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Background
A multilayer perceptron network trained with a highly popular algorithm known as the 
error back-propagation (BP) has been dominating in the neural network literature for 
over two decades (Haykin 2008). BP uses two practical ways to implement the gradi-
ent method: the batch updating approach that accumulates the weight corrections over 
the training epoch before performing the update, while the online learning approach 
updates the network weights immediately after each training sample is processed (Wil-
son and Martinez 2003).

Note that training is usually done by iteratively updating of the weights that reduces 
error value, which is proportional to the negative gradient of a sum-square error (SSE) 
function. However, during the training of feedforward neural networks (FNN) with 
SSE, the weights might become very large or even unbounded. This drawback can be 
addressed by adding a regularization term to the error function. The extra term acts as a 
brute-force to drive unnecessary weights to zero to prevent the weights from taking too 
large values and then it can be used to remove weights that are not needed, and is also 
called penalty term (Haykin 2008; Wu et  al. 2006; Karnin 1990; Reed 1993; Saito and 
Nakano 2000).
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presented to show the characteristics of the main results in detail.

Keywords: Feedforward neural networks, Adaptive momentum,  
Smoothing L1/2 regularization, Convergence

Open Access

© 2016 Fan et al. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://
creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided 
you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate 
if changes were made.

RESEARCH

Fan et al. SpringerPlus  (2016) 5:295 
DOI 10.1186/s40064-016-1931-0

*Correspondence:  
qinweifan@126.com 
1 School of Science, Xi’an 
Polytechnic University, 
Xi’an 710048, People’s 
Republic of China
Full list of author information 
is available at the end of the 
article

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s40064-016-1931-0&domain=pdf


Page 2 of 17Fan et al. SpringerPlus  (2016) 5:295 

There are four main different penalty approaches for BP training: weight decay pro-
cedure (Hinton 1989), weight elimination (Weigend et al. 1991), approximate smoother 
procedure (Moody and Rognvaldsson 1997) and inner product penalty (Kong and Wu 
2001).

In the weight decay procedure, the complexity penalty term is defined as the squared 
norm of the weight vector, and all weights in the multilayer perceptron are treated 
equally. In the weight elimination procedure, the complexity penalty represents the 
complexity of the network as function of weight magnitudes relative to a pre-assigned 
parameter (Reed 1993).

In approximate smoother procedure, this penalty term is used for a multilayer per-
ceptron with a single hidden layer and a single neuron in the output layer. Compared 
with the earlier methods, it does two things. First, it distinguishes between the roles of 
weights in the hidden layer and those in the output layer. Second, it captures the interac-
tions between these two sets of weights, however, it is much more demanding in com-
putational complexity than weight decay or weight elimination methods. In Kong and 
Wu (2001) the inner-product form is proposed and its efficiency in general performance 
of controlling the weights is demonstrated. Convergence of the gradient method for the 
FNN has been considered by Zhang et al. (2015, 2009), Wang et al. (2012) and Shao and 
Zheng (2011).

The convergence of the gradient method with momentum is considered in Bhaya and 
Kaszkurewicz (2004), Torii and Hagan (2002), Zhang et al. (2006), in Bhaya and Kasz-
kurewicz (2004) and Torii and Hagan (2002) under the restriction that the error func-
tion is quadratic. Inspired by Chan and Fallside (1987), Zhang et al. (2006) considers the 
convergence of a gradient algorithm with adaptive momentum, without assuming the 
error function to be quadratic as in the existing results. However, in Zhang et al. (2006), 
the strong convergence result is based on the assumption that the error function is uni-
formly convex, which still seems a little intense.

The size of a hidden layer is one of the most important considerations when dealing 
with real life tasks using FNN. However, the existing pruning methods may not prune 
the unnecessary weights efficiently, so how to efficiently simplify the network structure 
becomes our main task.

Recently, considerable attention has been paid to the sparsity problems and a class of 
regularization methods was proposed which take the following form:

where l(·, ·) is a loss function, (xi, yi)ni=1 is a data set, and � is the regularization param-
eter. When h is in the linear form and the loss function is square loss, ‖h‖k is normally 
taken as the norm of the coefficient of linear model.

