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Background
With the rapid development in internet technology and multimedia technology, multi-
media communication has become more and more important. Therefore, image encryp-
tion has become an increasingly serious issue and urgently needed (Ye and Wong 2013). 
However, traditional encryption algorithms, such as RSA, DES and IDEA, are not suit-
able for image encryption due to image’s intrinsic properties such as bulky data capac-
ity, strong redundancy and strong correlations among adjacent pixels (Wang et al. 2012; 
Chen et al. 2013; Coppersmith 1994).

Chaotic system has many important properties, such as unpredictability, similar ran-
domness, aperiodicity, sensitive dependence on initial conditions and parameters, these 
properties make chaotic systems become popular in image encryption (Huang 2012; 
Wang and Guo 2014; Zhang and Zhao 2014; Zhang and Liu 2011; Hua et al. 2015; Tong 
et al. 2015; Hussain and Shah 2013). Among all the chaotic encryption image algorithm, 
the low-dimensional chaotic map are always used for its easily implement, such as 
logistic map. However, some common weaknesses of the logistic map, including rela-
tively small key space and uneven distribution of sequences, et al, bring some security 
risks for encryption. On the other hand, for a deterministic chaotic system, the chaos 
behaviors can be discerned by using some methods in chaos theory. Once we find some 
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information about the chaotic system, we can use such information to help us finding 
the secret key. In many chaotic ciphers, such as Kanso and Smaoui (2009), Zhou and 
Liao (2012), Sun et  al. (2010), Pareek et  al. (2005), Wong et  al. (2003), Liu and Wang 
(2010), Wang et  al. (2012), Patidar et  al. (2010), Gonzalez and Hernandez (2013), the 
ciphertext directly depends on the chaotic orbit of a single chaotic system, the orbit 
sequence comes to be stationary, so the extraction of such information may be possi-
ble by using some chaos theory methods such as phase space reconstruction. In Short 
(1994), short use the phase space reconstruction method, has successfully attacked 
almost all the low-dimensional chaotic systems. Wang and Luan (2013) propose a three-
dimensional coupled logistic maps to overcome the weaknesses of logistic map, however, 
the system is still deterministic, and is still under the risk of being attacked by phase 
space reconstruction.

As we know, varying the parameters can disrupt the phase space of a chaotic system, 
and improve the security to resist the phase space reconstruction attack. Some vary-
ing parameter techniques have been proposed, e.g., Murillo-Escobar et al. (2015) use 32 
hexadecimal digits to vary the parameter and initial value of logistic map, and the pro-
posed system can avoid the small key space of low dimensional chaotic systems. This 
varying technique is given by 32 fixed hexadecimal digits, which is not that secure. Using 
a prediction technique based on wavelet neural network and multiwavelets neural net-
work can predict the parameter-varying chaotic system whose parameters are varying 
in a simple way (Xiao and Gao 2006). Wang et al. (2009) use the generated sequences by 
logistic map to control three kinds of typical two-dimensional chaotic maps, but do not 
show the performances of their parameter-varied chaotic maps.

Therefore, in order to improve the weaknesses of logistic map and resist the phase 
space reconstruction attack, we propose an image encryption algorithm based on logis-
tic map with varying parameter. The varying technique is based on the zero-mean logis-
tic map, which can make the parameter varying in a random-like way. We show that 
the parameter-varied logistic map can cure the weaknesses of logistic map and is capa-
ble to resist phase space reconstruction. Furthermore, we use a dynamical algorithm in 
our encryption algorithm. Our encryption algorithm is related to the plaintext, which 
can resist known and chosen-plaintext attacks. The experimental results show that the 
proposed algorithm is with high security, and can be competitive to other proposed 
algorithms.

The rest of this paper is organized as follows. In “Shuffling algorithm” section, a shuf-
fling algorithm based on parameter-varied logistic system is described. We show that 
the parameter-varied logistic system can cure the common weaknesses and is capable to 
resist phase space reconstruction. “Dynamical encryption algorithm” section introduce 
a dynamical algorithm for the image encryption. The experimental results, analysis and 
comparison are shown in “Experimental analysis” section. Finally, “Conclusion” section 
concludes the paper.

