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Background
In the year 1974, Rhoades (1974) showed that the iterative scheme converges to a fixed 
point of a self-mapping f for a particular space X. Rhoades (1991) provided a survey of 
iteration procedures that have been used to obtain fixed points for maps satisfying a 
variety of contractive conditions. Rhoades (1990) showed that several iteration proce-
dures are T-stable for maps satisfying a fairly general contractive condition. Liu (1995) 
introduced the concept of the Ishikawa iteration process with errors and obtained a 
fixed point of the Lipschitzian local strictly pseudo-contractive mapping. Yousefi (2012) 
proved an iteration procedure in cone metric spaces. Rhoades and Soltuz (2006) showed 
that T-stability of Mann and Ishikawa iterations are equivalent. Qing and Rhoades 
(2008) established a general result for the stability of Picard’s iteration. Asadi et al. (2009) 
investigated the T-stability of Picard’s iteration procedures in cone metric spaces and 
gave an application. Saadati et  al. (2009) showed that the variational iteration method 
for solving integral equations is T-stable. Recently, iteration scheme is extended to some 
other spaces. It is suitable for mathematician to consider T-stability for new iterations 
problems (see Saipriya et  al. 2015; Kang et  al. 2015; Yao et  al. 2015; Haddadia 2014; 
Okeke and Olaleru 2014).

Let us consider a self mapping T : X → X in a complete partial cone metric space (X, 
p). Further, let FT = {x ∈ X : Tx = x} is the set of fixed points of T. In complete metric 
space, the Picard iteration process {xn} is defined by

It has been used to approximate the fixed points of mappings satisfying the contractive 
condition

(1)xn+1 = Txn, n = 0, 1, 2, . . .
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over the years by many authors. The above contractive condition (2) is called Banach’s 
contraction condition.

We shall state some of the iteration process generalising (1) as follows:
For x0 ∈ E, the sequence {xn}∞n=0 defined by

where {αn}∞n=0 ⊂ [0, 1], is called the Mann iteration process.
For x0 ∈ E, the sequence {xn}∞n=0 defined by

where {αn}∞n=0 and {βn}∞n=0 are sequences in [0, 1] called the Ishikawa iteration process.
Kannan (1968) established an extension of the Banach’s fixed point theorem by using 

the following contractive definition:
For a self map T, there exists β ∈ (0, 1

2
) such that

Chatterjea (1972) gave the following contractive condition:
For a selfmap T, there exists γ ∈ (0, 1

2
) such that

Zamfirescu (1972) established the generalisation of the Banach’s fixed point theorem by 
combining (2), (5) and (6). For a mapping T : E → E, there exist real numbers α,β , γ sat-
isfying 0 ≤ α < 1, 0 ≤ β < 1

2
, 0 ≤ γ < 1

2
 respectively such that for each x, y ∈ E, at least 

one of the following is true:

1. d(Tx,Ty) ≤ αd(x, y)

2. d(Tx,Ty) ≤ β[d(x,Tx)+ d(y,Ty)]

3. d(Tx,Ty) ≤ γ [d(x,Ty)+ d(y,Tx)]

Then the mapping T : E → E satisfying all above three conditions is called a Zam-
firescu operator. Any mapping satisfying the above condition 2 is called a Kannan map-
ping while the mapping satisfying the above condition 3 is called a Chatterjea operator. 
Results on stability and T-stability of Picard iteration using the contractive conditions 
can be found in Rhoades (1974, 1990, 1991), Liu (1995), Yousefi (2012), Rhoades and Sol-
tuz (2006), Qing and Rhoades (2008), Asadi et al. (2009), Saadati et al. (2009), Olatinwo 
(2008) and references there in.

Huang and Zhang (2007) obtained a generalisation of metric space by introducing the 
concept of cone metric space. They used an ordered Banach space in place of set of real 
numbers in metric space. They also obtained some fixed point theorems in this space 
for mappings satisfying various types of contractive conditions. Some results on cone 
metric space can be found in Singh and Singh (2014), Singh and Singh (2015), Singh and 
Sing (2014), Singh (2014) and references there in.

