
Convergence of batch gradient learning
with smoothing regularization and adaptive
momentum for neural networks
Qinwei Fan1,2,3*, Wei Wu2 and Jacek M. Zurada3,4

Background
A multilayer perceptron network trained with a highly popular algorithm known as the
error back-propagation (BP) has been dominating in the neural network literature for
over two decades (Haykin 2008). BP uses two practical ways to implement the gradi-
ent method: the batch updating approach that accumulates the weight corrections over
the training epoch before performing the update, while the online learning approach
updates the network weights immediately after each training sample is processed (Wil-
son and Martinez 2003).

Note that training is usually done by iteratively updating of the weights that reduces
error value, which is proportional to the negative gradient of a sum-square error (SSE)
function. However, during the training of feedforward neural networks (FNN) with
SSE, the weights might become very large or even unbounded. This drawback can be
addressed by adding a regularization term to the error function. The extra term acts as a
brute-force to drive unnecessary weights to zero to prevent the weights from taking too
large values and then it can be used to remove weights that are not needed, and is also
called penalty term (Haykin 2008; Wu et al. 2006; Karnin 1990; Reed 1993; Saito and
Nakano 2000).

Abstract 

This paper presents new theoretical results on the backpropagation algorithm with
smoothing L1/2 regularization and adaptive momentum for feedforward neural net‑
works with a single hidden layer, i.e., we show that the gradient of error function goes
to zero and the weight sequence goes to a fixed point as n (n is iteration steps) tends
to infinity, respectively. Also, our results are more general since we do not require the
error function to be quadratic or uniformly convex, and neuronal activation functions
are relaxed. Moreover, compared with existed algorithms, our novel algorithm can get
more sparse network structure, namely it forces weights to become smaller during the
training and can eventually removed after the training, which means that it can simply
the network structure and lower operation time. Finally, two numerical experiments are
presented to show the characteristics of the main results in detail.

Keywords:  Feedforward neural networks, Adaptive momentum,
Smoothing L1/2 regularization, Convergence

Open Access

© 2016 Fan et al. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://
creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided
you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate
if changes were made.

RESEARCH

Fan et al. SpringerPlus (2016) 5:295
DOI 10.1186/s40064-016-1931-0

*Correspondence:
qinweifan@126.com
1 School of Science, Xi’an
Polytechnic University,
Xi’an 710048, People’s
Republic of China
Full list of author information
is available at the end of the
article

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s40064-016-1931-0&domain=pdf

Page 2 of 17Fan et al. SpringerPlus (2016) 5:295

There are four main different penalty approaches for BP training: weight decay pro-
cedure (Hinton 1989), weight elimination (Weigend et al. 1991), approximate smoother
procedure (Moody and Rognvaldsson 1997) and inner product penalty (Kong and Wu
2001).

In the weight decay procedure, the complexity penalty term is defined as the squared
norm of the weight vector, and all weights in the multilayer perceptron are treated
equally. In the weight elimination procedure, the complexity penalty represents the
complexity of the network as function of weight magnitudes relative to a pre-assigned
parameter (Reed 1993).

In approximate smoother procedure, this penalty term is used for a multilayer per-
ceptron with a single hidden layer and a single neuron in the output layer. Compared
with the earlier methods, it does two things. First, it distinguishes between the roles of
weights in the hidden layer and those in the output layer. Second, it captures the interac-
tions between these two sets of weights, however, it is much more demanding in com-
putational complexity than weight decay or weight elimination methods. In Kong and
Wu (2001) the inner-product form is proposed and its efficiency in general performance
of controlling the weights is demonstrated. Convergence of the gradient method for the
FNN has been considered by Zhang et al. (2015, 2009), Wang et al. (2012) and Shao and
Zheng (2011).

The convergence of the gradient method with momentum is considered in Bhaya and
Kaszkurewicz (2004), Torii and Hagan (2002), Zhang et al. (2006), in Bhaya and Kasz-
kurewicz (2004) and Torii and Hagan (2002) under the restriction that the error func-
tion is quadratic. Inspired by Chan and Fallside (1987), Zhang et al. (2006) considers the
convergence of a gradient algorithm with adaptive momentum, without assuming the
error function to be quadratic as in the existing results. However, in Zhang et al. (2006),
the strong convergence result is based on the assumption that the error function is uni-
formly convex, which still seems a little intense.

The size of a hidden layer is one of the most important considerations when dealing
with real life tasks using FNN. However, the existing pruning methods may not prune
the unnecessary weights efficiently, so how to efficiently simplify the network structure
becomes our main task.

Recently, considerable attention has been paid to the sparsity problems and a class of
regularization methods was proposed which take the following form:

where l(·, ·) is a loss function, (xi, yi)ni=1 is a data set, and � is the regularization param-
eter. When h is in the linear form and the loss function is square loss, ‖h‖k is normally
taken as the norm of the coefficient of linear model.