Shuffling algorithm
In this section, we propose a shuffling method based on parameter-varied chaotic 
map. Perhaps, the one-dimensional maps are the simplest mathematical objects to 
display chaotic behavior (Lasota and Mackey 1994). The logistic maps are one kind of 
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one-dimensional maps, which were described in May (1976) and have already been 
widely used in image encryption

here, a is the parameter of logistic map, xi = f(i)(x0) ∈ I, i = 0, 1, 2,… and f: I → I, where 
I denotes an interval. For 3.5699 < a ≤ 4, Eq.  (1) turns to be chaotic. Using this func-
tion, we can obtain a real-valued sequence by iteration of an initial value x0. Since some 
researches show that the sequences generated by logistic map are not secure with some 
weaknesses (Wang and Luan 2013), including relatively small key space, an uneven dis-
tribution and easily be attacked by phase space reconstruction, therefore, we use the fol-
lowing parameter-varying logistic map in our algorithm.

here, ak is the varied parameter, M is the cardinality of the parameter set. We use the fol-
lowing zero-mean logistic map to vary the parameter ak

Divide the interval [−1, 1] into M sub-intervals τi, i = 0, 1, …, M − 1. Denote τi =   
[ti, ti+1), i = 0, 1, …, M − 2, and τM−1 = [tM−1, tM], where

Then, α = {τ0, τ1, …, τM−1} is a finite measurable partition of I. Denote a correspond-
ence S: I → {0, 1, 2, …, M − 1} from the set I to the set {0, 1, 2, …, M − 1}. For any uk, 
define

here s(uk) is the symbol representation of the real number uk according to the partition 
α. Then, the generated integer sequence is denoted as {sk} and can be proved to be uni-
formly distributed in set {0, 1,…, M - 1} (Hu et al. 2004). Let the parameter set be {c1, 
c2,…, cM}, we use the sequence {sk} to vary the parameter a as

Then, the parameter ak of Eq. (2) is varying chaotic in the set {c1, c2,…, cM}. Let n be the 
steps of iteration with each parameter ak, we can generate the chaotic binary sequences 
by using the following algorithm.

Figure 1 shows the main frame of our pseudorandom bit generator. As we seen, the 
number M of different values of the parameter and the iteration step n for each param-
eter are two important parameters in our parameter-varied logistic map. Studies show 
that the logistic map can be reconstructed with delay time 1 and embedding dimension 
3 (Han et  al. 2015). For each parameter, if we don’t generate enough data, the recon-
struction will fail. Therefore, we have that n < 3 is more suitable. In this paper, we choose 

(1)xi+1 = f (xi) = axi(1− xi)

(2)xi+1 = fk(xi) = (106 − 1) · akxi(1− xi)mod 1, k = 1, 2, . . . ,M

(3)uk+1 = 1− 2u2k (−1 ≤ uk ≤ 1)

(4)ti = − cos

(

k

M
π

)

(5)s(uk) = i, if uk ∈ τi

(6)ak = csk+1

(7)bi =

{

0, xi ≤ 0.5

1, xi > 0.5
i = 0, 1, . . .
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n =  1, which can be regarded as a well-known random logistic map. Obviously, the 
larger the number M is, the more kinds of iterative rule has. However, it is impossible to 
choose M to be infinite. In order to determine the value M, we use approximate entropy 
(ApEn) to evaluate the complexity of the generated sequences. Before this experiment, 
we first calculate the ApEns of sequences generated by different parameter ak in Fig. 2, 
which indicates that the generated sequence has approximately the same complexity 
with different parameter. The ApEns with different M is shown in Fig. 3. From Fig. 3 we 
have that, when M is close to 9, the complexity approximately remains the same. As the 
complexity has almost no relation to the value of parameter, thus, is only influenced by 
the number of different parameters. Therefore, in this paper, we choose M = 9.

Next, we show that our logistic map with varying parameter can improve the weak-
nesses of logistic map. Firstly, the initial values x0, u0 and nine different parameters  

f1                            f2             ...       fj+1        ... 

{xi}:   x0 x1 x2  ...  xn-1,  xn  xn+1 ...  x2n-1,  ...  , xjn  ...  x(j+1)n-1,  ...  

Eq. (7)

{bi}:   s0 s1 s2  ...  sn-1,  sn  sn+1 ...  s2n-1,  ...  , sjn  ...  s(j+1)n-1,  ... 