(2)d(Tx,Ty) ≤ αd(x, y), ∀x, y ∈ E,α ∈ [0, 1)

(3)xn+1 = (1− αn)xn + αnTxn, n = 0, 1, 2, . . .

(4)
xn+1 = (1− αn)xn + αnTzn
zn = (1− βn)xn + βnTxn

}

n = 0, 1, . . .

(5)d(Tx,Ty) ≤ β[d(x,Tx)+ d(y,Ty)], ∀x, y ∈ E.

(6)d(Tx,Ty) ≤ γ [d(x,Ty)+ d(y,Tx)], ∀x, y ∈ E
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Let E be a real Banach space. A subset P of E is called a cone if

1. P is closed, non-empty and P �= 0

2. a, b ∈ R, a, b ≥ 0 and x, y ∈ P imply ax + by ∈ P

3. P ∩ (−P) = 0.

Given a cone P ⊂ E we define the partial ordering ≤ with respect to P by x ≤ y if and 
only if y− x ∈ P. We write x < y to denote that x ≤ y but x �= y, while x ≪ y will stand 
for y− x ∈ int.P(interior of P).

There are two kinds of cone. They are normal cone and non-normal cone. A cone P ⊂ E 
is normal if there is a number K > 0 such that for all x, y ∈ P, 0 ≤ x ≤ y ⇒� x �≤ K � y � . 
In other words if xn ≤ yn ≤ zn and limn→∞xn = limn→∞zn = x imply limn→∞yn = x. 
Also, a cone P ⊂ E is regular if every increasing sequence which is bounded above is 
convergent.

The aim of this paper is to show the existence and uniqueness of fixed points of T-sta-
bility for an iteration on partial cone metric space under Zamfirescu contraction. We 
give an application in integral equation. We also give illustrative examples that verifies 
our results.

We have the following basic definitions:

Definition 1 (Huang and Zhang 2007) Let X be a nonempty set. Suppose the mapping 
d : X × X → E satisfies the following conditions:

1. 0 < d(x, y) for all x, y ∈ X and d(x, y) = 0 iff x = y.
2. d(x, y) = d(y, x) for all x, y ∈ X.
3. d(x, y) ≤ d(x, z)+ d(z, y) for all x, y, z ∈ X.

 Then d is called a cone metric on X and (X, d) is called a cone metric space.

Definition 2 (Sonmez 2011) A partial cone metric space on a non-empty set X is a 
function p : X × X → E such that for all x, y, z ∈ X

1. x = y if and only if p(x, x) = p(x, y) = p(y, y),
2. 0 ≤ p(x, x) ≤ p(x, y),
3. p(x, y) = p(y, x),
4. p(x, y) ≤ p(x, z)+ p(z, y)− p(z, z).

Then the pair (x, p) such that X is non-empty set and p is a partial cone metric on X is 
called a partial cone metric space. We know that if p(x, y) = 0, then x = y. But if x = y, 
then p(x, y) may not be 0.

A cone metric space is a partial cone metric space. But there are partial cone metric 
space which are not cone metric space. The following example verifies the statement.

Example 3 (Sonmez 2011) Let E = R
2,P = {(x, y) ∈ E : x, y ≥ 0}, X = R

+ and 
p : X × X → E defined by p(x, y) = (max.{x, y},αmax.{x, y}) where α ≥ 0 is a constant. 
Then (X, p) is a partial cone metric space which is not a cone metric space.
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Definition 4 (Sonmez 2011) Let (X, p) be a partial cone metric space. Let {xn} be a 
sequence in X and x ∈ X. Then {xn} is said to be convergent to x and x is called a limit of 
{xn} if

Definition 5 (Sonmez 2011) Let (X, p) be a partial cone metric space. Let {xn} be a 
sequence in X and x ∈ X. Then {xn} is said to be Cauchy sequence if there exists an a ∈ P 
such that for every ǫ > 0 there is N such that � p(xn, xm)− a �< ǫ for all n,m > N .