For k = 0, (1) becomes L0 regularization and can be understood as a penalized least 
squares with penalty ‖h‖0, which yields the most sparse solutions, but for large data anal-
ysis it faces the problem of combinatory optimization (Davis 1994; Natarajan 1995). In 
order to deal with such difficulty, Tibshirani (1996) proposed L1 regularization where 
k = 1 and ‖h‖1 is the L1 norm of n dimensional Euclidean space Rn, which just needs to 
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n

n
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solve a quadratic programming problem but is less sparse than the L0 regularization. At 
the same time Donoho (1995, 2005) proved that under some conditions the solutions of 
the L0 regularizer are equivalent to those of the L1, so the hard NP optimization problem 
can be avoided in the L1 regularizer. In order to find a new regularizer which is more 
sparse than the L1 regularizer while it is still easier to be solved than the L0 regularizer, in 
Xu et al. (2010) a modified L1/2 regularizer is proposed of the following form:

where � is the tuning parameter. As shown in Xu et al. (2010), L1/2 regularizer has a non-
convex penalty and possesses many promising properties such as unbiasedness, sparsity, 
oracle properties and can be taken as a representative of the Lr (0 < r < 1) regularizer. 
Recently, we develop a novel method to prune FNNs through modify the usual L1/2 
regularization term by smoothing technique. The new algorithm not only removes the 
oscillation of the gradient value, but also get better pruning, namely the final weights to 
be removed are smaller than those produced through the usual L1/2 regularization (Wu 
et al. 2014; Fan et al. 2014).

The focus of this paper is on extension of L1/2 regularization beyond its basic concept 
though its augmentation with a momentum term. Also, there are some other applica-
tions of FNNs for optimization problems, such as the generalized gradient and recurrent 
neural network methods shown as Liu et al. (2012) and Liu and Cao (2010)

It is well known that a general drawback of gradient based BP learning process is its 
slow convergence. To accelerate learning, a momentum term is often added (Haykin 
2001; Chan and Fallside 1987; Qiu et  al. 1992; Istook and Martinez 2002). By adding 
momentum to the update formula, the current weight increment is a linear combination 
of the gradient of the error function and the previous weight increment. As a result, the 
updates respond not only to the local gradient but also to recent gradient in the error 
function. Selected reports discuss the NN training with momentum term in the litera-
ture (Torii and Hagan 2002; Perantonis and Karras 1995; Qian 1999).

As demonstrated in Torii and Hagan (2002), there always exists a momentum coef-
ficient that will stabilize the steepest descent algorithm, regardless of the value of the 
learning rate (we will define it below). In addition, it shows how the value of the momen-
tum coefficient changes the convergence properties. Momentum acceleration, its per-
formance in terms of learning speed and scalability properties is evaluated and found 
superior to the performance of reputedly fast variants of the BP algorithm in several 
benchmark training tasks in Perantonis and Karras (1995). Qian (1999) shows that in the 
limit of continuous time, the momentum parameter is analogous to the mass of Newto-
nian particles that move through a viscous medium in a conservative force field.

In this paper, a modified batch gradient method with smoothing L1/2 regularization 
penalty and adaptive momentum algorithm (BGSAM) is proposed. It damps oscillations 
present in the L1/2 regularization and in the adaptive momentum algorithm (BGAM). In 
addition, without the requirement that the error function is quadratic or uniformly con-
vex, we present a comprehensive study of the weak and strong convergence for BGSAM 
which offers an effective improvement in real life application.
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The rest of this paper is arranged as follows. The algorithm BGSAM is described in 
“Batch gradient method with smoothing L1/2 regularization and adaptive momentum 
(BGSAM)” section. In “Convergence results” section, the convergence results of BGSAM 
are presented, and the detailed proofs of the main results are stated in the “Appendix”. 
The performance of BGSAM is compared to BGAM and the experimental results shown 
in “Numerical experiments” section. Concluding remarks are in “Conclusions” section.

Batch gradient method with smoothing L1/2 regularization and adaptive 
momentum (BGSAM)
Batch gradient method with L1/2 regularization and adaptive momentum (BGAM)

Here and below, some definitions and notations used in e.g. Wu et al. (2006), Shao and 
Zheng (2011), and Wu et al. (2006), Shao and Zheng (2011) have been re-defined and 
used without repeatedly citing the references. We consider a FNN with three layers, 
and we denote the numbers of neurons of the input, hidden and output layers by p, q 
and 1, respectively. Suppose that {ξ j ,Oj}Jj=1 ⊂ Rp × R is the given set of J training sam-
ples. Let w0 = (w10,w20, . . . ,wq0)