For k = 0, (1) becomes L0 regularization and can be understood as a penalized least
squares with penalty ‖h‖0, which yields the most sparse solutions, but for large data anal-
ysis it faces the problem of combinatory optimization (Davis 1994; Natarajan 1995). In
order to deal with such difficulty, Tibshirani (1996) proposed L1 regularization where
k = 1 and ‖h‖1 is the L1 norm of n dimensional Euclidean space Rn, which just needs to

(1)min

{

1

n

n
∑

i=1

l(yi, h(xi))+ ��h�k

}

Page 3 of 17Fan et al. SpringerPlus (2016) 5:295

solve a quadratic programming problem but is less sparse than the L0 regularization. At
the same time Donoho (1995, 2005) proved that under some conditions the solutions of
the L0 regularizer are equivalent to those of the L1, so the hard NP optimization problem
can be avoided in the L1 regularizer. In order to find a new regularizer which is more
sparse than the L1 regularizer while it is still easier to be solved than the L0 regularizer, in
Xu et al. (2010) a modified L1/2 regularizer is proposed of the following form:

where � is the tuning parameter. As shown in Xu et al. (2010), L1/2 regularizer has a non-
convex penalty and possesses many promising properties such as unbiasedness, sparsity,
oracle properties and can be taken as a representative of the Lr (0 < r < 1) regularizer.
Recently, we develop a novel method to prune FNNs through modify the usual L1/2
regularization term by smoothing technique. The new algorithm not only removes the
oscillation of the gradient value, but also get better pruning, namely the final weights to
be removed are smaller than those produced through the usual L1/2 regularization (Wu
et al. 2014; Fan et al. 2014).

The focus of this paper is on extension of L1/2 regularization beyond its basic concept
though its augmentation with a momentum term. Also, there are some other applica-
tions of FNNs for optimization problems, such as the generalized gradient and recurrent
neural network methods shown as Liu et al. (2012) and Liu and Cao (2010)

It is well known that a general drawback of gradient based BP learning process is its
slow convergence. To accelerate learning, a momentum term is often added (Haykin
2001; Chan and Fallside 1987; Qiu et al. 1992; Istook and Martinez 2002). By adding
momentum to the update formula, the current weight increment is a linear combination
of the gradient of the error function and the previous weight increment. As a result, the
updates respond not only to the local gradient but also to recent gradient in the error
function. Selected reports discuss the NN training with momentum term in the litera-
ture (Torii and Hagan 2002; Perantonis and Karras 1995; Qian 1999).

As demonstrated in Torii and Hagan (2002), there always exists a momentum coef-
ficient that will stabilize the steepest descent algorithm, regardless of the value of the
learning rate (we will define it below). In addition, it shows how the value of the momen-
tum coefficient changes the convergence properties. Momentum acceleration, its per-
formance in terms of learning speed and scalability properties is evaluated and found
superior to the performance of reputedly fast variants of the BP algorithm in several
benchmark training tasks in Perantonis and Karras (1995). Qian (1999) shows that in the
limit of continuous time, the momentum parameter is analogous to the mass of Newto-
nian particles that move through a viscous medium in a conservative force field.

In this paper, a modified batch gradient method with smoothing L1/2 regularization
penalty and adaptive momentum algorithm (BGSAM) is proposed. It damps oscillations
present in the L1/2 regularization and in the adaptive momentum algorithm (BGAM). In
addition, without the requirement that the error function is quadratic or uniformly con-
vex, we present a comprehensive study of the weak and strong convergence for BGSAM
which offers an effective improvement in real life application.

(2)β̂L 1
2

= argmin

{

1

n

n
∑

i=1

(Yi − XT
i β)

2 + �

p
∑

i=1

|βi|
1
2

}

Page 4 of 17Fan et al. SpringerPlus (2016) 5:295

The rest of this paper is arranged as follows. The algorithm BGSAM is described in
“Batch gradient method with smoothing L1/2 regularization and adaptive momentum
(BGSAM)” section. In “Convergence results” section, the convergence results of BGSAM
are presented, and the detailed proofs of the main results are stated in the “Appendix”.
The performance of BGSAM is compared to BGAM and the experimental results shown
in “Numerical experiments” section. Concluding remarks are in “Conclusions” section.

Batch gradient method with smoothing L1/2 regularization and adaptive
momentum (BGSAM)
Batch gradient method with L1/2 regularization and adaptive momentum (BGAM)

Here and below, some definitions and notations used in e.g. Wu et al. (2006), Shao and
Zheng (2011), and Wu et al. (2006), Shao and Zheng (2011) have been re-defined and
used without repeatedly citing the references. We consider a FNN with three layers,
and we denote the numbers of neurons of the input, hidden and output layers by p, q
and 1, respectively. Suppose that {ξ j ,Oj}Jj=1 ⊂ Rp × R is the given set of J training sam-
ples. Let w0 = (w10,w20, . . . ,wq0)

T ∈ Rq be the weight vector between the hidden units
and the output unit, and wi = (wi1,wi2, . . . ,wip)

T ∈ Rp be the weight vector between
the input units and the hidden unit i (i = 1, 2, . . . , q). To simplify the presentation, we
combine the weight vectors, and write W = (wT

0 ,w
T
1 , . . . ,w

T
q)

T ∈ Rq+pq and we define a
matrix V = (w1,w2, . . . ,wq)

T ∈ Rq×p. We also define a vector function G : Rq → Rq, for
x = (x1, x2, . . . , xq)

T ∈ Rq

Let g : R → R be a given transfer function for the hidden and output nodes, which is
typically, but not necessarily, a sigmoid function. Then for each input ξ ∈ Rp, the actual
output vector of the hidden layer is G(V ξ) and the final output of the network is

For a fixed W, the output error function with the L1/2 regularization penalty term is

where gj(t) := 1
2 (O

j − g(t))2, j = 1, 2, . . . , J , t ∈ R, � > 0 is the penalty coefficient, and
| · | denotes the absolute value. The gradient of the error function is

(3)G(x) = (g(x1), g(x2), . . . , g(xq))
T .

(4)g(w0 · G(V ξ)).

