upper and lower bounds for 
t∗1, respectively (i.e. to update the current values of [t∗1L, t∗1U]).

4.	 Repeat steps 2 and 3, until there is no significant difference between t∗1L and t∗1U (or 
there is no significant difference in terms of their effects on E[TCU(t∗1)]).

5.	 Stop. The optimal production run time t∗1 is obtained.

Model 2: Extension to a producer–retailer integrated system
Problem description and modeling

In the manufacturing sector, some producers of consumer goods may have their own 
retail stores or regional sales offices to promote and sell their finished products to 

(26)2
[

P1β
2δ3t

2
1 + δ4βt1 + δ4

]

(

e−βt1
)

= 2[β(K + nK1)+ δ4]−
(

P1βδ2t
2
1

)

(27)e−βt1 =
2[β(K + nK1)+ δ4]−

(

P1βδ2t
2
1

)

2
[

P1β2δ3t
2
1 + δ4βt1 + δ4

]

t∗1U =

√

2[β(K + nK1)+ δ4]

P1βδ2

t∗1L = the positive root of







−δ4 ±

�

δ24 + 2P1(δ2 + 2βδ3)(K + nK1)

P1(δ2 + 2βδ3)







u(t1) = e−βt1 =
2[β(K + nK1)+ δ4]−

(

P1βδ2t
2
1

)

2
[

P1β2δ3t
2
1 + δ4βt1 + δ4

] ∴ 0 ≤ u(t1) ≤ 1
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customers (Fig. 4). In order to address such a real life intra-supply chains situation, the 
second model of this study enhances the first model to further explore the optimal run 
time for a producer–retailer integrated EMQ model, wherein, the retailer’s stock holding 
cost is incorporated into the first model.

According to the proposed multi-delivery policy, Fig. 5 depicts the stock holding status 
at the retailer’s side for the case of breakdown taking place. Additional notations used at 
the modeling and analysis of this extended producer–retailer integrated EMQ model 2 
are listed as follows.

D:	� number of finished items (a fixed quantity) distributed to retail store per 
delivery,

I:	� number of left over items in each interval of time tn, after satisfying the 
demand in tn,

Fig. 4  Extension to a producer-retailer integrated EMQ system (model 2)

Fig. 5  On-hand Inventory level of finished products at the retailer’s side in the extended EMQ model 2 with 
breakdown occurrence
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Ic(t):	� on-hand inventory level of finished products at the retailer’s side at time t,
h2:	� unit holding cost for products stored at the retailer’s side,
TC3(t1):	� total production–inventory–delivery costs per cycle in this enhanced 

model (in the case of breakdown occurrence),
TC4(t1):	� total production–inventory–delivery costs per cycle in this enhanced 

model (in the case of no breakdown occurrence),
E[TC3(t1)]:	� the expected production–inventory–delivery costs per cycle in this 

enhanced model (in the case of breakdown occurrence),
E[TC4(t1)]:	� the expected production–inventory–delivery costs per cycle in this 

enhanced model (in the case of no breakdown occurrence),
E[TCU2(t1)]:	� the long-run expected production–inventory–delivery costs per unit 

time in this enhanced model, whether a breakdown occurring or not.

It can be seen from Fig. 5, at the retailer’s side the demand between shipments is λtn, 
the number of left over items in each interval of time tn (after satisfying the demand in 
tn) is

Total inventory holding costs on the retailer’s side with and without breakdown are 
expressed in Eqs. (29) and (30), respectively (also refer to Fig. 5):

By incorporating the retailer’s holding costs into the original models with and without 
breakdown, respectively (i.e., into Eqs.  (4) and (6) in “Model 1: Description, modeling, 
and solution process” section), we obtain

To take the randomness of defective items into account and substitute all related 
parameters into Eqs.  (31) and (32), and with further derivations, we obtain E[TC3(t1)] 
and E[TC4(t1)] as

(28)I = D − � tn

(29)h2

[

n
(D − I)

2
tn +

n(n+ 1)

