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Background
Human immunodeficiency virus (HIV-1) is a lentivirus that causes acquired immunode-
ficiency syndrome (AIDS). The HIV-1 infection passes through three different phases, 
viz, the primary infection, chronic infection and acquired immunodeficiency syndrome 
(AIDS). In the primary infection, viral load experiences, a substantial increase to the 
peak level, followed by decline to the steady state, which is referred to as the viral set 
point. To control this infection, many scientists and researchers have been focusing on 
it, as there is no effective way to cure AIDS.

In the recent research, recombinant virus is used for controlling the infection of HIV-1 
(see for example, Wagner and Hewlett 1999; Nolan 1997). Revilla and Garcya-Ramos 
(2003) established a 5-dimensional ordinary differential equation system to investigate 
the control of the infection by introducing a recombinant virus to fight the virus. Jiang 
et al. (2009), introduced a constant injection rate of the recombinant virus and presented 
various bifurcation patterns. A control strategy of the HIV-1 epidemic model was given 
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in Yu and Zou (2012). The following differential equations are standard and classic in-
host model for HIV-1 infection:

where x(t), y(t) and v(t) represent the densities of uninfected cells, infected cells and the 
free virus cells, respectively at time t. � represents the rate at which new target cells are 
generated, d is the specific death rate and β is the constant rate at which a T-cell is con-
tacted by the virus. It is assumed that once cells are infected, they may die at rate a either 
due to the virus or the immune system, and in the mean time, each cell produces new 
virus particles at a rate k during their life, p is the death rate of virus cells.

Revilla and Garcya-Ramos (2003) extended the model (1) by adding a second virus 
which may cause the infected cells to have a second infection, called double-infection, 
leading to a modified model is given by

Here w(t) and z(t) represent genetically modified(recombinant) virus and double-
infected cells, respectively. It is assumed that recombinant infected cells previously 
infected by the pathogen virus and turn them at rate α into doubly-infected cells. In 
the mean time recombinant are removed at a rate q. The doubly infected cells die at a 
rate of b and release recombinant at a rate c. In Revilla and Garcya-Ramos (2003), the 
authors analyzed the structure of equilibrium solutions and presented some simulations 
of the model (2). The global attractivity of the three concerned disease-free equilibria is 
presented in Shang (2015) by using Lyapunov functional theory. Jiang et al. (2009), pre-
sented the stability of all possible equilibrium solutions and bifurcations between these 
equilibria, as well as proved the existence of Hopf bifurcation. Yu and Zou (2012), modi-
fied the model (2) by incorporating a control parameter η to measure the injection rate of 
the recombinant for controlling/eliminating the HIV virus. Tian et al. (2014) introduced 
the time lag into the model (2). Since in real situation, time is needed for the virus to 
contact a target cell and then the contacted cells become actively affected. Keeping in 
view this time lag they modified the model (2), by using the idea of Zhu and Zou (2008, 
2009), as follows

where τ denotes the average time for a viral particle to go through the eclipse phase. 
Here a is the constant death rate for infected cells but which are not virus producing 

(1)

ẋ(t) = �− dx(t)− βx(t)v(t),

ẏ(t) = βx(t)v(t)− ay(t),

v̇(t) = ky(t)− pv(t),

(2)

ẋ(t) = �− dx(t)− βx(t)v(t),

ẏ(t) = βx(t)v(t)− ay(t)− αw(t)y(t),

ż(t) = aw(t)y(t)− bz(t),

v̇(t) = ky(t)− pv(t),

ẇ(t) = cz(t)− qw(t).

(3)

ẋ(t) = �− dx(t)− βx(t)v(t),

ẏ(t) = βe−aτx(t − τ )v(t − τ )− ay(t)− αw(t)v(t),

ż(t) = aw(t)y(t)− bz(t),

v̇(t) = ky(t)− pv(t),

ẇ(t) = cz(t)− qw(t),
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cells yet. Therefore, e−aτ is the probability of surviving in the time period from t − τ to 
t. The effect of intracellular delays on viral infection has been discussed in Culshaw et al. 
(2003), Herz et al. (1996), Mittler et al. (1999), Nelson et al. (2000), Nelson and Perelson 
(2002), Xu (2011), while the effect of different awareness campaign on the spread of ran-
dom network has been investigated in Shang (2013).