(5)

E(W) = 1

2

J
∑

j=1

(Oj − g(w0 · G(V ξ j)))2 + �

q
∑

i=1

p
∑

k=0

|wik |
1
2

=
J

∑

j=1

gj(w0 · G(V ξ j))+ �

q
∑

i=1

p
∑

k=0

|wik |
1
2

(6)EW (W) = (ET
w0
(W),ET

w1
(W), . . . ,ET

wq
(W))T

Page 5 of 17Fan et al. SpringerPlus (2016) 5:295

where

The gradient of the error function with respect to wi0 and wik are, respectively, given by

where i = 1, 2, . . . , q, and k = 1, 2, . . . , p.
The detailed BGAM algorithm is presented as follows. We denote

Wn+1 = Wn +�Wn, n = 0, 1, 2, . . ., starting from an arbitrary initial value W 0 and W 1,
and the weights {Wn} are updated iteratively by

The learning rate is assumed constant and satisfies η > 0, and αn
W = (αn

w0
,αn

w1
, . . . ,αn

wq
)

is the momentum coefficient vector of the n-th training. It consists of coefficients αn
wi

 for
each �wn

ik(i = 1, 2, . . . , q, k = 1, 2, . . . , p), and αn
w0

 for each �wn
i0(i = 1, 2, . . . , q). Similar

to Shao and Zheng (2011), for every αn
wi

, after each training epoch it is chosen as

where α ∈ (0, 1) is the momentum factor. Compared with the traditional algorithm, the
BGAM has better pruning performance, but we notice that this usual L1/2 regularization
term used in this part involves in absolute values and it is not differentiable at the origin,
which will cause difficulty in the convergence analysis. More importantly, it causes oscil-
lations of the error function and the norm of gradient. In order to overcome these draw-
backs we improved the BGAM algorithm as follows:

Smoothing L1/2 regularization and adaptive momentum (BGSAM)

This section introduces a modified algorithm with smoothing L1/2 regularization and
adaptive momentum term. The network structure is the same as the description in part
of last subsection (BGAM). We modify the usual L1/2 regularization term at the origin
(i.e. we replace the absolute values of the weights by a smooth function in a neighbor-
hood of the origin). Then we use a smooth function f(x) to approximate |x|. We get the
following error function with a smoothing L1/2 regularization penalty term:

ET
w0
(W) = (Ew10(W),Ew20(W), . . . ,Ewq0(W))

ET
w1
(W) = (Ew11(W),Ew12(W), . . . ,Ew1p(W))

ET
w2
(W) = (Ew21(W),Ew22(W), . . . ,Ew2p(W))

· · ·
ET
wq
(W) = (Ewq1(W),Ewq2(W), . . . ,Ewqp(W))

(7)Ewi0(W) =
J

∑

j=1

g ′j (w0 · G(V ξ j))g(wiξ
j)+ �sgn(wi0)

2|wi0|
1
2

(8)Ewik
(W) =

J
∑

j=1

g ′j (w0 · G(V ξ j))wi0g
′(wi · ξ j)ξ jk +

�sgn(wik)

2|wik |
1
2

(9)�Wn = −ηEW (Wn)+ αn
W�Wn−1, n = 0, 1, 2, . . .

(10)αn
wi

=
{

α · −ηEwi (W
n)·�wn−1

i

��wn−1
i �2 , if Ewi(W

n) ·�wn−1
i < 0

0, otherwise

Page 6 of 17Fan et al. SpringerPlus (2016) 5:295

where gj(t) := 1
2 (O

j − g(t))2, j = 1, 2, . . . , J , t ∈ R, � > 0 is the penalty coefficient. Here,
by smoothing we mean that, in a neighborhood of the origin, we replace the absolute
values of the weights by a smooth function of the weights. For definiteness and simplic-
ity, we choose f(x) as a piecewise polynomial function such as:

where a is a small positive constant. and | · | denotes the absolute value. Then, from the
definition of f(x) immediately yields

The gradient of the error function with respect to W as in (6), and the gradients of the
error function with respect to wi0 and wik are then as follows:

where i = 1, 2, . . . , q, k = 1, 2, . . . , p.
For BGSAM algorithm, we denote Wn+1 = Wn +�Wn, n = 0, 1, 2, Starting with

an initial value W 0 and W 1, the weights {Wn} are updated iteratively by

Here the learning rate η, the momentum coefficient vector of the n-th training αn
W and

other coefficients are the same as the description of algorithm BGAM. For each αn
wi

, after
each training epoch it is chosen as (10).

Convergence results
The following assumptions are needed to introduce the relating convergence theorems
of BGSAM.

(A1)	� |g(t)|, |g ′(t)|, |g ′′(t)| are uniformly bounded for t ∈ R.
(A2)	� There exists a bounded region � ⊂ Rn such that {wn

0}∞n=0 ⊂ �.
(A3)	� 0 < η < 1

(M�+C1)(1+α)2
, where M =

√
6

4
√
a3

 and C1 is a constant defined in (16)
below.

(11)

E(W) = 1

2

J
∑

j=1

(Oj − g(w0 · G(V ξ j)))2 + �

q
∑

i=1

p
∑

k=0

f (wik)
1
2

=
J

∑

j=1

gj(w0 · G(V ξ j))+ �

q
∑

i=1

p
∑

k=0

f (wik)
1
2

(12)f (x) =
{ |x|, if |x| ≥ a

− 1
8a3

x4 + 3
4ax

2 + 3
8a, if |x| < a

f (x) ∈
[

3

8
a,+∞

)

, f ′(x) ∈ [−1, 1], f ′′(x) ∈
[

0,
3

2a

]

(13)Ewi0(W) =
J

∑

j=1

g ′j (w0 · G(V ξ j))g(wi · ξ j)+ �
f ′(wi0)

2f (wi0)
1
2

(14)Ewik
(W) =

J
∑

j=1

g ′j (w0 · G(V ξ j))wi0g
′(wi · ξ j)ξ jk + �

f ′(wik)

2f (wik)
1
2

(15)�Wn = −ηEW (Wn)+ αn
W�Wn−1, n = 0, 1, 2, . . .