2
Itn +

nI

2

(

t1 + tr + t
′

2

)

]

(30)h2

[

n
(D − I)

2
tn +

n(n+ 1)

2
Itn +

nI

2
(t1 + t2)

]

(31)TC3(t1) = TC1(t1)+ h2

[

n
(D − I)

2
tn +

n(n+ 1)

2
Itn +

nI

2

(

t1 + tr + t
′

2

)

]

(32)TC4(t1) = TC2(t1)+ h2

[

n
(D − I)

2
tn +

n(n+ 1)

2
Itn +

nI

2
(t1 + t2)

]

(33)

E[TC3(t1)] = E[TC1(t1)]+ h2

�

P1g(1− θ1E[x])

2

��

1−
1

n

�

t1

+ h2

�

P1(1− θ1E[x])

2

�









P1(1− θ1E[x])

�n

+

�

1−
1

n

��

1+
P1E[x]

P2

�









t21
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Integration of producer–retailer integrated models with and without breakdown

As stated in section “Integration of the proposed EMQ models with and without 
breakdown”, in the proposed study a breakdown can occur randomly and the mean 
time to machine breakdowns obeys an exponential distribution with density function 
f (t) = βe−βt, and its cumulative density function F(t) = 1− e−βt. Hence, the expected 
production–inventory–delivery costs per unit time, E[TCU2(t1)] is

By substituting E[TC3(t1)], E[TC4(t1)], and E[T] into Eq. (35) and solving the integra-
tion of the mean time to breakdown in E[TCU2(t1)], we obtain

where δ1 and δ2 are provided in Eqs. (11) and (12), and let δ5 is denote the following

Determining the optimal production run time

Before determining the optimal production run time t∗1, we must first prove that 
E[TCU2(t1)] is convex. Let π(t1) represent the following:

Theorem 3  E[TCU2(t1)] is convex if 0 < t1 < π(t1).

Equation (39) shows the second derivative of E[TCU2(t1)] with respect to t1.

(34)E[TC4(t1)] = E[TC2(t1)]+ h2

�

P1(1− θ1E[x])

2

�









P1(1− θ1E[x])

�n

+

�

1−
1

n

��

1+
P1E[x]

P2

�









t
2

1

(35)E[TCU2(t1)] =

{

∫ t1
0 E[TC3(t1)]f (t)dt +

∫ ∞

t1
E[TC4(t1)]f (t)dt

}

E[T ]

(36)

E[TCU2(t1)] =
�

(1− θ1E[x])
·



















(K + nK1)

t1P1
+ δ1 +

δ2t1

2
+ δ5t1 +

�

M

P1
+

hg

β

��

1− e−βt1

t1

�

− hg
�

e−βt1
�

− (h− h2)

�

g(1− θ1E[x])

2

�

1−
1

n

��

�

1− e−βt1
�



















(37)δ5 =
h2(1− θ1E[x])

2

[

P1(1− θ1E[x])

�n
+

(

1−
1

n

)(

1+
P1E[x]

P2

)]

(38)π(t1) =
2(K + nK1)β + 2

(

1− e−βt1
)

δ4
[

t21P1β
2δ6 + δ4(2+ βt1)

]

βe−βt1

(39)

d2E[TCU2(t1)]

d2t2
1

=
�

(1− θ1E[x])












2(K + nK1)

t3
1
P1

+ (h− h2)
g(1− θ1E[x])

2

�

1−
1

n

�

�

β2e−βt1
�

− hg
�

β2e−βt1
�

+

�

M

P1
+

hg

β

�

�

2
�

1− e−βt1
�

t3
1

−
2βe−βt1

t2
1

−
β2e−βt1

t1

�












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The first term in the RHS of Eq. (39) is positive because annual demand λ > 0. There-
fore, we have

With further derivations, the left-hand side (LHS) of Eq. (40) becomes

Let

Then Eq. (40) becomes

or

If E[TCU2(t1)] is proven to be convex, then the optimal production run time t∗1 can be 
solved by setting the first derivative of E[TCU2 (t1)] = 0.