This paper focuses on the dynamical behavior of the system with delays and studies 
their equilibrium solutions with bifurcations. This study extends the work presented in 
Tian et al. (2014) by incorporating two distributed intracellular delays. In the proposed 
model one delay term represents the latent period which is the time that the target cells 
are contacted by the virus particles and the time the contacted cells become actively 
infected. While the second delay term represents the virus production period which 
means the time during when new virions are created within the cell and are released 
from the cell. The proposed model becomes

The measure of the efficacies of the protease inhibitor and the reverse transcriptase 
inhibitor are denoted by np and nrt, respectively. It is also assumed that the infected cells 
become productively infected τ units later, where τ is distributed according to the prob-
ability distribution f1(τ ). The recruitment of virus producing cells at time t is given by 
the number of the cells that were infected at time t − τ and are still alive at time t. Here 
m is the constant death rate for infected cells but which are not virus producing cells 
as yet. Therefore, e−mτ is the probability of surviving in the time period from t − τ to t. 
Also it is assumed that τ units later the virus penetrated into the cell at time t, where τ 
is distributed according to the probability distribution f2(τ ). The probability distribu-
tion functions like f1(τ ) = δ(t − τ1), f2(τ ) = δ(τ ) or f1(τ ) = δ(τ ), f2(τ ) = δ(t − τ2), are 
proposed. After some manipulation our proposed model in general form can be written 
as follows:

where β̃ = (1− nrt)β and k̃ = (1− np)k. The term e−m2τ is the probability of surviving 
from time t − τ to time t, where m2 is the death rate of infected but not yet virus-pro-
ducing cells. In the system (5), the delay kernel is assumed to be piecewise continuous to 

(4)

ẋ(t) = �− dx(t)− (1− nrt)βx(t)v(t),

ẏ(t) = (1− nrt)β

∫ ∞

0

e−mτ f1(τ )x(t − τ )v(t − τ )dτ − ay(t)− αw(t)y(t),

ż(t) = aw(t)y(t)− bz(t),

v̇(t) = (1− np)k

∫ ∞

0

f2(τ )y(t − τ )dτ − pv(t),

ẇ(t) = cz(t)− qw(t).

(5)

ẋ(t) = �− dx(t)− β̃x(t)v(t),

ẏ(t) = β̃

∫ ∞

0

e−m1τ f1(τ )x(t − τ )v(t − τ )dτ − ay(t)− αw(t)y(t),

ż(t) = aw(t)y(t)− bz(t),

v̇(t) = k̃

∫ ∞

0

e−m2τ f2(τ )y(t − τ )dτ − pv(t),

ẇ(t) = cz(t)− qw(t),



Page 4 of 13Ali and Zaman ﻿SpringerPlus  (2016) 5:324 

satisfy 
∫∞

0
fi(τ )dτ = 1 and 

∫∞

0
τ fi(τ )dτ < 1, i = 1, 2. The initial conditions for the sys-

tem (5) become

Here (ψ1,ψ2,ψ3,ψ4,ψ5) ∈ C[(−∞, 0),R5] be the space of continuous func-
tions mapping the interval (−∞, 0] into R5, where ψi(ζ ) ≥ 0, i = 1, 2, , . . . , 5 and 
R5 = {(x1, x2, x3, x4, x5); xi ≥ 0, i = 1, 2, . . . , 5}.

According to the fundamental theory of functional differential equations (Kuang 
1993), the system (5) admits a unique solution of (x(t), y(t), v(t), z(t), w(t)) and satisfies 
the initial conditions (6). It is easy to show that all solutions of the system (5) with initial 
conditions (6) are defined on [0,+∞) and remain positive for all t ≥ 0.

The rest of the paper is organized as follows: In “Positivity and well-posdeness of the 
solution” section, we address the well-posedness of the model by proving the positiv-
ity and boundedness of solutions. We also identify the basic reproduction number R0 
which determines whether there is or not an uninfected equilibrium. In “Local behavior 
of the proposed model” section, local stability has been discussed and it is proved that 
disease free equilibrium is locally stable if R0 < 1 and chronic-infection equilibrium is 
locally stable if R0 > 1. “Global behavior of the proposed model” section is dedicated 
to the global stability of the proposed model. Numerical simulations and discussion are 
presented in “Numerical simulation” section. Finally, conclusion is given in “Conclusion 
and discussion” section.

Positivity and well‑posdeness of the solution
In this section, we will discuss positivity and boundedness of the solution. The following 
theorem gives boundedness and positivity of the solution.