T ∈ Rq be the weight vector between the hidden units 
and the output unit, and wi = (wi1,wi2, . . . ,wip)

T ∈ Rp be the weight vector between 
the input units and the hidden unit i (i = 1, 2, . . . , q). To simplify the presentation, we 
combine the weight vectors, and write W = (wT

0 ,w
T
1 , . . . ,w

T
q )

T ∈ Rq+pq and we define a 
matrix V = (w1,w2, . . . ,wq)

T ∈ Rq×p. We also define a vector function G : Rq → Rq, for 
x = (x1, x2, . . . , xq)

T ∈ Rq

Let g : R → R be a given transfer function for the hidden and output nodes, which is 
typically, but not necessarily, a sigmoid function. Then for each input ξ ∈ Rp, the actual 
output vector of the hidden layer is G(V ξ) and the final output of the network is

For a fixed W, the output error function with the L1/2 regularization penalty term is

where gj(t) := 1
2 (O

j − g(t))2, j = 1, 2, . . . , J , t ∈ R, � > 0 is the penalty coefficient, and 
| · | denotes the absolute value. The gradient of the error function is

(3)G(x) = (g(x1), g(x2), . . . , g(xq))
T .

(4)g(w0 · G(V ξ)).

(5)

E(W ) = 1

2

J
∑

j=1

(Oj − g(w0 · G(V ξ j)))2 + �

q
∑

i=1

p
∑

k=0

|wik |
1
2

=
J

∑

j=1

gj(w0 · G(V ξ j))+ �

q
∑

i=1

p
∑

k=0

|wik |
1
2

(6)EW (W ) = (ET
w0
(W ),ET

w1
(W ), . . . ,ET

wq
(W ))T
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where

The gradient of the error function with respect to wi0 and wik are, respectively, given by

where i = 1, 2, . . . , q, and k = 1, 2, . . . , p.
The detailed BGAM algorithm is presented as follows. We denote 

Wn+1 = Wn +�Wn, n = 0, 1, 2, . . ., starting from an arbitrary initial value W 0 and W 1, 
and the weights {Wn} are updated iteratively by

The learning rate is assumed constant and satisfies η > 0, and αn
W = (αn

w0
,αn

w1
, . . . ,αn

wq
) 

is the momentum coefficient vector of the n-th training. It consists of coefficients αn
wi

 for 
each �wn

ik(i = 1, 2, . . . , q, k = 1, 2, . . . , p), and αn
w0

 for each �wn
i0(i = 1, 2, . . . , q). Similar 

to Shao and Zheng (2011), for every αn
wi

, after each training epoch it is chosen as

where α ∈ (0, 1) is the momentum factor. Compared with the traditional algorithm, the 
BGAM has better pruning performance, but we notice that this usual L1/2 regularization 
term used in this part involves in absolute values and it is not differentiable at the origin, 
which will cause difficulty in the convergence analysis. More importantly, it causes oscil-
lations of the error function and the norm of gradient. In order to overcome these draw-
backs we improved the BGAM algorithm as follows:

Smoothing L1/2 regularization and adaptive momentum (BGSAM)

This section introduces a modified algorithm with smoothing L1/2 regularization and 
adaptive momentum term. The network structure is the same as the description in part 
of last subsection (BGAM). We modify the usual L1/2 regularization term at the origin 
(i.e. we replace the absolute values of the weights by a smooth function in a neighbor-
hood of the origin). Then we use a smooth function f(x) to approximate |x|. We get the 
following error function with a smoothing L1/2 regularization penalty term:

ET
w0
(W ) = (Ew10(W ),Ew20(W ), . . . ,Ewq0(W ))

ET
w1
(W ) = (Ew11(W ),Ew12(W ), . . . ,Ew1p(W ))

ET
w2
(W ) = (Ew21(W ),Ew22(W ), . . . ,Ew2p(W ))

· · ·
ET
wq
(W ) = (Ewq1(W ),Ewq2(W ), . . . ,Ewqp(W ))

(7)Ewi0(W ) =
J

∑

j=1

g ′j (w0 · G(V ξ j))g(wiξ
j)+ �sgn(wi0)

2|wi0|
1
2

(8)Ewik
(W ) =

J
∑

j=1

g ′j (w0 · G(V ξ j))wi0g
′(wi · ξ j)ξ jk +

�sgn(wik)

2|wik |
1
2

(9)�Wn = −ηEW (Wn)+ αn
W�Wn−1, n = 0, 1, 2, . . .