Since the first term in the RHS of Eq. (44) is positive, and so the second term is equal 
to zero. In order to find the bounds for t∗1, let

(40)

if













2(K + nK1)

t31P1
+ (h− h2)

�

g(1− θ1E[x])

2

�

1−
1

n

��

�

β2e−βt1
�

− hg
�

β2e−βt1
�

+

�

M

P1
+

hg

β

�

�

2
�

1− e−βt1
�

t31
−

2βe−βt1

t21
−

β2e−βt1

t1

�













> 0

then
d2E[TCU2(t1)]

dt21
> 0

(41)

if







2(K + nK1)β − t31P1β(h− h2)

�

g(1− θ1E[x])

2

�

1−
1

n

��

�

β2e−βt1
�

− t31P1βhg
�

β2e−βt1
�

+
�

Mβ + hgP1
�

�

2
�

1− e−βt1
�

− 2t1βe
−βt1 − β2t21e

−βt1
�






> 0

δ6 =

{

(h− h2)

[

g(1− θ1E[x])

2

(

1−
1

n

)]

+ hg

}

and recall δ4 =
(

Mβ + hgP1
)

,

(42)if





2(K + nK1)β + 2
�

1− e−βt1
�

δ4

− t1

�

t21P1β
2δ6 + δ4(2+ βt1)

�

βe−βt1



 > 0 then
d2E[TCU2(t1)]

dt21
> 0

(43)
d2 E[TCU2(t1)]

dt21
> 0 if 0 < t1 <

2(K + nK1)β + 2
(

1− e−βt1
)

δ4
[

t21P1β
2δ6 + δ4(2+ βt1)

]

βe−βt1
= π(t1)

(44)
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
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




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


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�
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


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




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(45)t∗1U =

√

2[β(K + nK1)+ δ4]

P1β(δ2 + 2δ5)
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Theorem 4  t∗1L < t∗1 < t∗1U

Please refer to the similar proof as that for Theorem 2 (presented in “Model 1: Descrip-
tion, modeling, and solution process” section).

Upon showing that t∗1 falls within the upper and lower bounds, by multiplying the sec-
ond term of Eq. (44) by 

(

2P1t
2
1β

)

 one has

With further rearrangement, one obtains

Because e−βt1 is the complement of the cumulative density function F(t1) = 1− e−βt1 . 
As 0 ≤ F(t1) ≤ 1, so 0 ≤ e−βt1 ≤ 1. Let e−βt1 = 0 and e−βt1 = 1 represent the upper 
and lower bounds of e−βt1, respectively. Then, by applying the proposed recursive 
searching algorithm provided at the end of section “Model 1: Description, modeling, and 
solution process”, we can find the optimal production run time t∗1.

Numerical Examples
Numerical demonstration of proposed EMQ model 1

This section uses the same numerical example as in Chiu et al. (2009) to provide a com-
parison for readers. The following values are used for the corresponding system variables:

β	 �Poisson breakdown rate with a mean of 0.5 per year,
M	 fixed machine repair cost of $500 per breakdown,
g	 machine repair time (tr) of 0.018 year,
λ	 demand rate of 4000 items per year,
P1	 production rate of 10,000 items per year,
x	 uniform distribution nonconforming rate over the range [0, 0.2],
K	 setup cost of $450 per cycle,
C	 unit manufacturing cost of $2,
h	 holding cost of $0.6 per item per unit time,
P2	 rework rate of 5000 items per year,
CR	 unit rework cost of $0.50 per product per year,
h1	 holding cost of $0.80 for each reworked item,
θ1	 rework failure rate of 0.1,
CS	 unit disposal cost of $0.3 for scrap items,
K1	 fixed transportation cost of $90 per delivery,
n	 number of deliveries per cycle: 4,
CT	 variable delivery cost of $0.001 per product shipped

(46)
t∗1L = the positive root of







−δ4 ±

�

δ24 + 2P1(K + nK1)(δ2 + 2δ5 + 2βδ6)

P1(δ2 + 2δ5 + 2βδ6)