Theorem 1  All solutions of the system (5) remain non-negative, provided the given con-
ditions are non-negative and bounded.

Proof 1  By using variation of parameter formulae, we get the following solution of the 
system (5)

Which shows the positivity of the solution of each solution x(t), y(t), v(t), z(t) and w(t).

(6)

x(ζ ) = ψ1(ζ ), y(ζ ) = ψ2(ζ ), z(ζ ) = ψ3(ζ ), v(ζ ) = ψ4(ζ ),w(ζ ) = ψ5(ζ ), ζ ∈ [−∞, 0].

x(t) = x(0)e−
∫ t
0
(d+β̃v(ζ ))dζ + �

∫ t

0

e
−
∫ t
η (d+β̃v(ζ ))dζ

dη,

y(t) = y(0)e−
∫ t
0
(a+αw(ζ ))dζ + β̃

∫ t

0

e
−
∫ t
η (a+αw(ζ ))dζ

∫ ∞

0

e−m1τ f1(τ )x(t − τ )v(t − τ )dτdη,

z(t) = z(0)e−bt +

∫ t

0

αw(t)y(t)e
−
∫ t
η b(t−ζ )dζ

dη,

v(t) = v(0)e−pt + k̃

∫ t

0

e−p(t−η)

∫ ∞

0

e−m2τ f2(τ )y(t − τ )dτdη,

w(t) = w(0)e−k̃t + c

∫ t

0

z(η)e−k̃(t−η)dη.
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Next, we show the boundedness of the solution. We define

Calculating the derivative and using the system (5), we have

where ǫ = min{d, a
2
, b
2
, q, p}. This implies that D(t) is bounded. Thus all the solutions 

x(t), y(t), v(t), z(t) and w(t) are bounded.
In order to study the asymptotic behavior of the proposed model, we use Zaman 

(2011). The model (5) has three possible equilibria, disease-free equilibrium 
E0(x0, y0, z0, v0,w0), single-infection equilibrium E1(x1, y1, z1, v1,w1) and double-infec-
tion equilibrium E2(x2, y2, z2, v2,w2) which are given below,

where Mi =
∫∞

0
e−miτ fi(τ )dτ , (i = 1, 2).

D(t) = ck̃

∫ ∞

0

e−m2τ f2(τ )

∫ ∞

0

e−m1τ f1(τ )x(t − τ )dτdτ + ck̃

∫ ∞

0

e−m2τ f2(τ )y(t)dτ

+ ck̃

∫ ∞

0

e−m2τ f2(τ )z(t)dτ +
ac

2
v(t + τ )+

bk̃

2

∫ ∞

0

e−m2τ f2(τ )w(t)dτ .

dD(t)

dt
= c�k

� ∞

0

e−m2τ f2(τ )

� ∞

0

e−m1τ f1(τ )

�
�− dx(t − τ)− �βx(t − τ)v(t − τ)

�
dτdτ

+ c�k
� ∞

0

e−m2τ f2(τ )

�
�β
� ∞

0

e−m1τ f1(τ )�βx(t − τ)v(t − τ)dτ − ay(t)− αw(t)y(t)

�
dτ

+ c�k
� ∞

0

e−m2τ f2(τ )

�
aw(t)y(t)− bz(t)

�
dτ +

ac

2

�
�k
� ∞

0

e−m2τ f2(τ )y(t)dτ

− pv(t + τ)

�
dτ +

b�k
2

� ∞

0

e−m2τ f2(τ )

�
cz(t)− qw(t)

�
dτ

= �c�k
� ∞

0

e−m2τ f2(τ )

� ∞

0

e−m1τ f1(τ )dτdτ −

�
dc�k

� ∞

0

e−m2τ f2(τ )

� ∞

0

e−m1τ f1(τ )

x(t − τ)dτdτ +
a

2
c�k

� ∞

0

e−m2τ f2(τ )y(t)dτ +
b

2
c�k

� ∞

0

e−m2τ f2(τ )z(t)dτ

+ q
b�k
2

� ∞

0

e−m2τ f2(τ )w(t)dτ + p
ac

2
v(t)

�

≤ �c�k
� ∞

0

e−m2τ f2(τ )

� ∞

0

e−m1τ f1(τ )dτdτ

− ǫD(t)





< 0, for D(t) >
�c�k

�∞
0

e−m2τ f2(τ )
�∞
0

e−m1τ f1(τ )dτdτ

ǫ
,

> 0, for D(t) <
�c�k

�∞
0

e−m2τ f2(τ )
�∞
0

e−m1τ f1(τ )dτdτ

ǫ
.