(10)αn
wi

=
{

α · −ηEwi (W
n)·�wn−1

i

��wn−1
i �2 , if Ewi(W

n) ·�wn−1
i < 0

0, otherwise



Page 6 of 17Fan et al. SpringerPlus  (2016) 5:295 

where gj(t) := 1
2 (O

j − g(t))2, j = 1, 2, . . . , J , t ∈ R, � > 0 is the penalty coefficient. Here, 
by smoothing we mean that, in a neighborhood of the origin, we replace the absolute 
values of the weights by a smooth function of the weights. For definiteness and simplic-
ity, we choose f(x) as a piecewise polynomial function such as:

where a is a small positive constant. and | · | denotes the absolute value. Then, from the 
definition of f(x) immediately yields

The gradient of the error function with respect to W as in (6), and the gradients of the 
error function with respect to wi0 and wik are then as follows:

where i = 1, 2, . . . , q, k = 1, 2, . . . , p.
For BGSAM algorithm, we denote Wn+1 = Wn +�Wn, n = 0, 1, 2, . . .. Starting with 

an initial value W 0 and W 1, the weights {Wn} are updated iteratively by

Here the learning rate η, the momentum coefficient vector of the n-th training αn
W  and 

other coefficients are the same as the description of algorithm BGAM. For each αn
wi

, after 
each training epoch it is chosen as (10).

Convergence results
The following assumptions are needed to introduce the relating convergence theorems 
of BGSAM. 

(A1)  |g(t)|, |g ′(t)|, |g ′′(t)| are uniformly bounded for t ∈ R.
(A2)  There exists a bounded region � ⊂ Rn such that {wn

0}∞n=0 ⊂ �.
(A3)  0 < η < 1

(M�+C1)(1+α)2
, where M =

√
6

4
√
a3

 and C1 is a constant defined in (16) 
below.

(11)

E(W ) = 1

2

J
∑

j=1

(Oj − g(w0 · G(V ξ j)))2 + �

q
∑

i=1

p
∑

k=0

f (wik)
1
2

=
J

∑

j=1

gj(w0 · G(V ξ j))+ �

q
∑

i=1

p
∑

k=0

f (wik)
1
2

(12)f (x) =
{ |x|, if |x| ≥ a

− 1
8a3

x4 + 3
4ax

2 + 3
8a, if |x| < a

f (x) ∈
[

3

8
a,+∞

)

, f ′(x) ∈ [−1, 1], f ′′(x) ∈
[

0,
3

2a

]

(13)Ewi0(W ) =
J

∑

j=1

g ′j (w0 · G(V ξ j))g(wi · ξ j)+ �
f ′(wi0)

2f (wi0)
1
2

(14)Ewik
(W ) =

J
∑

j=1

g ′j (w0 · G(V ξ j))wi0g
′(wi · ξ j)ξ jk + �

f ′(wik)

2f (wik)
1
2

(15)�Wn = −ηEW (Wn)+ αn
W�Wn−1, n = 0, 1, 2, . . .
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Assume conditions (A1)–(A2) is valid. Then there are some positive constants C1–C5 
such that

Theorem 1 If assumptions (A1)−(A3) are valid for any arbitrary initial value W 0 and 
W 1, the error function be defined by (1), and let the learning sequence 1{Wn} be generated 
by the iteration algorithm (15), then we have the following convergence

(i) limn→∞ EW (Wn) = 0. Moreover, (A4) if there exists a compact set � such that 
Wn ∈ � and the set �0 = {W ∈ � : EW (W ) = 0} contains finite points also holds, 
then we have the following convergence

(ii) limn→∞(Wn) = W ∗, where W ∗ ∈ �0.

Numerical experiments
This section presents the simulations that verify the performance of BGAM and 
BGSAM. Our theoretical results are experimentally verified with the 3-bit parity prob-
lem, which is a typical benchmark problem in area of the neural networks.

The two algorithms (BGAM and BGSAM) are implemented by the networks with the 
structure 5-7-1 (input p = 5, hidden q = 7 and output nodes, see Fig. 1). Each of the two 
algorithms are carried out fifty trials for 3-bit parity problem and then take the mean 
values, and the termination criterion is that the error is <1e−6 or 3000 iterations. For 
the network with linear output, we set the transfer function for hidden neurons to be 
tansig(·) and that for output layer to be g(t) = t. For the network with nonlinear output, 
the transfer functions for both hidden and output neurons are tansig(·). The inputs and 
the ideal outputs are shown in Table 1.