Page 7 of 17Fan et al. SpringerPlus (2016) 5:295

Assume conditions (A1)–(A2) is valid. Then there are some positive constants C1–C5
such that

Theorem 1  If assumptions (A1)−(A3) are valid for any arbitrary initial value W 0 and
W 1, the error function be defined by (1), and let the learning sequence 1{Wn} be generated
by the iteration algorithm (15), then we have the following convergence

(i)  limn→∞ EW (Wn) = 0. Moreover, (A4) if there exists a compact set � such that
Wn ∈ � and the set �0 = {W ∈ � : EW (W) = 0} contains finite points also holds,
then we have the following convergence

(ii)  limn→∞(Wn) = W ∗, where W ∗ ∈ �0.

Numerical experiments
This section presents the simulations that verify the performance of BGAM and
BGSAM. Our theoretical results are experimentally verified with the 3-bit parity prob-
lem, which is a typical benchmark problem in area of the neural networks.

The two algorithms (BGAM and BGSAM) are implemented by the networks with the
structure 5-7-1 (input p = 5, hidden q = 7 and output nodes, see Fig. 1). Each of the two
algorithms are carried out fifty trials for 3-bit parity problem and then take the mean
values, and the termination criterion is that the error is <1e−6 or 3000 iterations. For
the network with linear output, we set the transfer function for hidden neurons to be
tansig(·) and that for output layer to be g(t) = t. For the network with nonlinear output,
the transfer functions for both hidden and output neurons are tansig(·). The inputs and
the ideal outputs are shown in Table 1.

(16)

C1 = J (1+ C2)C3 max{C2
2 ,C

2
5 } +

1

2
J (1+ C2)C3 +

1

2
JC2

3C
2
4C5,

C2 = max
{√

qC3, (C3C4)
2
}

,

C3 = max

{

sup
t∈R

|g(t)|, sup
t∈R

|g ′(t)|, sup
t∈R

|g ′′(t)|, sup
t∈R,1≤j≤J

|g ′j (t)|, sup
t∈R,1≤j≤J

|g ′′j (t)|
}

,

C4 = max
1≤j≤J

�ξ j�, C5 = sup
n∈N

�wn
0�.

Fig. 1  Feedforward neural network with one hidden layer and one output

Page 8 of 17Fan et al. SpringerPlus (2016) 5:295

The performance results of BGAM and BGSAM are shown in the following figures.
Figures 2, 3 and 4 present the comparison results for learning rate η, penalty parameter �
and momentum term α with 0.01, 0.0006 and 0.03, respectively.

From Figs. 2 and 3, it can be seen that the error function decreases monotonically
and the norm of the gradient of the error function approaches zero as depicted by the
convergence theorem, respectively. Also Fig. 3 show us that our modified algorithm

Table 1  3-bit parity problem

Input Output Input Output

1 1 1 −1 1 1 −1 −1 −1 1

1 1 −1 −1 0 −1 1 1 −1 0

1 −1 1 −1 0 −1 −1 1 −1 1

−1 −1 −1 −1 0 −1 1 −1 −1 1

Fig. 2  The curve of error function

Fig. 3  The curve of norm of gradient

Page 9 of 17Fan et al. SpringerPlus (2016) 5:295

overcomes the drawbacks of numerical oscillations, i.e., for BGSAM the norm of gra-
dient curve is much smoother than BGAM. The reason as the following: Since the
derivative of |x| jumps from −1 to +1 near the x = 0, the learning process of BGAM will
oscillate when a weight wik is close to zero, whic prevents it from getting further closer
to zero. And on the contrary, the derivative of f(x), which is a smooth approximation of
|x|, is smooth and equal to zero at the origin, and will not cause any oscillation in the
learning process when wik is close to zero. In the meantime, it can be seen that BGSAM
convergence faster than BGAM. Fig. 4 demonstrates that the effectiveness of the algo-
rithm BGSAM in controlling the magnitude of weights is better than BGAM.

Conclusions
In this paper, the smoothing L1/2 regularization term with adaptive momentum is intro-
duced into the batch gradient learning algorithm to prune FNN. First, it removes the
oscillation of the gradient value. Second, the convergence results for three-layer FNN are
proved under certain relaxed conditions. Third, the algorithm is applied to a 3-bit parity
problem and the related results are supplied to support the theoretical findings above.
Finally, this new algorithm will also effective for other types neural networks or big data
processing.
Authors’ contributions
This work was carried out by the three authors, in collaboration. All authors read and approved the final manuscript.

Author details
1 School of Science, Xi’an Polytechnic University, Xi’an 710048, People’s Republic of China. 2 School of Mathematical Sci‑
ences, Dalian University of Technology, Dalian 116024, People’s Republic of China. 3 Department of Electrical and Com‑
puter Engineering, University of Louisville, Louisville, KY 40292, USA. 4 Spoleczna Akademia Nauk, 90‑011 Lodz, Poland.

Acknowledgements
This work was supported by National Science Foundation of China (Nos. 11201051, 11501431, 11302158) and National
Science Foundation for Tian yuan of China (No. 11426167), and the Science Plan Foundation of the Education Bureau of
Shaanxi Province. The authors are grateful to the anonymous reviewers and editors for their profitable comments and
suggestions, which greatly improves this paper.

Competing interests
The authors declare that they have no competing interests.