E0 =

(
�

d
, 0, 0, 0, 0

)
,

E1 =

(
ap

k̃β̃M1M2

,
�β̃ k̃M1M2 − apd

aβ̃k̃
, 0,

�β̃ k̃M1M2 − apd

aβ̃p
, 0

)
,

E2 =

(
�αcp

dαcp+ β̃bk̃q
,
qb

αc
,
q(αβ̃�ck̃M1M2 − β̃abk̃q − aαcdp)

ac(β̃bk̃q + αcdp)
,
k̃qb

αcp
,

k̃qb

αcp
,
αβ̃�ck̃M1M2 − β̃abk̃q − aαcdp

α(β̃bk̃q + αcdp)

)
,
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The steady state with the pathogen presence is possible when the equilibrium density 
of the pathogen is greater than zero (v1 > 0). This leads to a condition for invasion of the 
pathogen. Therefore, we can define

Here, R0 is called the basic reproduction ratio of model which represents the aver-
age number of secondary virus produced from a single virus for system (5). Noting 
that 

∫∞

0
τ fi(τ )dτ = 1 and if mi > 0(i = 1, 2), then 

∫∞

0
e−miτ fi(τ )dτ < 1. It is clear that 

increasing either of the delay may decrease the basic reproduction ratio R0.
It turns out that the value of R0 determines the existence of the single-infection equi-

librium, that is E1 exists if and only if R0 > 1. For the third equilibrium to exist, the den-
sity of the recombinant virus must be greater than zero (w2 > 0) and this leads to the 
condition

Hence, R2 > 1 if and only if R0 > R1, where R1 = 1+
β̃bk̃q
αcdp

.
To analyze the stability of the equilibria, we need to calculate the characteristic equa-

tion of the Jacobian matrix of the system (5) at equilibrium point E(x̄, ȳ, z̄, v̄, w̄) as below

where Ni(η) =
∫∞

0
e−miτ e−ητ fi(τ )dτ , (i = 1, 2).

Local behavior of the proposed model
In this section, we find the local stability of the system (5).

Theorem  2  When R0 < 1, then the disease-free equilibrium E0 is locally asymptoti-
cally stable while for R0 > 1, E0 becomes unstable and the single-infection equilibrium E1 
occurs.

Proof 2  The characteristic equation of the Jacobian matrix of the linearized system cor-
responding to the system (5) at E0( �d , 0, 0, 0, 0) is given by

The three roots of the characteristic equation η1 = −b, η2 = −d and η3 = −q are nega-
tive and the remaining two roots are given by the following equation

R0 =
�β̃ k̃

∫∞

0
e−m1τ f1(τ )dτ

∫∞

0
e−m2τ f2(τ )dτ

apd
> 0.

R2 =
αcdp

β̃bk̃q
(R0 − 1).

det[ηI − J ] = det




η + d + �β v̄ 0 0 �βx̄ 0

−v̄�βN1(η) η + a+ αw̄ 0 −x̄�βN1(η) ȳα
0 −w̄α η + b 0 −ȳα

0 −�kN2(η) 0 η + p 0

0 0 −c 0 η + q




= 0.

det[ηI − J (E0)] = (b+ η)(d + η)(q + η)

[
(a+ η)(p+ η)−

�

d
β̃k̃N1(η)N2(η)

]
= 0.

(7)(a+ η)(p+ η)−
�

d
β̃k̃N1(η)N2(η) = 0.
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Let us rewrite the above equation

Noting that |Ni(η)| ≤ 1, (i = 1, 2).
Let us assume g(0) = ap(1− R0) < 0 and limη→∞ g(η) = +∞. By the continuity of 

g(η) there exist at least one positive root of g(η) = 0. Thus, the infection-free equilib-
rium E0 is unstable if R0 > 1.

If we choose the direct delta function fi(τ ) = δ(t), (i = 1, 2) then we obtain 
Ni(η) = 1, (i = 1, 2). In this case Eq. (7) becomes

Thus, if R0 < 1, then Eq. (8) has two negative roots. Hence the equilibrium E0 is locally 
asymptotically stable when fi(τ ) = δ(t), (i = 1, 2).