Fig. 1  The output of logistic map with varying parameter

Fig. 2  The ApEns of logistic map with different parameters

Fig. 3  The ApEns of logistic map with different M
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a1,…, a9 can be selected as the secret keys, which has greatly improved the key space 
of logistic map. Then, we have that the distribution of the generated sequences of 
our logistic map with varying parameter is uniform. We take x0 =  0.1, u0 =  0.2 and 
ak = 3.9 + 0.01*k, k = 1, 2,…, 9 as an example, the distribution of the generated sequence 
is shown in Fig.  4. Furthermore, we would show that our chaotic map can resist the 
phase space reconstruction. There are two key parameters in the phase space recon-
struction, delay time and embedding dimension. By using auto-correlation function and 
false neighbor method, we have the optimal delay time be 1 and the embedding dimen-
sion be 3. We use use these two parameters to reconstruct the phase space in Fig.  5. 
From Fig.  5 we have that the reconstructed phase space has a significant structure of 
logistic map, while for the logistic map with varying parameter, the reconstructed phase 
space is disordered with no significant structure. Thus, the logistic map with varying 
parameter can resist the phase space reconstruction. Moreover, for other delay time and 
embedding dimension, the phase space is still disordered with no significant structure, 
which we do not repeat it here. Finally, we discuss the stable and unstable manifolds 
proposed in (Ragulskis and Navickas 2011) of our logistic map with varying parameter. 
For the logistic map, (Ragulskis and Navickas 2011) shows that the misplacement of the 

Fig. 4  The distribution of the generated sequence

Fig. 5  Reconstructed phase space of (a) logistic map (b) logistic map with varying parameter
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initial condition could potentially lead to the non-asymptotic convergence to a finite 
length periodic orbit, which makes the logistic sequence weak to be used in encryption. 
As (Ragulskis and Navickas 2011) shown, the initial conditions leading to the period 
solution in different forward iterations with different parameters are all different. Thus, 
our logistic map with varying parameter can naturally overcome such weakness. If the 
value of xi falls into the set which will lead to a period solution after several iterations 
with fixed parameter a, the generated sequence will jump out from the period solution 
because of the varying of parameter a, as well as the initial conditions leading to the 
period solution with different parameters are different.

Now we can introduce the shuffling algorithm. Let the size of the gray image g is p × q, 
and g(x, y) is the value of pixel at the xth row and yth column of the plain image. Reshape 
the plain image into one-dimensional array g(i), i = 1, 2, …, p × q. By using the binary 
sequence {bi}, we can shuffle the image.

Set L, R, Z be three empty arrays. Begin with i = 1, add 1 every time, and end with 
i = p × q. If si = 1, g(i) is put into array L in sequence. If bi = 0, g(i) is put into array R in 
sequence. Merge L and R into the array Z. If round T is odd, put L in front of R, else, put 
R in front of L. Finally, change the array Z into two-dimensional matrix G with p × q. 
Then the image G is the shuffled image. This method is first proposed in (Wang and Guo 
2014).

Dynamical encryption algorithm
We use the following dynamical algorithm to encrypt the shuffled image G. The steps are

(1)  Initialization: Denote the initial code book as follow. 

 here, B0(i) = bi(0), and {bi(0)} is an arbitrary permutation from 1 to 2N.
(2)	 Code transformation: Consider the array Z(i), change Z(i) into binary representa-

tion, Z(i) = (Zi1Zi2…ZiN)2. Denote qi = 2α (α = Zi1Zi2Zi3), and wi = 8*β (β = Zi4Zi5…
ZiN). Use the following two algorithms R(·) and C(·) to transform the code book. 

 

Then Bi+1 = Bi(C(w)R(q))−1.
(3)  Search the code book: For any driven element Z(i), we have k(i) = bZ(i)(i);
(4)  Stop command: If i ≠ NULL, then i =  i + 1, back to step 2); Otherwise, stop the 

algorithm.