Fig. 4  The curve of norm of weight

Page 10 of 17Fan et al. SpringerPlus (2016) 5:295

Appendix
In the following section three useful lemmas are given for convergence analysis for
BGSAM algorithm. For the sake of description, we introduce the following notations:

Using the error function (11) we have

Lemma 1  (Wu et al. 2010, Lemma 1) Suppose that F : RQ → R is continuous and dif-
ferentiable on a compact set D ⊂ RQ, and that �̄ = {x ∈ D| ∂F(x)

∂x = 0} contains only finite
number of points. If a sequence {xk} ⊂ D satisfies

then, there exists x∗ ∈ �̄ such that limk→∞ xk = x∗.

The above lemma is crucial for the strong convergence analysis, and it basically follows
the same proof as Lemma 1 in Wu et al. (2010). So its proof is omitted.

Now, we give the proofs of Theorem 1 through the following 4 steps.

Step 1. We show the following inequalities holds

Proof  With the assumption (A1), (16) and the definition of G(x), it is easy to show that
there exists a positive constant C2 such that (18) holds.

By the Lagrange mean value theorem, (A1) and (16), we obtain that

(17)

Gn,j = G(Vnξ j)

ψn,j = Gn+1,j − Gn,j

�wn
i = wn+1

i − wn
i for i = 1, 2, . . . q

�wn
0 = wn+1

0 − wn
0

E
(

Wn+1
)

=
J

∑

j=1

gj

(

wn+1
0 · G

(

Vn+1ξ j
))

+ �

q
∑

i=1

p
∑

k=0

f
(

wn+1
ik

)
1
2

E
(

Wn
)

=
J

∑

j=1

gj

(

wn
0 · G

(

Vnξ j
))

+ �

q
∑

i=1

p
∑

k=0

f
(

wn
ik

)
1
2

lim
k→∞

∥

∥

∥xk+1 − xk
∥

∥

∥ = 0, lim
k→∞

∥

∥

∥

∥

∥

∂F(xk)

∂x

∥

∥

∥

∥

∥

= 0,

(18)�G(x)� ≤ √
q sup

t∈R
|g(t)| ≤ C2, x ∈ Rq

(19)

∥

∥

∥ψ
n,j
∥

∥

∥

2
≤ C2

q
∑

i=1

∥

∥�wn
i

∥

∥

2

≤ C2η
2(1+ α)2

q
∑

i=1

∥

∥Ewi(W
n)
∥

∥

2
j = 1, 2, . . . , J .

(20)

�

�

�ψ
n,j
�

�

�

2
=

�

�

�

�

�

�

�

�

�











g ′(t̃1,j,n)(w
n+1
1 − wn

1) · ξ j
g ′(t̃2,j,n)(w

n+1
2 − wn

2) · ξ j
...

g ′(t̃q,j,n)(wn+1
q − wn

q) · ξ j











�

�

�

�

�

�

�

�

�

2

≤ C2

q
�

i=1

�

��wn
i

�

�

2

Page 11 of 17Fan et al. SpringerPlus (2016) 5:295

where t̃i,j,n ∈ R (1 ≤ i ≤ q, 1 ≤ j ≤ J) is between wn
i · ξ j and wn+1

i · ξ j.
Furthermore, in terms of (9) and (10) we can show that

On the basis of the above inequalities (20) and (21) we immediately have (19). � �

Step 2. We show the following monotonicity of the sequence {E(Wn)}

Proof  According to the definition of wn
0 and ψn,j, we get

By the Taylor mean value theorem with Lagrange remainder to g(t) at the point wn
i · ξ j ,

we obtain

where each ti,j,n lies on the segment between wn+1
i · ξ j and wn

i · ξ j,
i = 1, 2, . . . , q; j = 1, 2, . . . , J .

Together with (10) and (14), we get

(21)

��wn
i � =

∥

∥

∥
−ηEwi(W

n)+ αn
wi

·�wn−1
i

∥

∥

∥

≤ η(1+ α)�Ewi(W
n)�

(22)E(Wn+1) ≤ E(Wn), n = 0, 1, 2, . . .

(23)
wn
0ψ

n,j =
q

∑

i=1

wn
i0

(

g
(

wn+1
i · ξ j

)

− g
(

wn
i · ξ j

))

(24)

g
(

wn+1
i · ξ j

)

− g
(

wn
i · ξ j

)

= g ′
(

wn
i · ξ j

)

·�wn
i · ξ j +

1

2
g ′′
(

ti,j,n
)

(

�wn
i · ξ j

)2

(25)

J
∑

j=1

g ′j
(

wn
0 · Gn,j

)

wn
0ψ

n,j

=
q

∑

i=1

J
∑

j=1

g ′j
(

wn
0 · Gn,j

)

wn
i0g

′
(

wn
i · ξ j

)

·�wn
i · ξ j + δ1

=
p

∑

k=1

q
∑

i=1

J
∑

j=1

g ′j
(

wn
0 · Gn,j

)

wn
i0g

′
(

wn
i · ξ j

)

·�wn
ik · ξ

j
k + δ1

=
p

∑

k=1

q
∑

i=1

Ewik
(Wn) ·�wn

ik − �

p
∑

k=1

q
∑

i=1

f
(

wn
ik

)

·�wn
ik

2f
(

wn
ik

)
1
2

+ δ1

=
q

∑

i=1

Ewi(W
n) ·�wn

i − �

p
∑

k=1

q
∑

i=1

f
(

wn
ik

)

·�wn
ik

2f (wn
ik)

1
2

+ δ1

=
q

∑

i=1

Ewi(W
n)