If iν(ν > 0) is a solution of Eq. (7), it follows that

which yields

We note that for (i = 1, 2),

Therefore, we have

Hence, if R0 < 1, then Eq. (10) has no positive roots. Therefore, by the general theory on 
characteristic equations of delay differential equations (Kuang 1993) (Theorem 3.4.1), it 
is clear that E0 is always locally asymptotically stable for fi(τ ) = δ(t), (i = 1, 2), if R0 < 1.

Theorem 3  For 1 < R0 < R1 the single infection-free equilibrium E1 is locally asymptot-
ically stable, while E1 becomes unstable for R0 > R1 and recombinant virus may persist.

Proof  3  The characteristic equation corresponding to the Jacobian matrix of the lin-
earized system of the system (5), is given by

(8)g(η) = (a+ η)(p+ η)−
�

d
β̃ k̃N1(η)N2(η).

(9)η2 + (a+ p)η + ap(1− R0) = 0.

−ν2 + (a+ p)νi + ap− k̃β̃
�

d
N1(iν)N2(iν) = 0,

(10)ν4 + (a2 + p2)η2 + (ap)2 −

(
k̃β̃

�

d

)2

|N1(iν)|
2|N2(iν)|

2 = 0.

(11)|Ni(iν)| =

∣∣∣∣
∫ ∞

0

e−miτ
(
cos(iντ)− sin(iντ)

)
fi(τ )dτ

∣∣∣∣ ≤
∫ ∞

0

e−miτ fi(τ )dτ .

(ap)2 −

(
k̃β̃

�

d

)2

|N1(iν)|
2|N2(iν)|

2 ≥ (ap)2(1− R2
0).

det[ηI − J (E1)] =
(
(b+ η)(q + η)− αy1c

)[(
d + β̃v1 + η)k̃β̃x1N1(η)N2(η)− (β̃)2x1kv1N1(η)N2(η)

− (d + β̃v1 + η)(a+ η)(p+ η)

]
= 0.
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We can write the equation in the form P1(η)P2(η) = 0, where

Now P1(η) can be written as

which shows that P1(η) = 0 has two roots with negative real parts iff R2 < 1 (i,e R0 < R1 
or one positive and one negative if R2 > 1 (i,e R0 > R1, which shows that the single infec-
tion free equilibrium E1 is unstable. P2(η) = 0 also can be written as

where

When fi(τ ) = δ(τ ), we have Ni(η) = 1(i = 1, 2). In this case Eq. (12) becomes

By applying the Routh-Hurwitz criterion (Gantmacher 1959), we know that all the roots 
of (13) have negative real parts if R0 > 1, because

Finally, we have

Therefore, the equilibrium E1 is locally asymptotically stable when fi(τ ) = δ(τ )(i = 1, 2).
If iν for ν > 0 is a solution of Eq. (13), then it follows that

After some simplification, we get

where

P1(η) = (b+ η)(q + η)− αy1c,

P2(η) = (d + β̃v1 + η)k̃β̃x1N1(η)N2(η)− (β̃)2x1k̃v1N1(η)N2(η)− (d + β̃v1 + η)(a+ η)(p+ η).

P1(η) = η2 + (b+ q)η + bq(1− R2),

(12)η3 + a2(τ )η
2 + a1(τ )η + a0(τ )+ (b1η + b2)N1(η)N2(η) = 0,

a2(τ ) = a+ p+ d + β̃v1,

a1(τ ) = (a+ p)(d + β̃v1)+ ap,

a0(τ ) = ap(d + β̃v1),

b1(τ ) = −k̃β̃x1,

b0(τ ) = −dk̃β̃x1.

(13)η3 + a2(τ )η
2 + (a1(τ )+ b1(τ ))η + a0(τ )+ b2(τ ) = 0,

a2(τ ) = a+ p+ d + d(R0 − 1) > 0,

a1(τ )+ b1(τ ) = (a+ p)(d + d(R0 − 1) > 0,

a0(τ )+ b2(τ ) = apd(R0 − 1) > 0.

a2(a1 + b1)− (a0 + b2) =
(
dR0

(
a2 + (a+ p)(p+ dR0

)
+ apd

)
> 0.

(14)−iν3 + a2(τ )ν
2 + a1(τ )iν + a0(τ )+ (b1iν + b2)N1(iν)N2(iν) = 0.