(16)

C1 = J (1+ C2)C3 max{C2
2 ,C

2
5 } +

1

2
J (1+ C2)C3 +

1

2
JC2

3C
2
4C5,

C2 = max
{√

qC3, (C3C4)
2
}

,

C3 = max

{

sup
t∈R

|g(t)|, sup
t∈R

|g ′(t)|, sup
t∈R

|g ′′(t)|, sup
t∈R,1≤j≤J

|g ′j (t)|, sup
t∈R,1≤j≤J

|g ′′j (t)|
}

,

C4 = max
1≤j≤J

�ξ j�, C5 = sup
n∈N

�wn
0�.

Fig. 1 Feedforward neural network with one hidden layer and one output
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The performance results of BGAM and BGSAM are shown in the following figures. 
Figures 2, 3 and 4 present the comparison results for learning rate η, penalty parameter � 
and momentum term α with 0.01, 0.0006 and 0.03, respectively.

From Figs.  2 and 3, it can be seen that the error function decreases monotonically 
and the norm of the gradient of the error function approaches zero as depicted by the 
convergence theorem, respectively. Also Fig.  3 show us that our modified algorithm 

Table 1 3-bit parity problem

Input Output Input Output

1 1 1 −1 1 1 −1 −1 −1 1

1 1 −1 −1 0 −1 1 1 −1 0

1 −1 1 −1 0 −1 −1 1 −1 1

−1 −1 −1 −1 0 −1 1 −1 −1 1

Fig. 2 The curve of error function

Fig. 3 The curve of norm of gradient
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overcomes the drawbacks of numerical oscillations, i.e., for BGSAM the norm of gra-
dient curve is much smoother than BGAM. The reason as the following: Since the 
derivative of |x| jumps from −1 to +1 near the x = 0, the learning process of BGAM will 
oscillate when a weight wik is close to zero, whic prevents it from getting further closer 
to zero. And on the contrary, the derivative of f(x), which is a smooth approximation of 
|x|, is smooth and equal to zero at the origin, and will not cause any oscillation in the 
learning process when wik is close to zero. In the meantime, it can be seen that BGSAM 
convergence faster than BGAM. Fig. 4 demonstrates that the effectiveness of the algo-
rithm BGSAM in controlling the magnitude of weights is better than BGAM.

Conclusions
In this paper, the smoothing L1/2 regularization term with adaptive momentum is intro-
duced into the batch gradient learning algorithm to prune FNN. First, it removes the 
oscillation of the gradient value. Second, the convergence results for three-layer FNN are 
proved under certain relaxed conditions. Third, the algorithm is applied to a 3-bit parity 
problem and the related results are supplied to support the theoretical findings above. 
Finally, this new algorithm will also effective for other types neural networks or big data 
processing.
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Appendix
In the following section three useful lemmas are given for convergence analysis for 
BGSAM algorithm. For the sake of description, we introduce the following notations:

Using the error function (11) we have

Lemma 1 (Wu et al. 2010, Lemma 1) Suppose that F : RQ → R is continuous and dif-
ferentiable on a compact set D ⊂ RQ, and that �̄ = {x ∈ D| ∂F(x)

∂x = 0} contains only finite 
number of points. If a sequence {xk} ⊂ D satisfies

then, there exists x∗ ∈ �̄ such that limk→∞ xk = x∗.

The above lemma is crucial for the strong convergence analysis, and it basically follows 
the same proof as Lemma 1 in Wu et al. (2010). So its proof is omitted.

Now, we give the proofs of Theorem 1 through the following 4 steps.

Step 1. We show the following inequalities holds

Proof With the assumption (A1), (16) and the definition of G(x), it is easy to show that 
there exists a positive constant C2 such that (18) holds.