Definition 6 (Sonmez 2011) A partial cone metric space (X, p) is said to be complete if 
and only if every Cauchy sequence in X is convergent.

Definition 7 (Olatinwo 2008) Let (X, d) be a complete metric space, T : X → X a 
selfmap of X. Suppose that FT = {p ∈ E : Tp = p} is the set of fixed points of T. Let 
{xn}

∞
n=0 ⊂ E be the sequence generated by an iteration procedure involving T which is 

defined by xn+1 = f (T , xn), n = 0, 1, 2 . . . where x0 ∈ X is the initial approximation and f 
is some function. Suppose {xn}∞n=0 converges to fixed point p of T. Let {yn}∞n=0 ⊂ X and set

Then, the iteration procedure is said to be T-stable or stable with respect to T if and only 
if limn→∞ ǫn = 0 implies limn→∞ yn = p.

Remark 8 (Olatinwo 2008) Since the metric space is induced by the norm, we have

in place of

in the definition of stability whenever we are working in normed linear space or Banach 
space.

Main results
In this section we establish iteration procedure in partial cone metric spaces. This is to 
stretch out some recent results of T-stability. Let (X, p) be a partial cone metric space. 
Let {Tn}n be a sequence of self maps of X with 

⋂

n F(Tn) �= φ. Let x0 be a point of X 
and posit that yn+1 = F(Tn, yn) is an iteration procedure involving {Tn}n, which gives a 
sequence {yn} of points from X.

In general, such a sequence {zn} can be acquired in the following way. Let y0 be a point 
in X. Put yn+1 = f (Tn, yn). Let y0 = z0. Now, y1 = f (T0, y0). Because of rounding or in 
the function T0, a new value z1 approximately equal to y0 might be procured in place 
of f (T0, y0). Then to approximate z1, the value f (T1, y1) is determined to furnish z2, 
approximation of f (T1, z1). This computation is persisted to obtain {zn} as an approxi-
mate sequence of {yn}.

lim
n→∞

p(xn, x) = lim
n→∞

p(xn, xn) = p(x, x).

ǫ = d(yn+1, f (T , yn)), n = 0, 1, 2, . . .

ǫn = �yn+1 − f (T , yn)�, n = 0, 1, 2, . . .

ǫn = d(yn+1, f (T , yn)), n = 0, 1, 2, . . .
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Definition 9 The iteration yn+1 = F(Tn, yn) is said to be {Tn}-semistable (or semista-
ble) with respect to {Tn} if {yn} converges to a fixed point q in 

⋂

n F(Tn) �= φ and when-
ever {zn} is a sequence in X with limn→∞p(yn, f (Tn, yn)) = 0 and p(yn, f (Tn, zn)) = o(tn) 
for some sequence tn ⊂ R

+, then we have zn → z.

Definition 10 The iteration yn+1 = F(Tn, yn) is said to be {Tn} stable(or stable) with 
respect to {Tn} if {zn} converges to a fixed point q in 

⋂

n F(Tn) �= φ and whenever {zn} is a 
sequence in X with limn→∞p(yn, f (Tn, zn)) = 0, then we have zn → z.

Remark 11 Tn = T  for all n that gives the definition of T-stability.

Theorem 12 Let (X, p) be a complete partial cone metric space. Let P be a normal cone 
with normal constant K and T : X → X with F(T ) �= φ. If there exists c ∈ (0, 1

2
) such 

that p(Tx,Ty) ≤ cp(x, y) for all x, y ∈ X and u ∈ F(T ) and in addition, whenever {yn} is a 
sequence with p(yn,Tyn) → 0 as n → ∞, then Picard iteration is T-stable.