(15)ν6 + (a22 − 2a1)ν
4 + (a21 − 2a0a2)ν

2 + a20 − (b22 + b21ν
2)|N1(iν)|

2|N2(iν)|
2 = 0,

a22 − 2a1 = (d + β̃v1)
2 + a2 + p2 > 0,

a21 − 2a0a2 − b21|N1(iν)|
2|N2(iν)|

2 = (d + βv1)
2(a2 + p2)+ a2p2 − (k̃β̃x1)|N1(iν)|

2|N2(iν)|
2

≥ (a2 + p2)(d + β̃v1)
2
,

(a20 − b22)|N1(iν)|
2|N2(iν)|

2 = (a2 + p2)(ap(d + β̃v1))
2 − (dk̃β̃x1)

2|N1(iν)|
2|N2(iν)|

2

≥ apβ̃v1

[
ap(d + β̃v1)+ dkβ̃x1|N1(iν)|

2|N2(iν)|
2

]
.



Page 9 of 13Ali and Zaman ﻿SpringerPlus  (2016) 5:324 

Hence if R0 > 1, then the Eq. (15) has no positive roots. So by the general theory of char-
acteristic equations of delay differential equations (Kuang 1993), the chronic infection 
equilibrium E1 is locally asymptotically stable when fi(τ ) = δ(τ ), (i = 1, 2).

Global behavior of the proposed model
In this section, we study the global behavior of the system (5). To do this we will use Lya-
punove functionals theory and Lasali’s invariance principle.

Theorem  4  The disease-free equilibrium E0 is globally asymptotically stable when 
R0 < 1.

Proof  4  Let 
(
x(t), y(t), z(t), v(t),w(t)

)
 be any positive solution of the system (5) with 

initial conditions (6). Consider the Lyapunove functional

where

with r1 = 1∫∞
0

e−m1τ f1(τ )dτ
 and r2 = 1

k̃
∫∞
0

e−m1τ f1(τ )dτ
∫∞
0

e−m2τ f2(τ )dτ
.

By taking derivative of L1(t) along the positive solution of the system (5), we have

On substituting � = dx0, and simplifying, we get

By taking the derivative of L2(t), we get

(16)LE0(t) = L1(t)+ L2(t),

L1(t) = x(t)− x0 − ln
x(t)

x0
+ r1y(t)+ r1z(t)+ r2v(t)+ r1

b

c
w(t),

L2(t) = r1β̃

∫ ∞

0

f1(τ )e
−m1τ

∫ t

t−τ

x(θ)v(θ)dθdτ + r2k̃

∫ ∞

0

f2(τ )e
−m2τ ×

∫ t

t−τ

y(θ)dθdτ

dL1(t)

dt
=

(
x(t)−

x

x0

)(
�− dx(t)− β̃x(t)v(t)

)
+ r1

(
β̃

∫ ∞

0

f1(τ )e
−m1τx(t − τ )v(t − τ )dτ

− ay(t)− αw(t)y(t)

)
+ r1

(
aw(t)y(t)− bz(t)

)

+ r2

(
k̃

∫ ∞

0

f2(τ )e
−m2τ y(t − τ )dτ − pv(t)

)
+ r1

b

c

(
cz(t)− qw(t)

)
.

(17)

dL1(t)

dt
=

(x(t)− x0)
2

x
− β̃x(t)v(t)+ r1

(
β̃

∫ ∞

0

f1(τ )e
−m1τx(t − τ )v(t − τ )dτ

− ay(t)− αw(t)y(t)

)
+ r1

(
aw(t)y(t)− bz(t)

)
+ r2k̃

(∫ ∞

0

f2(τ )

× e−m2τ y(t − τ )dτ − pv(t)

)
+ r1

b

c

(
cz(t)− qw(t)

)
,

=
−d(x(t)− x0)

2

x
− β̃x(t)v(t)+ r1

(
β̃

∫ ∞

0

f1(τ )e
−m1τx(t − τ )v(t − τ )dτ

)

− r1ay(t)+ r2k̃

∫ ∞

0

f2(τ )e
−m2τ y(t − τ )dτ − r1

bq

c
w(t)+ r2p(R0 − 1)v(t)

− r1
bq

c
w(t).
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Taking derivative of Eq. (16) and using Eqs. (17) and (18) and simplifying, we get

If R0 ≤ 1, it follows from Eq. (19) that d
dt
VE0(t) ≤ 0. Moreover, the equality also holds 

if x0 = �

d
, y(t) = 0, z(t) = 0, v(t) = 0, w(t) = 0. Hence by LaSalle’s invariance principle 

(see LaSalle (1976)), we conclude that E0 is globally asymptotically stable when R0 < 1.