(8)B0 =

(

1 2 · · · 2N

b1(0) b2(0) · · · b2N (0)

)

(9)

R(q) =

�

1 2 · · · M

k1 k2 · · · kM

�

, kd =







d, d ∈ [1, q]

d + q −M/2, d ∈ [M/2+ 1,M/2+ q]

q + d, d ∈ [q + 1,M/2] ∪ [M/2+ 1+ q,M]

(10)C(w) =

(

1 2 · · · M

k1 k2 · · · kM

)

, kd =

{

M − 1− w + d,

d − w − 1,

d ∈ [1,w + 1, ]

d ∈ [w + 2,M]
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Figure 6 shows the main frame of our dynamic algorithm.
The shuffled array {Z(i)} is used as the driven sequence. Change the array {k(i)} into 

two-dimensional matrix G’ by sequential scanning. The image G’ is the ciphered image. 
In this encryption algorithm, the initial values x0 and u0, different parameters a1,…, a9, 
and the initial code book can be selected as the secret keys. Both shuffling and dynami-
cal encryption algorithm are reversible, thus, the decryption algorithm is just the inverse 
process of the encryption algorithm with using the same secret keys.

Experimental analysis
In our experiments, we select the gray-scale image “Lena.bmp” sized 256 × 256 as the 
plain image. Choose key parameters ak = {3.991, 3.992, 3.993, 3.994, 3.995, 3.996, 3.997, 
3.998, 3.999}, T = 1, and the initial code book as

Figure 7 shows the encryption effect of each step in the proposed method. Further-
more, we use several security tests to show the good performances of our algorithm.

Histogram of the image

The distribution of the ciphered image is a major concern. Here, we use the histogram 
to show the distribution of the plain image and the cipher image. From Fig. 8 we know 

B0 =

(

1 2 · · · 2N

1 2 · · · 2N

)

.

Fig. 6  The main frame of our dynamic algorithm

Fig. 7  a Plain image, b Shuffled image when T = 2; c Ciphered image
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that the proposed scheme results in very flat distributions of ciphered images, which can 
resist cipher-only attack.

Information entropy analysis

Information entropy is the most significant measure to disorder, or unpredictability. The 
information entropy can be calculated as

here, M is the total number if symbols, and p(mi) is the probability of symbol mi. For a 
random image with 256 gray levels, M = 256, the entropy should ideally be 8.

The entropies of plain image and ciphered image are calculated. The results are shown 
in Table 1. From Table 1 we know that the entropies of the ciphered image produced by 
our algorithm are very close to the value of 8, which means that the ciphered images are 
close to a random source, and performs better than the algorithms in Wang and Guo 
(2014), Zhou and Liao (2012) and Sun et al. (2010).

Sensitivity analysis

In order to resist differential analysis, the cipher text should be sensitive to both plain 
text and secret key.

H(m) = −

M
∑

i=1

p(mi) log2 p(mi)

Fig. 8  Histogram of the images a Plain image, b Ciphered image

Table 1  Information entropy of the ciphered images

Different algorithms H (m)

Our algorithm with T = 1 7.9995

Our algorithm with T = 2 7.9994

Our algorithm with T = 3 7.9995

Ref (Wang and Guo 2014) 7.9977

Ref. (Zhou and Liao 2012) 7.9966

Ref. (Sun et al. 2010) 7.9965
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Plaintext sensitivity

The Number of Pixels Change Rate (NPCR) and Unified Average Changing Intensity 
(UACI) are commonly used to evaluate the sensitivity to plain text. For two images 
x = {x1, x2, …, xn} and y = {y1, y2, …, yn}, the NPCR and UACI are defined as follows

here, D(xi, yi) = 0 if xi = yi and D(xi, yi) = 1 if xi ≠ yi. For the gray image, the ideal value 
of NPCR and UACI are 0.9961 and 0.3346, respectively.

We randomly change only 1 bit in the original plain image, and use the same secret 
key to encrypt the modified image and the original image. Then we calculate their NPCR 
and UACI values. The results are shown in Table 2.

From Table 2 we find that both the NPCR and UACI value are close to the ideal value 
when shuffling round T > 1. This means that the proposed scheme can effectively resist 
the differential attack and chosen-plaintext attack.