Proof Let {yn} ⊆ X , ǫn = p(yn+1,Tyn) and ǫn → 0 as n → ∞. Then for any n ∈ N, we 
have

Hence, p(yn+1,u) = 0. But since p(Tyn+1,Tyn+1) ≤ cp(yn+1, yn+1) = 0. We have that 
p(Tyn+1,Tyn+1) = p(Tyn+1,u) = p(u,u) = 0. This implies that Tyn = u. Therefore, 
Limn→∞yn = q.

For uniqueness: Let v be another fixed point of T, then

Since c < 1 we have p(u, v) = p(u,u) = p(v, v). Hence u = v.
Thus the fixed point of T is unique.  �

Theorem 13 Let (X, p) be a complete partial cone metric space. Let P be a normal cone 
with normal constant K and T : X → X with F(T ) �= φ. If there exists c ∈ (0, 1

2
) such that 

p(Tx,Ty) ≤ c(p(Tx, x)+ p(Ty, y)) for all x, y ∈ X and u ∈ F(T ) and in addition, when-
ever {yn} is a sequence with p(yn,Tyn) → 0 as n → ∞, then Picard iteration is T-stable.

Proof Let {yn} ⊆ X , ǫn = p(yn+1,Tyn) and ǫn → 0 as n → ∞. Then for any n ∈ N, we 
have

Hence, p(Tyn+1,u) = 0. But since

p(yn+1,u) ≤ p(yn+1,Txn)+ p(Txn,u)− p(Txn,Txn)

⇒ p(yn+1,u) ≤ p(Tyn+1,T
n+1x0)+ p(Tn+1x0,u)− p(Tn+1x0,T

n+1x0)

⇒ p(yn+1,u) ≤ cp(yn,T
nx0)+ p(Tn+1x0,u)

∴� p(yn+1,u) � ≤ Kc � p(yn,T
nx0) � + � p(Tn+1x0,u) �→ 0

p(u, v) = p(Tu,Tv) ≤ cp(u, v)

p(yn+1,u) ≤ p(Tyn+1,Txn)+ p(Txn,u)− p(Txn,Txn)

≤ c[p(Tyn+1, xn)+ p(Txn, xn)] + p(xn+1,u)

≤ K
1

1− c
(c � p(xn+1, xn) � + � p(xn+1,u) �) → 0.

p(Tyn+1,Tyn+1) ≤ c[p(Tyn+1,u)+ p(Tyn+1, q)] = 2cp(Txn,u) = 0.
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We have that p(Tyn+1,Tyn+1) = p(Tyn+1,u) = p(u,u) = 0. This implies that Tyn+1 = u.
For uniqueness: Let v be another fixed point of T, then

Hence p(u, v) = p(u,u) = p(v, v) = 0. We get u = v.
Thus the fixed point of T is unique.  �

Theorem 14 Let (X, p) be a complete partial cone metric space. Let P be a normal cone 
with normal constant K and T : X → X with F(T ) �= φ. If there exists c ∈ (0, 1

2
) such that 

p(Tx,Ty) ≤ c(p(x,Ty)+ p(y,Tx)) for all x, y ∈ X and u ∈ F(T ) and in addition, when-
ever {yn} is a sequence with p(yn,Tyn) → 0 as n → ∞, then Picard iteration is T-stable.