Theorem  5  If 1 < R0 < R1, then the single infection free equilibrium E1 is globally 
asymptotically stable, implying that the recombinant virus cannot survive but the patho-
gen virus can exist.

Proof 5  Let (x(t), y(t), z(t), v(t), w(t)) be any positive solution of the system (5) with ini-
tial conditions (6). Let us consider the Lyapunove functional

where r1 and r2 are discussed in the previous theorem. Now taking derivative of V1(t), we 
get

Using � = dx1 − β̃x1v1 in the above equation, we have

(18)

dL2(t)

dt
= r1β̃

∫ ∞

0

f1(τ )e
−m1τ

(
x(t)v(t)− x(t − τ )v(t − τ )

)
dτ + r2k̃

∫ ∞

0

f2(τ )e
−m2τ

×

(
y(t)− y(t − τ

)
dτ .

(19)
dLE0(t)

dt
= −d

(x(t)− x0)
2

x
+

p(R0 − 1)v(t)

k̃
∫∞

0
f1(τ )e−m1τdτ

∫∞

0
f2(τ )e−m2τdτ

− r1
bq

c
w(t).

(20)

V1(t) =
(
x(t)−x1 ln x(t)

)
+r1

(
y(t)−y1 ln y(t)

)
+r2

(
v(t)−ln v(t)

)
+r1z(t)+r1

b

c
w(t),

dV1(t)

dt
=

(
1−

x1

x

)(
�− dx(t)− β̃x(t)v(t)

)
+ r1

(
1−

y1

y

)(
β̃

∫ ∞

0

e−m1τ f1(τ )dτx(t − τ)v(t − τ)

− ay(t)− αw(t)y(t)

)
+ r1

(
aw(t)y(t)− bz(t)

)

+ r2

(
1−

v1

v

)(
k̃

∫ ∞

0

e−m2τ f2(τ )y(t − τ)dτ − pv(t)

)
+ r1

b

c

(
cz(t)− qw(t)

)
.

(21)

dV1(t)

dt
= −

(x(t)− x1)
2

x
− β̃x(t)v(t)+ β̃x1v1

(
1−

x1

x

)
+ r1β̃

∫ ∞

0

e−mτ f1(τ )dτx(t − τ )dτ

− r1
β̃y1

y

∫ ∞

0

e−m1τ f1(τ )dτx(t − τ )v(t − τ )v(t − τ )dτ − r1ay(t)

+ β̃x1v1 + r2k̃

∫ ∞

0

e−m2τ f2(τ )dτy(t − τ )− r2k̃
v1

v(t)

∫ ∞

0

e−m2τ f2(τ )y(t − τ )dτ

+ β̃x1v1 + r1(αy1 −
bq

c
)w(t).
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Let us define

Taking derivative of Eq. (22) and using Eq. (21), we get

If R0 ≤ R1, it follows from Eq. (23) that dVE1
(t)

dt
≤ 0 for x1, y1, v1 > 0. Also equality holds 

when x = x1 and y = y1, v = v1, z = 0 and w = 0. Thus the solutions limit to the largest 
invariant subset of dVE1

dt
= 0. Then, by LaSalle’s invariance principle (LaSalle 1976), we 

conclude that E1 is globally asymptotically stable. This complete the proof.

Numerical simulation
In this section, we present numerical simulation. We use Runge–Kutta order four 
method to find numerical results. For our numerical simulation we used parameters 
values β = 0.004 (estimated), � = 2 (Philips 1996), d = 1/10 (Philips 1996), α = 0.004, 
(estimated), a = 1/2 (estimated), p = 2 (Philips 1996), k = 50 (Hass 1999), b = 2 (Sch-
nell et al. 1997), c = 2000 (Schnell et al. 1997), m1 = 1/2 = m2 = 1/2 (assumed), q = 2 
(assumed) with initial conditions x(0) = 13, y(0) = 6, z(0) = 3, v(0) = 149,w(0) = 1. 
Our numerical results show that, by using continuous delays in latent and virus produc-
tion periods, then the number of healthy cells increases and the virus load reduces as 
shown by Figure 1a and d, respectively. Figure 1b shows that the number of infected cells 
decreases due to reducing the viral load by postponing the production period of infected 
cells. Figure 1d shows that the number of double infected cells increases which release 
the recombinant virus to fight with pathogens virus. Figure 1e the shows that recombi-
nant virus are decreasing with the passage of time.