By the Lagrange mean value theorem, (A1) and (16), we obtain that

(17)

Gn,j = G(Vnξ j)

ψn,j = Gn+1,j − Gn,j

�wn
i = wn+1

i − wn
i for i = 1, 2, . . . q

�wn
0 = wn+1

0 − wn
0

E
(

Wn+1
)

=
J

∑

j=1

gj

(

wn+1
0 · G

(

Vn+1ξ j
))

+ �

q
∑

i=1

p
∑

k=0

f
(

wn+1
ik

)
1
2

E
(

Wn
)

=
J

∑

j=1

gj

(

wn
0 · G

(

Vnξ j
))

+ �

q
∑

i=1

p
∑

k=0

f
(

wn
ik

)
1
2

lim
k→∞

∥

∥

∥xk+1 − xk
∥

∥

∥ = 0, lim
k→∞

∥

∥

∥

∥

∥

∂F(xk)

∂x

∥

∥

∥

∥

∥

= 0,

(18)�G(x)� ≤ √
q sup

t∈R
|g(t)| ≤ C2, x ∈ Rq

(19)

∥

∥

∥ψ
n,j
∥

∥

∥

2
≤ C2

q
∑

i=1

∥

∥�wn
i

∥

∥

2

≤ C2η
2(1+ α)2

q
∑

i=1

∥

∥Ewi(W
n)
∥

∥

2
j = 1, 2, . . . , J .

(20)
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�

�

2
=
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�

�

�

�

�

�
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g ′(t̃1,j,n)(w
n+1
1 − wn

1) · ξ j
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n+1
2 − wn

2) · ξ j
...

g ′(t̃q,j,n)(wn+1
q − wn

q) · ξ j











�

�

�

�

�

�

�

�

�

2

≤ C2

q
�

i=1

�

��wn
i

�

�
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where t̃i,j,n ∈ R (1 ≤ i ≤ q, 1 ≤ j ≤ J ) is between wn
i · ξ j and wn+1

i · ξ j.
Furthermore, in terms of (9) and (10) we can show that

On the basis of the above inequalities (20) and (21) we immediately have (19).  �

Step 2. We show the following monotonicity of the sequence {E(Wn)}

Proof According to the definition of wn
0 and ψn,j, we get

By the Taylor mean value theorem with Lagrange remainder to g(t) at the point wn
i · ξ j , 

we obtain

where each ti,j,n lies on the segment between wn+1
i · ξ j and wn

i · ξ j, 
i = 1, 2, . . . , q; j = 1, 2, . . . , J .

Together with (10) and (14), we get

(21)

��wn
i � =

∥

∥

∥
−ηEwi(W

n)+ αn
wi

·�wn−1
i

∥

∥

∥

≤ η(1+ α)�Ewi(W
n)�

(22)E(Wn+1) ≤ E(Wn), n = 0, 1, 2, . . .

(23)
wn
0ψ

n,j =
q

∑

i=1

wn
i0

(

g
(

wn+1
i · ξ j

)

− g
(

wn
i · ξ j

))

(24)

g
(

wn+1
i · ξ j

)

− g
(

wn
i · ξ j

)

= g ′
(

wn
i · ξ j

)

·�wn
i · ξ j +

1

2
g ′′
(

ti,j,n
)

(

�wn
i · ξ j

)2

(25)

J
∑

j=1

g ′j
(

wn
0 · Gn,j

)

wn
0ψ

n,j

=
q

∑

i=1

J
∑

j=1

g ′j
(

wn
0 · Gn,j

)

wn
i0g

′
(

wn
i · ξ j

)

·�wn
i · ξ j + δ1

=
p

∑

k=1

q
∑

i=1

J
∑

j=1

g ′j
(

wn
0 · Gn,j

)

wn
i0g

′
(

wn
i · ξ j

)

·�wn
ik · ξ

j
k + δ1

=
p

∑

k=1

q
∑

i=1

Ewik
(Wn) ·�wn

ik − �

p
∑

k=1

q
∑

i=1

f
(

wn
ik

)

·�wn
ik

2f
(

wn
ik

)
1
2

+ δ1

=
q

∑

i=1

Ewi(W
n) ·�wn

i − �

p
∑

k=1

q
∑

i=1

f
(

wn
ik

)

·�wn
ik

2f (wn
ik)

1
2

+ δ1

=
q

∑

i=1

Ewi(W
n)

(

−ηEwi(W
n)+ αn

wi
·�wn−1

i

)

− �

p
∑

k=1

q
∑

i=1

f
(

wn
ik

)

·�wn
ik

2f
(

wn
ik

)
1
2

+ δ1

= −η

q
∑

i=1

∥

∥Ewi(W
n)
∥

∥

2 +
q

∑

i=1

αn
wi

· Ewi(W
n)) ·�wn−1

i

− �

p
∑

k=1

q
∑

i=1

f (wn
ik) ·�wn

ik

2f (wn
ik)