Proof Let {yn} ⊆ X , ǫn = p(yn+1,Tyn) and ǫn → 0 as n → ∞. Then for any n ∈ N, we 
have

Hence, p(Tyn+1,u) = 0. But since

We have that p(Tyn+1,Tyn+1) = p(Tyn+1,u) = p(u,u) = 0. This implies that Tyn+1 = u.
For uniqueness: Let v be another fixed point of T, then

Hence p(u, v) = p(u,u) = p(v, v) = 0.
We get u = v. Thus the fixed point of T is unique.  �

Example 15 Let X = [0,∞) and let p be the partial cone metric on X defined by 
p(x, y) = | x − y |. Let T : X → X such that

Then p(Tx, 1) ≤ p(x,Tx) for each x ∈ [0,∞). If Tx = 1, then the inequality of the 
Theorem 12 is true. If x ∈ [ 1

2n ,
1

2n−1
), n ≥ 1, then Tx = n and

If x ∈ (n− 1, n]), n ≥ 2, then Tx = 1
n and

p(u, v) = p(Tu,Tv) ≤ c[p(Tu, v)+ p(Tv, v)] = 0.

p(yn+1,u) ≤ p(Tyn+1,Txn)+ p(Txn,u)− p(Txn,Txn)

≤ c[p(Tyn+1,Txn)+ p(xn,Tyn)] + p(xn+1,u)

≤ K
1

1− c
(c � p(yn+1, xn+1) � + � p(xn+1,u) �)

≤ K
1

1− c
(c � p(yn+1,u) � + � p(xn+1,u) �) → 0

p(Tyn+1,Tyn+1) ≤ c[p(Tyn+1,u)+ p(Tyn+1, q)] = 2cp(Txn,u) = 0.

p(u, v) = p(Tu,Tv) ≤ c[p(u,Tv)+ p(v,Tu)] = 0

Tx =















1 if x ∈ {0, 1} ∪

�

1
2n+1

, 1
2n

�

n if x ∈

�

1
2n ,

1
2n−1

�

, n ≥ 1

1
n if x ∈ (n− 1, n], n ≥ 2

p(Tx, 1) = n− 1 ≤
n− 1

2n− 1
< n− x = p(x,Tx).
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for each x ∈ X, where q = 1 ∈ F(T ) and It is easy to see that Picard iteration xn+1 = Txn 
converges to 1 for every x0 ∈ X. Let y2n = 1

2n , y2n+1 =
1

4n+4
, n ≥ 1. Then

and

so p(yn+1,Tyn) → 0.

An application

Theorem  16 Let X  =  C[0, 1], R with � f �∞ = Sup0≤x≤1 | f (x) | for f ∈ X and let 
T : X → X defined by Tf (x) =

∫ 1

0
F(x, f (t))dt where

1. F : [0, 1] × R → R is a continuous function.
2. The partial derivative Fy of F with respect to y exists and | Fy(x, y) |≤ c for some 

c ∈ [0, 1)

3. For every real number 0 ≤ a < 1 one has ax ≤ F(x, ay) for every x, y ∈ [0, 1]

Let P = {(x, y) ∈ R
2 : x, y ≥ 0} be a normal cone and (X, p) the complete partial cone 

metric space defined p(f , g) = (� f − g �∞,α � f − g �∞) where α ≥ 0. Then Picard’s 
iteration is T-stable if 0 ≤ c ≤ 1

2
.

Example 17 Let F(x, y) = x+y
4

. Then F satisfies of Theorem  16 if 0 ≤ c < 1. Let 
T : X → X be a self-map defined by Tf (x) = x + ( 1

4
)+

∫ 1

0
f (t)dt. Then T has unique 

fixed point and Picard’s iteration is T-stable.

Conclusion
We extend and prove the T-stability of Picard’s iteration satisfying Zamfirescu contrac-
tion in partial cone metric space. Our results are more general than that of the results of 
metric and cone metric spaces. This result can be extended to other spaces.
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p(Tx, 1) = 1−
1

n
<

x − 1

n
= p(x,Tx).

p(y2n+1,Ty2n) =
1

2n
−

1

(4n+ 4)
=

(n+ 2)

[4n(n+ 1)]

p(y2n+2,Ty2n+1) = 2n+ 2− 2n− 2 = 0,



Page 8 of 8Chhatrajit and Rohen  SpringerPlus  (2016) 5:284 

References
Asadi M, Soleimani H, Vaezpour SM, Rhoades BE (2009) On T-stability of Picard’s iteration in cone metric space. Fixed Point 