(

−ηEwi(W
n)+ αn

wi
·�wn−1

i

)

− �

p
∑

k=1

q
∑

i=1

f
(

wn
ik

)

·�wn
ik

2f
(

wn
ik

)
1
2

+ δ1

= −η

q
∑

i=1

∥

∥Ewi(W
n)
∥

∥

2 +
q

∑

i=1

αn
wi

· Ewi(W
n)) ·�wn−1

i

− �

p
∑

k=1

q
∑

i=1

f (wn
ik) ·�wn

ik

2f (wn
ik)

1
2

+ δ1

Page 12 of 17Fan et al. SpringerPlus (2016) 5:295

where δ1 = 1
2

∑q
i=1

∑J
j=1 g

′
j

(

wn
0 · Gn,j

)

wn
i0g

′′(ti,j,n
)(

�wn
i · ξ j

)2, and ti,j,n ∈ R is between
wn
i · ξ j and wn+1

i · ξ j.
Using (10) and (13), we obtain

Apply the Taylor mean value theorem with Lagrange remainder, we have

where δ2 = 1
2

∑J
j=1 g

′′
j (sn,j)(w

n+1
0 · Gn+1,j − wn

0 · Gn,j)2, δ3 =
∑J

j=1 g
′
j (w

n
0 · Gn,j)�wn

0ψ
n,j

and sn,j ∈ R is a constant between wn
0 · Gn,j and wn+1

0 · Gn+1,j.
Substituting (25) and (26) into (27) and using the Lagrange mean value theorem for

f(x), we have

(26)

J
�

j=1

g ′j
�

wn
0 · Gn,j

�

Gn,j�wn
0

=
q

�

i=1

J
�

j=1

g ′j
�

wn
0 · Gn,j

�

g
�

wn
i ξ

j
�

·�wn
i0

=
q

�

i=1



Ewi0(W
n)− �

f ′
�

wn
i0

�

2f
�

wn
i0

�
1
2



 ·�wn
i0

= Ew0(W
n)�wn

0 − �

q
�

i=1

f ′
�

wn
i0

�

·�wn
i0

2f
�

wn
i0

�
1
2

= Ew0(W
n)

�

−ηEw0(W
n)+ αn

w0
·�wn−1

0

�

− �

q
�

i=1

f ′
�

wn
i0

�

·�wn
i0

2f
�

wn
i0

�
1
2

= −η
�

�Ew0(W
n)
�

�

2 + αn
w0
Ew0(W

n)�wn−1
0

− �

q
�

i=1

f ′
�

wn
i0

�

·�wn
i0

2f
�

wn
i0

�
1
2

(27)

E(Wn+1)− E(Wn)

=
J

∑

j=1

[

g ′j
(

wn
0 · Gn,j

)

· (wn+1
0 · Gn+1,j − wn

0 · Gn,j)

]

+ �

q
∑

i=1

p
∑

k=0

(

f
(

wn+1
ik

)
1
2 − f

(

wn
ik

)
1
2

)

+ δ2

=
J

∑

j=1

g ′j
(

wn
0 · Gn,j

)

Gn,j�wn
0 +

J
∑

j=1

g ′j
(

wn
0 · Gn,j

)

wn
0ψ

n,j

+ �

q
∑

i=1

p
∑

k=0

(

f
(

wn+1
ik

)
1
2 − f

(

wn
ik

)
1
2

)

+ δ2 + δ3

Page 13 of 17Fan et al. SpringerPlus (2016) 5:295

where ti,k ,n ∈ R is between wn
ik and wn+1

ik .
According to (21) and (28) we can conclude

Set M =
√
6

4
√
a3

, and F(x) ≡ (f (x))
1
2. Note that

It follows from (16), (18), (19) and the Cauchy-Schwartz inequality that

(28)

E(Wn+1)− E(Wn)

= −η
∥

∥EW (Wn)
∥

∥

2 − �

q
∑

i=1

p
∑

k=0

f ′
(

wn
ik

)

·�wn
ik

2f
(

wn
ik

)
1
2

+
[

q
∑

i=1

αn
i Ewi(W

n) ·�wn−1
i + αn

0Ew0(W
n) ·�wn−1

0

]

+ δ1 + δ2 + δ3 + �

q
∑

i=1

p
∑

k=0

(

f
(

wn+1
ik

)
1
2 − f

(

wn
ik

)
1
2

)

≤ −η
∥

∥EW (Wn)
∥

∥

2 + �

2

q
∑

i=1

p
∑

k=0

F ′′(ti,k ,n)(�wik)
2

+ δ1 + δ2 + δ3

(29)

E(Wn+1)− E(Wn)

≤ −η
∥

∥EW (Wn)
∥

∥

2 +M�

q
∑

i=1

p
∑

k=0

(�wik)
2 + δ1 + δ2 + δ3

= −η
∥

∥EW (Wn)
∥

∥

2 +M�

[

q
∑

i=1

��wi�2 + ��w0�2
]

+ δ1 + δ2 + δ3

≤ −η
∥

∥EW (Wn)
∥

∥

2 +M�η2(1+ α)2
∥

∥EW (Wn)
∥

∥

2 + δ1 + δ2 + δ3

≤ −η(1− �η(1+ α)2M)
∥

∥EW (Wn)
∥

∥

2 + δ1 + δ2 + δ3

F ′(x) = f ′(x)

2
√

f (x)

F ′′(x) = 2f ′′(x) · f (x)− [f ′(x)]2

4[f (x)] 32

≤ f ′′(x)

2
√

f (x)

≤
√
6

2
√
a3

Page 14 of 17Fan et al. SpringerPlus (2016) 5:295

where C6 = C3 max{C2
2 ,C

2
5 }, C7 = JC6(1+ C2)

Similarly, we can evaluate |δ3| as follows:

where C8 = 1
2 JC3(1+ C2).