Key sensitivity

We test the sensitivity to secret key using one of the keys that is a little different from the 
original one. As we shown, the initial values x0 and u0, different parameters a1,…, a9, and 
the initial code book can be used as the secret key. We decrypt the encrypted image with 
x0 be different with 10−14, the decrypted image is shown in Fig. 9a. The decrypted image 

NPCR =
1

n

n
∑

i=1

D(xi, yi)

UACI =
1

n

n
∑

i=1

|xi − yi|

255

Table 2  NPCR and UACI when T takes different values

Round T NPCR UACI

1 0.9949 0.3156

2 0.9971 0.3398

3 0.9963 0.3371

Fig. 9  Key sensitivity analysis. a decrypted image with x0 be different with 10−14 b decrypted image with u0 
be different with 10−14 c decrypted image with a1 be different with 10−14 d decrypted image by randomly 
exchanging two codes in the initial code book
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with u0 and a1 be different with 10−14 is shown in Fig. 9b, c, respectively. Furthermore, 
randomly exchange two codes in the initial code book, the decrypted image is shown 
in Fig. 9d. From Fig. 9 we can see that all the decrypted images can not be recognized, 
which indicates that the secret keys are highly sensitive.

Key space

The key space should be large enough to withstand attacks. In our proposed encryption 
algorithm, the initial values x0, u0, the varied parameters ak and the initial code book can 
be selected as secret keys. Let the largest precision be 10−14, the key space is about

On the other hand, the experimental results show that our scheme is highly sensitive 
to the secret key. Therefore, The key space of our algorithm is much larger than 2128, and 
is also larger than 2160 of (Wang and Guo 2014) and 2140 of (Tong et al. 2015), under the 
same precision, which concludes that our algorithm can sufficiently resist all kinds of 
brute-force attacks.

Correlation analysis

A good image encryption algorithm should remove this strong correlation between adja-
cent pixels. The correlation property can be quantified by means of correlation coeffi-
cients as

where

xi and yi are two adjacent pixels, n is the total number of adjacent pixel pairs (xi, yi). 
Table 3 gives the correlation coefficients of plain image and encrypted image. It is clear 
that all the correlation coefficients of encrypted images are close to zero, which means 
that our proposed algorithm can effectively remove the correlations among the adjacent 
pixels of the plain image, and can resist statistical attacks. Also, our algorithm performs 
better than the algorithms in Wang and Guo (2014), Hua et al. (2015) and Tong et al. 
(2015) in this sense.

1014 · 1014 · (0.4 · 1014)9 · 256! ≈ 22183

r =
cov(x, y)

√

D(x)D(y)

cov(x, y) =
1

n

n
∑

i=1

[xi − E(x)][yi − E(y)]

D(x) =
1

n

n
∑

i=1

[xi − E(x)]2

E(x) =
1

n

n
∑

i=1

xi
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Computational complexity

Here, we compare the computational complexity of our algorithm with the traditional 
DES and AES algorithms. All the algorithms are experiment by Matlab R2014a on the 
computer with 3.6 GHz CPU and 8 GB memory. The test results are shown in Table 4. 
From Table 4 we can see that the time of our algorithm with T = 1 and 2 are both less 
than the DES and AES algorithms, and is quite acceptable for image encryption. Cer-
tainly, the larger the T is, the more the time needed, and more secure the algorithm is. 
Therefore, users can choose a suitable T for their different security demand.

Conclusions
In this paper, we propose a new image encryption algorithm based on parameter-varied 
chaotic map and dynamical algorithm. The varied parameters are controlled by zero-
mean logistic map and hopping in the given parameter set. We show that the proposed 
logistic map can overcome the common weaknesses of and is capable to resist phase 
space reconstruction. We carry out many experiments, including Histogram analysis, 
information entropy analysis, sensitivity analysis, key space analysis, correlation analy-
sis and computational complexity, to show the security and performance of the pro-
posed image encryption scheme. The experimental results show that our algorithm is 
with high security, and can be competitive with some other proposed image encryption 
algorithms.
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Table 3  Correlation coefficients of the plain and ciphered images

Images Horizontal Vertical Diagonal

Plain image 0.98496 0.97179 0.96853

Encrypt with T = 1 0.0088 0.0083 0.0121

Encrypt with T = 2 0.0053 0.0040 0.0062

Encrypt with T = 3 0.0021 0.0046 0.0033

Ref. (Wang and Guo 2014) 0.0063 0.0063 0.0069

Ref. (Hua et al. 2015) 0.0024 −0.0086 0.0402

Ref. (Tong et al. 2015) 0.0038 0.0058 0.0133

Table 4  Encryption speed of each scheme

Different algorithms Encryption time (s)

Our algorithm with T = 1 0.05944

Our algorithm with T = 2 0.06569

DES 0.59784

AES 0.11297
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