Theory Appl. doi:10.1155/2009/751090
Chatterjea SK (1972) Fixed point theorems. CR Acad Bulg Sci 10:727–730
Haddadia MR (2014) Best proximity point iteration for nonexpensive mapping in Banach spaces. J Nonlinear Sci Appl 

7:126–130
Huang LG, Zhang X (2007) Cone metric spaces and fixed point theorems of contractive mapping. J Math Anal Appl 

332:1468–1476
Kang SM, Alsulami HH, Rafiq A, Shahid AA (2015) S-iteration scheme and polynomiography. J Nonlinear Sci Appl 

8:617–627
Kannan R (1968) Some results on fixed points. Bull Calcutta Math Soc 10:71–76
Liu L (1995) Fixed points of local strickly pseudo contarctive mappings using Mann and Ishikawa iteration with errors. 

Indian J Pure Appl Math 26:649–659
Okeke GA, Olaleru JO (2014) Modified Noor iterations with errors for nonlinear equations in Banach spaces. J Nonlinear 

Sci Appl 7:180–187
Olatinwo MO (2008) Some stability results for two hybrid fixed point iterative algorithm of Kirk–Ishikawa and Kirk–Mann 

type. J Adv Math Stud 1:87–96
Qing Y, Rhoades BE (2008) T-stability of Picard iteration in metric space. Fixed Point Theory Appl. doi:10.1155/2008/418971
Rhoades BE (1974) Fixed point iteration using infinite matices. Trans Am Math Soc 196:161–176
Rhoades BE (1990) Fixed point theorems and stability results for fixed point iteration procedures. Indian J Pure Appl Math 

21:1–9
Rhoades BE (1991) Research expository and survey article; some fixed point iteration procedures. Int J Math Math Sci 

40:1–16
Rhoades BE, Soltuz SM (2006) The equivalence between the T-stablilities of Mann and Ishikawa iteration. J Math Anal 

Appl 318:472–475
Saadati R, Vaezpour SM, Rhoades BE (2009) T-stability approach to variational iteration method for solving integral equa-

tions. Fixed Point Theory Appl. doi:10.1155/2009/393245
Saipriya P, Chaipunya P, Cho YJ, Kumam P (2015) On strong and �-convergence of modified S-iteration for uniformly 

continuous total asymptotically nonexpansive mappings in CAT κ spaces. J Nonlinear Sci Appl 8:965–975
Singh TC, Singh YR (2014) Some remarks on D-quasi contraction on cone symmetric space. Int J Math Arch 5:75–78
Singh TC, Singh YR (2014) Triple fixed points theorems on cone Banach space. J Glob Res Math Arch 2:43–49
Singh YR, Singh TC (2014) Semi-compatible mappings and fixed point theorems in cone metric space. Wulfenia 

21:216–224
Singh TC, Singh YR (2015) A comparative study of relationship among various types of spaces. Int J Appl Math 25:29–36
Sonmez A (2011) Fixed point theorems in partial cone metric spaces. Xiv:1101.2741v1 [math.GN]
Yao Z, Zhu L-J, Liou Y-C (2015) Strong covergence of Halpern-type iteration algorithm for fixed point problems in Banach 

spaces. J Nonlinear Sci Appl 8:489–495
Yousefi B (2012) Stability of an iteration in cone metric space. Int J Pure Appl Math 76:9–13
Zamfirescu T (1972) Fixed point theorem in metric spaces. Arch Math 23:292–298

http://dx.doi.org/10.1155/2009/751090
http://dx.doi.org/10.1155/2008/418971
http://dx.doi.org/10.1155/2009/393245
http://xiv.org/abs/1101.2741v1

	Some results on T-stability of Picard’s iteration
	Abstract 
	Background
	Main results
	An application
	Conclusion
	Authors’ contributions
	References