(22)

VE1(t) = V1(t)+ r1β̃

∫ ∞

0

e−m1τ f1(τ )

∫ t

t−τ

[
x(ρ)v(ρ)− x1v1 − xv ln

x(ρ)v(ρ)

x1v1

]
dρdτ

+ r2k̃

∫ ∞

0

e−m2τ f2(τ )

∫ t

t−τ

[
y(ρ)− y1 − y1 ln

y(ρ)

y1

]
dρdτ .

(23)

dVE1 (t)

dt
= −

(x(t)− x1)
2

x
− β̃x(t)v(t)+ β̃x1v1

(
1−

x1

x

)
+ r1β̃

∫ ∞

0

e−m1τ f1(τ )dτx(t − τ )dτ

− r1
β̃y1

y

∫ ∞

0

e−m1τ f1(τ )x(t − τ )v(t − τ )dτ − r1ay(t)

+ β̃x1v1 + r2k̃

∫ ∞

0

e−τ f2(τ )dτy(t − τ )− r2k̃
v1

v(t)

∫ ∞

0

e−m2τ f2(τ )y(t − τ )dτ

+ β̃x1v1 + r1

(
αy1 −

bq

c

)
w(t)+ r1β̃

∫ ∞

0

e−m1τ f1(τ )

[
x(t)v(t)− x(t − τ )v(t − τ )

+ x1v1 ln
x(t − τ )v(t − τ )

x(t)v(t)

]
dρdτ + r2k̃

∫ ∞

0

e−m2τ f2(τ )

[
y(t)− y(t − τ )+ y1 ln

y(t − τ )

y(t)

]

= −
(x(t)− x1)

2

x
+ β̃x1v1

(
1−

x1

x

)
− r1β̃

∫ ∞

0

e−m1τ f1(τ ) ln
x(t − τ )v(t − τ )

x1v1y(t)
dτ + β̃x1v1

− r2k̃y1

∫ ∞

0

e−m2τ f2(τ ) ln
v1y(t − τ )

y1v(t)
dτ + β̃x1v1 − r1β̃

∫ ∞

0

e−m1τ f1(τ )

× ln
x(t − τ )v(t − τ )

x(t)v(t)
dτ + r2k̃y1

∫ ∞

0

e−m2τ f2(τ ) ln
y(t − τ )

y(t)
dτ + r1

(
αy1 −

bq

c

)
w(t),

= −
(x(t)− x1)

2

x
+ β̃x1v1

(
1−

x1

x
−

x

x1

)
− r1β̃x1v1

∫ ∞

0

e−m1τ f1(τ )

[
y1x(t − τ )v(t − τ )

x1v1y(t)

− 1− ln
y1x(t − τ )v(t − τ )

x1v1y(t)

]
dτ − r2k̃y1

∫ ∞

0

e−m2τ f2(τ )

[
v1y(t − τ )

y1v(t)
− 1− ln

v1y(t − τ )

y1v(t)

]
dτ

−
αr1pd

β̃k̃
(R1 − R0)w(t).
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Conclusion and discussion
In this work, we presented the asymptotic analysis of an HIV-1 epidemic model by 
incorporating distributed intracellular delays. Our one delay term used for latent period 
and the second one used for virus production period. From the corresponding charac-
teristic equations, it was shown that if the basic reproduction ratio is less than unity, 
the infection-free equilibrium is locally asymptotically stable. We also proved that the 
chronic-infection equilibrium exists and is locally asymptotically stable if the basic 
reproduction ratio is greater than one. Similarly, the global stability of the infection-free 
equilibrium and the chronic-infection equilibrium of the proposed model have been 
completely established under certain conditions. It is clear from these results that intra-
cellular delays describing the latent period and viral production period have great effect 
on the stability of feasible equilibria and therefore, do not induce periodic oscillations. 
Numerical results of our proposed model represented that continuous delays in latent 
period and virus production period can help in reducing the load of pathogen virus due 
which the number of infected cells reduced and CD4+ cells are increased.
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Fig. 1  Stimulated time history when β = 0.004, � = 2, d = 1/10,α = 0.004, a = 1/2, p = 2, k = 50, b = 2,

c = 2000,m1 = 1/2,m2 = 1/2, q = 2 with initial conditions x(0) = 13, y(0) = 6, z(0) = 3, v(0) = 149,w(0) = 1
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