1
2

+ δ1
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where δ1 = 1
2

∑q
i=1

∑J
j=1 g

′
j

(

wn
0 · Gn,j

)

wn
i0g

′′(ti,j,n
)(

�wn
i · ξ j

)2, and ti,j,n ∈ R is between 
wn
i · ξ j and wn+1

i · ξ j.
Using (10) and (13), we obtain

Apply the Taylor mean value theorem with Lagrange remainder, we have

where δ2 = 1
2

∑J
j=1 g

′′
j (sn,j)(w

n+1
0 · Gn+1,j − wn

0 · Gn,j)2, δ3 =
∑J

j=1 g
′
j (w

n
0 · Gn,j)�wn

0ψ
n,j 

and sn,j ∈ R is a constant between wn
0 · Gn,j and wn+1

0 · Gn+1,j.
Substituting (25) and (26) into (27) and using the Lagrange mean value theorem for 

f(x), we have

(26)

J
�

j=1

g ′j
�

wn
0 · Gn,j

�

Gn,j�wn
0

=
q

�

i=1

J
�

j=1

g ′j
�

wn
0 · Gn,j

�

g
�

wn
i ξ

j
�

·�wn
i0

=
q

�

i=1



Ewi0(W
n)− �

f ′
�

wn
i0

�

2f
�

wn
i0

�
1
2



 ·�wn
i0

= Ew0(W
n)�wn

0 − �

q
�

i=1

f ′
�

wn
i0

�

·�wn
i0

2f
�

wn
i0

�
1
2

= Ew0(W
n)

�

−ηEw0(W
n)+ αn

w0
·�wn−1

0

�

− �

q
�

i=1

f ′
�

wn
i0

�

·�wn
i0

2f
�

wn
i0

�
1
2

= −η
�

�Ew0(W
n)
�

�

2 + αn
w0
Ew0(W

n)�wn−1
0

− �

q
�

i=1

f ′
�

wn
i0

�

·�wn
i0

2f
�

wn
i0

�
1
2

(27)

E(Wn+1)− E(Wn)

=
J

∑

j=1

[

g ′j
(

wn
0 · Gn,j

)

· (wn+1
0 · Gn+1,j − wn

0 · Gn,j)

]

+ �

q
∑

i=1

p
∑

k=0

(

f
(

wn+1
ik

)
1
2 − f

(

wn
ik

)
1
2

)

+ δ2

=
J

∑

j=1

g ′j
(

wn
0 · Gn,j

)

Gn,j�wn
0 +

J
∑

j=1

g ′j
(

wn
0 · Gn,j

)

wn
0ψ

n,j

+ �

q
∑

i=1

p
∑

k=0

(

f
(

wn+1
ik

)
1
2 − f

(

wn
ik

)
1
2

)

+ δ2 + δ3
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where ti,k ,n ∈ R is between wn
ik and wn+1

ik .
According to (21) and (28) we can conclude

Set M =
√
6

4
√
a3

, and F(x) ≡ (f (x))
1
2. Note that

It follows from (16), (18), (19) and the Cauchy-Schwartz inequality that

(28)

E(Wn+1)− E(Wn)

= −η
∥

∥EW (Wn)
∥

∥

2 − �

q
∑

i=1

p
∑

k=0

f ′
(

wn
ik

)

·�wn
ik

2f
(

wn
ik

)
1
2

+
[

q
∑

i=1

αn
i Ewi(W

n) ·�wn−1
i + αn

0Ew0(W
n) ·�wn−1

0

]

+ δ1 + δ2 + δ3 + �

q
∑

i=1

p
∑

k=0

(

f
(

wn+1
ik

)
1
2 − f

(

wn
ik

)
1
2

)

≤ −η
∥

∥EW (Wn)
∥

∥

2 + �

2

q
∑

i=1

p
∑

k=0

F ′′(ti,k ,n)(�wik)
2

+ δ1 + δ2 + δ3

(29)

E(Wn+1)− E(Wn)

≤ −η
∥

∥EW (Wn)
∥

∥

2 +M�

q
∑

i=1

p
∑

k=0

(�wik)
2 + δ1 + δ2 + δ3

= −η
∥

∥EW (Wn)
∥

∥

2 +M�

[

q
∑

i=1

��wi�2 + ��w0�2
]