(47)

{[

P1β(δ2 + 2δ5)+ 2P1β
2δ6e

−βt1
]

t
2

1 +
(

2δ4βe
−βt1

)

t1 − 2
[

β(K + nK1)+ δ4
(

1− e
−βt1

)]

}

= 0

(48)e−βt1 =
2[β(K + nK1)+ δ4]− [P1β(δ2 + 2δ5)]t

2
1

2
[

P1β2δ6t
2
1 + δ4βt1 + δ4

]
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To test for the convexity of E[TCU(t1)] (Theorem  1), we can apply the upper 
and lower bounds of t∗1 (i.e., Eqs.  (22) and (23)) to Eq.  (13), and obtain that 
t∗1U =  0.4595 < w(t∗1U ) =  2.87230, and t∗1L =  0.3056 < w(t∗1L) =  2.62608. Therefore, the 
expected costs function [TCU(t1)] is convex.

Next, to find the optimal production run time t∗1, we substitute t∗1U and t∗1L into Eq. (10), 
and find that E[TCU(t∗1U)]  =  $10,417.21 and E[TCU(t∗1L)]  =  $10,323.69, respectively. 
Since the optimal run time t∗1 falls within the bounds of t∗1L and t∗1U, by applying the pro-
posed searching algorithm, we find that t∗1 = 0.3320 years and that the optimal system 
cost E[TCU(t∗1)] = $10,317.27. Figure 6 depicts the effect of variations in production run 
time t1 on the expected system cost E[TCU(t1)]. Table 1 exhibits the step-by-step itera-
tions of the proposed searching algorithm.

The proposed EMQ-based model 1 is intended to address the effect of discontinuous 
multi-delivery policy on the EMQ model with machine breakdown and rework failures. 
For this reason, sensitivity analyses of variations in the fixed transportation cost and 
their effects on the expected system cost E[TCU(t∗1)] and on the production run time t∗1 
are carried out.

The results indicate that, as the fixed transportation costs K1 (or the ratio of K1/K) 
increase, the production run time t∗1 increases significantly (as illustrated in Fig. 7) along 
with the expected system cost E[TCU(t∗1)] (see Fig. 8).

Fig. 6  The effects of variations in the production run time t1 on E[TCU(t1)] in the extended EMQ model 1

Table 1  Iterations of  the proposed searching algorithm for  t∗
1

 for  the extended EMQ  
model 1

β Step # t
∗

1U
uL =  
e
−βt1U

t
∗

1L
uU =  
e
−βt1L

Difference 
between  
t
∗

1U
 and t∗

1L

[U]E[TCU 
(t∗
1U

)]
[L]E[TCU 
(t∗
1L

)]
Difference 
between  
[U] and [L]

0.5 Initial – 0.0000 – 1.0000 – – – –

1st 0.4595 0.7947 0.3056 0.8583 0.1539 $10,417.21 $10,323.69 $93.52

2nd 0.3407 0.8434 0.3301 0.8479 0.0106 $10,317.90 $10,317.30 $0.60

3rd 0.3326 0.8468 0.3318 0.8472 0.0008 $10,317.28 $10,317.27 $0.01

4th 0.3321 0.8470 0.3320 0.8471 0.0001 $10,317.27 $10,317.27 $0.00

5th 0.3320 0.8471 0.3320 0.8471 0.0000 $10,317.27 $10,317.27 $0.00
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Numerical demonstration of proposed EMQ model 2

This subsection provides a numerical example to explain the proposed producer–retailer 
integrated EMQ model 2. First, we assume an extra parameter-unit holding cost on the 
retailer’s side h2 = $1.50. By applying Eqs. (45) and (46), we obtain that t∗1U = 0.2848 and 
t∗1L = 0.1951, respectively. Then, we use them to test for the convexity of the system cost 
E[TCU(t∗1)] (Theorem 3) and find that t∗1U < π(t∗1U) = 2.5894 and t∗1L < π(t∗1L) = 2.4511. 
Hence, the system cost function [TCU(t1)] is convex.