Similarly, we obtain

where C9 = 1
2 JC

2
3C

2
4C5.

Using C1 = C7 + C8 + C9, from (29)–(32) and (A3) we can obtain

(30)

|δ2| ≤
C3

2

J
∑

j=1

(

�wn
0G

n+1,j + wn
0ψ

n,j
)2

≤ C3

2

J
∑

j=1

(

C2

∥

∥�wn
0

∥

∥+ C5

∥

∥

∥
ψn,j

∥

∥

∥

)2

≤ C6

J
∑

j=1

(

∥

∥�wn
0

∥

∥

2 +
∥

∥

∥
ψn,j

∥

∥

∥

2
)

≤ C6

J
∑

j=1

(

∥

∥�wn
0

∥

∥

2 + C2

q
∑

i=1

∥

∥�wn
i

∥

∥

2

)

≤ JC6(1+ C2)

[

∥

∥�wn
0

∥

∥

2 +
q

∑

i=1

∥

∥�wn
i

∥

∥

2

]

≤ JC6(1+ C2)η
2(1+ α)2

∥

∥EW (Wn)
∥

∥

2

= C7η
2(1+ α)2

∥

∥EW (Wn)
∥

∥

2

(31)

|δ3| ≤
C3

2

J
∑

j=1

(

∥

∥�wn
0

∥

∥

2 +
∥

∥

∥ψ
n,j
∥

∥

∥

2
)

≤ C3

2

J
∑

j=1

(

∥

∥�wn
0

∥

∥

2 + C2

q
∑

i=1

∥

∥�wn
i

∥

∥

2

)

≤ 1

2
JC3(1+ C2)

[

∥

∥�wn
0

∥

∥

2 +
q

∑

i=1

∥

∥�wn
i

∥

∥

2

]

≤ 1

2
JC3(1+ C2)η

2(1+ α)2
∥

∥EW (Wn)
∥

∥

2

= C8η
2(1+ α)2

∥

∥EW (Wn)
∥

∥

2

(32)

|δ1| ≤
1

2
JC2

3C
2
4C5

q
∑

i=1

∥

∥�wn
i

∥

∥

2

≤ 1

2
JC2

3C
2
4C5η

2(1+ α)2
q

∑

i=1

∥

∥Ewi(W
n)
∥

∥

2

= C9η
2(1+ α)2

∥

∥EW (Wn)
∥

∥

2

Page 15 of 17Fan et al. SpringerPlus (2016) 5:295

There holds E(Wn+1) ≤ E(Wn) (n = 1,2,...). � �

Step 3. we show limn→∞ �EW (Wn)� = 0.

Proof  From Step 2, we know that the nonnegative sequence {E(Wn)} is monotone and
it is also bounded. Hence, there must exist E∗ ≥ 0 such that limk→∞ E(Wn) = E∗.

Taking β = η − (M�+ C1)η
2(1+ α)2, it follows from Assumption (A3) that β > 0.

σ n =
∑q

i=1

∑p
k=0(Ewik

(Wn))2 = �EW (Wn)�2 and using (33), we get

Since E(Wn+1) ≥ 0, it gives that

Let n → ∞, it holds that

This results in

Thus

� �

Step 4. Add the assumption (A4), we show limn→∞(Wn) = W ∗, where W ∗ ∈ �0.

Proof  Note that the error function E(W) defined in (11) is continuous and differenti-
able. According to (21) and (34), we get

(33)

E(Wn+1)− E(Wn) ≤ −η(1− �η(1+ α)2M)

q
∑

i=1

p
∑

k=0

(

Ewik
(Wn)

)2 + δ1 + δ2 + δ3

≤≤ −η(1−M�η(1+ α)2)
∥

∥EW (Wn)
∥

∥

2

+ c1η
2(1+ α)2

∥

∥EW (Wn)
∥

∥

2

= −η(1−M�η(1+ α)2 − C1η(1+ α)2)
∥

∥EW (Wn)
∥

∥

2

≤ 0

E(Wn+1) ≤ E(Wn)− β
∥

∥EW (Wn)
∥

∥

2

≤ · · ·

≤ E(W 0)− β

n
∑

k=0

∥

∥

∥EW (Wk)

∥

∥

∥

2

β

n
∑

k=0

∥

∥

∥EW (Wk)

∥

∥

∥

2
≤ E(W 0)

∞
∑

k=0

∥

∥

∥EW (Wk)

∥

∥

∥

2
≤ 1

β
E(W 0) < ∞

lim
n→∞

∥

∥EW (Wn)
∥

∥

2 = 0

(34)lim
n→∞

∥

∥EW (Wn)
∥

∥ = 0.

Page 16 of 17Fan et al. SpringerPlus (2016) 5:295

i.e.

According to the assumption (A4), (34), (35) and Lemma 1, there exists a point
W ∗ ∈ �0, such that

� �

Now, we proved the Theorem 1 by Step 1–Step 4.