Once the convexity of [TCU(t1)] is proven, we apply the proposed recursive algorithm 
(Theorem 4) to search for the optimal run time t∗1 over the interval [t∗1L, t∗1U]. By substi-
tuting t∗1U and t∗1L in Eq.  (36), we obtain the initial values of E[TCU(t∗1U)] = $11,642.46 
and E[TCU(t∗1L)] = $11,481.07. Then, by further applying the algorithm (as provided at 
the end of “Model 1: Description, modeling, and solution process” section), we find that 
t∗1 =  0.2051  years and E[TCU(t∗1)] =  $11,477.27. The step-by-step iterative results are 
shown in Table 2.

A further analysis on the behavior of the system costs E[TCU(t1)] related to the pro-
duction run time t1 is depicted in Fig.  9. It shows that, by simply applying the result 
derived from the second EMQ model, the management of such a producer–retailer 

Fig. 7  The effects of variations in the K1/K ratios on the optimal t∗
1
 in the extended EMQ model 1

Fig. 8  The effects of variations in the K1/K ratios on the optimal E[TCU(t∗
1
)] in the extended EMQ model 1
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integrated system can help realize cost savings of $359.00 (or 3.13 % over the total sys-
tem costs) as compared to the result from the EMQ model 1.

The purpose of the proposed EMQ-based model 2 is to explore the optimal run time 
t∗1 for a producer–retailer integrated EMQ model and to study the effect of the retailer’s 
holding costs on the replenishment decision. For this reason, sensitivity analyses of vari-
ations in h2 (or the ratio of h2/h) and their effects on t∗1 and the expected system cost 
E[TCU(t∗1)] are performed (see Figs. 10, 11).

The figures show that, as the retailer’s holding costs h2 (or the ratio of h2/h) increase, 
the optimal production run time t∗1 decreases and the expected cost E[TCU(t∗1)] 

Table 2  Iterations of  the proposed searching algorithm for  t∗
1

 for  the extended EMQ  
model 2

β Step # t
∗

1U
uL =  
e
−βt1U

t
∗

1L
uU =  
e
−βt1L

Difference 
between  
t
∗

1U
 and t∗

1L

[U] E[TCU 
(t∗
1U

)]
[L] E[TCU 
(t∗
1L

)]
Difference 
between  
[U] and [L]

0.5 Initial – 0.0000 – 1.0000 – – – –

1st 0.2848 0.8673 0.1951 0.9071 0.0898 $11,642.46 $11,481.07 $161.39

2nd 0.2086 0.9009 0.2046 0.9027 0.0040 $11,477.72 $11,477.28 $0.44

3rd 0.2052 0.9025 0.2051 0.9026 0.0001 $11,477.28 $11,477.27 $0.01

4th 0.2051 0.9025 0.2051 0.9025 0.0000 $11,477.27 $11,477.27 $0.00

Fig. 9  The behavior of E[TCU2(t1)] and t1 in the extended EMQ model 2

Fig. 10  The effects of variations in the h2/h ratios on the optimal t∗
1
 in the extended EMQ model 2
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increases. For management of the producer–retailer integrated system, the results of 
these sensitivity analyses can provide helpful information during the decision-making 
process, by offering insights into the effects of various inventory-holding costs in differ-
ent retail stores.

Conclusions
In this study, two extended EMQ-based models with a discontinuous product issuing 
policy, random machine breakdown, and rework failures are developed. Various real 
conditions in the production process, end-product delivery, and intra-supply chains 
such as a producer–retailer integrated scheme are examined. With the aid of math-
ematical modeling and optimization techniques, we derive the optimal replenishment 
run time decision and reveal various important factors for the system parameters of the 
studied models (refer to Figs. 6, 7, 8, 9, 10, 11 as examples).

The obtained results can help production planners determine the optimal production 
run time in an intra-supply chain situations where finished products are distributed to 
companies’ own retail stores or regional sales offices and stocked there for sale. An inter-
esting area for future study would be the effect of variable production rates on these 
models.
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