Received: 19 October 2015 Accepted: 24 February 2016

References
Bhaya A, Kaszkurewicz E (2004) Steepest descent with momentum for quadratic functions is a version of the conjugate

gradient method. Neural Netw 17:65–71
Chan LW, Fallside F (1987) An adaptive training algorithm for backpropagation networks. Comput Speech Lang

2:205–218
Davis G (1994) Adaptive nonlinear approximations, Ph.D. thesis, New York University
Donoho DL (1995) De-noising by soft-thresholding. IEEE Trans Inf Theory 41:613–627
Donoho DL (2005) Neighborly polytopes and the sparse solution of underdetermined systems of linear equations, Tech‑

nical report, Statistics Department, Stanford University
Fan QW, Wei W, Zurada JM (2014) Convergence of online gradient method for feedforward neural networks with

smoothing L1/2 regularization penalty. Neurocomputing 131:208–216
Haykin S (2001) Neural networks: a comprehensive foundation, 2nd edn. Tsinghua University Press, Prentice Hall, Beijing
Haykin S (2008) Neural networks and learning machines. Prentice-Hall, Upper Saddle River
Hinton GE (1989) Connectionist learning procedures. Artif Intell 40(1–3):185–234
Istook E, Martinez T (2002) Improved backpropagation learning in neural networks with windowed momentum. Int J

Neural Syst 12(3–4):303–318
Karnin ED (1990) A simple procedure for pruning back-propagation trained neural networks. IEEE Trans Neural Netw

1:239–242
Kong J, Wu W (2001) Online gradient methods with a punishing term for neural networks. Northeast Math J 173:371–378
Liu QS, Cao JD (2010) A recurrent neural network based on projection operator for extended general variational inequali‑

ties. IEEE Trans Syst Man Cybern B Cybern 40(3):928–938
Liu QS, Guo ZS, Wang J (2012) A one-layer recurrent neural network for constrained pseudoconvex optimization and its

application for dynamic portfolio optimization. Neural Netw 26:99–109
Moody JE, Rognvaldsson TS (1997) Smoothing regularizers for projective basis function networks. In:

Advances in neural information processing systems 9 (NIPS 1996). http://papers.nips.cc/book/
advances-in-neuralinformation-processing-systems-9-1996

Natarajan BK (1995) Sparse approximate solutions to linear systems. SIAM J Comput 24:227–234
Perantonis SJ, Karras DA (1995) An efficient constrained learning algorithm with momentum acceleration. Neural Netw

8(2):237–249
Qian N (1999) On the momentum term in gradient descent learning algorithms. Neural Netw 12(1):145–151
Qiu G, Varley MR, Terrell TJ (1992) Accelerated training of backpropagation networks by using adaptive momentum step.

IEEE Electron Lett 28(4):377–379
Reed R (1993) Pruning algorithms-a survey. IEEE Trans Neural Netw 4(5):740–747
Saito K, Nakano R (2000) Second-order learning algorithm with squared penalty term. Neural Comput 12(3):709–729
Shao H, Zheng G (2011) Convergence analysis of a back-propagation algorithm with adaptive momentum. Neurocom‑

puting 74:749–752
Tibshirani R (1996) Regression shrinkage and selection via the Lasso. J R Stat Soc B 58:267–288
Torii M, Hagan MT (2002) Stability of steepest descent with momentum for quadratic functions. IEEE Trans Neural Netw

13(3):752–756

q
∑

i=1

p
∑

k=0

(�wn
ik)

2 ≤
∥

∥EW (Wn)
∥

∥

2

(35)lim
n→∞

∥

∥

∥
Wn+1 −Wn

∥

∥

∥
= 0

(36)lim
n→∞

Wn = W ∗.

http://papers.nips.cc/book/advances-in-neuralinformation-processing-systems-9-1996
http://papers.nips.cc/book/advances-in-neuralinformation-processing-systems-9-1996

Page 17 of 17Fan et al. SpringerPlus (2016) 5:295

Wang J, Wu W, Zurada JM (2012) Computational properties and convergence analysis of BPNN for cyclic and almost
cyclic learning with penalty. Neural Netw 33:127–135

Weigend AS, Rumelhart DE, Huberman BA (1991) Generalization by weight elimination applied to currency exchange
rate prediction. In: Proceedings of the international joint conference on neural networks, vol 1, pp 837–841

Wilson DR, Martinez TR (2003) The general inefficiency of batch training for gradient descent learning. Neural Netw
16:1429–1451

Wu W, Shao H, Li Z (2006) Convergence of batch BP algorithm with penalty for FNN training. Lect Notes Comput Sci
4232:562–569

Wu W, Li L, Yang J, Liu Y (2010) A modified gradient-based neuro-fuzzy learning algorithm and its convergence. Inf Sci
180:1630–1642

Wu W, Fan QW, Zurada JM et al (2014) Batch gradient method with smoothing L1/2 regularization for training of feedfor‑
ward neural networks. Neural Netw 50:72–78

Xu Z, Zhang H, Wang Y, Chang X, Liang Y (2010) L1/2 regularizer. Sci China Inf Sci 53:1159–1169
Zhang NM, Wu W, Zheng GF (2006) Convergence of gradient method with momentum for two-layer feedforward neural

networks. IEEE Trans Neural Netw 17(2):522–525
Zhang H, Wu W, Liu F, Yao M (2009) Boundedness and convergence of online gradient method with penalty for feedfor‑

ward neural networks. IEEE Trans Neural Netw 20(6):1050–1054
Zhang HS, Zhang Y, Xu DP, Liu XD (2015) Deterministic convergence of chaos injection-based gradient method for train‑

ing feedforward neural networks. Cogn Neurodyn 9(3):331–340

	Convergence of batch gradient learning with smoothing regularization and adaptive momentum for neural networks
	Abstract
	Background
	Batch gradient method with smoothing regularization and adaptive momentum (BGSAM)
	Batch gradient method with regularization and adaptive momentum (BGAM)
	Smoothing regularization and adaptive momentum (BGSAM)

	Convergence results
	Numerical experiments
	Conclusions
	Authors’ contributions
	References