+ δ1 + δ2 + δ3

≤ −η
∥

∥EW (Wn)
∥

∥

2 +M�η2(1+ α)2
∥

∥EW (Wn)
∥

∥

2 + δ1 + δ2 + δ3

≤ −η(1− �η(1+ α)2M)
∥

∥EW (Wn)
∥

∥

2 + δ1 + δ2 + δ3

F ′(x) = f ′(x)

2
√

f (x)

F ′′(x) = 2f ′′(x) · f (x)− [f ′(x)]2

4[f (x)] 32

≤ f ′′(x)

2
√

f (x)

≤
√
6

2
√
a3
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where C6 = C3 max{C2
2 ,C

2
5 }, C7 = JC6(1+ C2)

Similarly, we can evaluate |δ3| as follows:

where C8 = 1
2 JC3(1+ C2).

Similarly, we obtain

where C9 = 1
2 JC

2
3C

2
4C5.

Using C1 = C7 + C8 + C9, from (29)–(32) and (A3) we can obtain

(30)

|δ2| ≤
C3

2

J
∑

j=1

(

�wn
0G

n+1,j + wn
0ψ

n,j
)2

≤ C3

2

J
∑

j=1

(

C2

∥

∥�wn
0

∥

∥+ C5

∥

∥

∥
ψn,j

∥

∥

∥

)2

≤ C6

J
∑

j=1

(

∥

∥�wn
0

∥

∥

2 +
∥

∥

∥
ψn,j

∥

∥

∥

2
)

≤ C6

J
∑

j=1

(

∥

∥�wn
0

∥

∥

2 + C2

q
∑

i=1

∥

∥�wn
i

∥

∥

2

)

≤ JC6(1+ C2)

[

∥

∥�wn
0

∥

∥

2 +
q

∑

i=1

∥

∥�wn
i

∥

∥

2

]

≤ JC6(1+ C2)η
2(1+ α)2

∥

∥EW (Wn)
∥

∥

2

= C7η
2(1+ α)2

∥

∥EW (Wn)
∥

∥

2

(31)

|δ3| ≤
C3

2

J
∑

j=1

(

∥

∥�wn
0

∥

∥

2 +
∥

∥

∥ψ
n,j
∥

∥

∥

2
)

≤ C3

2

J
∑

j=1

(

∥

∥�wn
0

∥

∥

2 + C2

q
∑

i=1

∥

∥�wn
i

∥

∥

2

)

≤ 1

2
JC3(1+ C2)

[

∥

∥�wn
0

∥

∥

2 +
q

∑

i=1

∥

∥�wn
i

∥

∥

2

]

≤ 1

2
JC3(1+ C2)η

2(1+ α)2
∥

∥EW (Wn)
∥

∥

2

= C8η
2(1+ α)2

∥

∥EW (Wn)
∥

∥

2

(32)

|δ1| ≤
1

2
JC2

3C
2
4C5

q
∑

i=1

∥

∥�wn
i

∥

∥

2

≤ 1

2
JC2

3C
2
4C5η

2(1+ α)2
q

∑

i=1

∥

∥Ewi(W
n)
∥

∥

2

= C9η
2(1+ α)2

∥

∥EW (Wn)
∥

∥

2
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There holds E(Wn+1) ≤ E(Wn) (n = 1,2,...).  �

Step 3. we show limn→∞ �EW (Wn)� = 0.

Proof From Step 2, we know that the nonnegative sequence {E(Wn)} is monotone and 
it is also bounded. Hence, there must exist E∗ ≥ 0 such that limk→∞ E(Wn) = E∗.

Taking β = η − (M�+ C1)η
2(1+ α)2, it follows from Assumption (A3) that β > 0. 

σ n =
∑q

i=1

∑p
k=0(Ewik

(Wn))2 = �EW (Wn)�2 and using (33), we get

Since E(Wn+1) ≥ 0, it gives that

Let n → ∞, it holds that

This results in

Thus

 �

Step 4. Add the assumption (A4), we show limn→∞(Wn) = W ∗, where W ∗ ∈ �0.

Proof Note that the error function E(W) defined in (11) is continuous and differenti-
able. According to (21) and (34), we get

(33)

E(Wn+1)− E(Wn) ≤ −η(1− �η(1+ α)2M)

q
∑

i=1

p
∑

k=0

(

Ewik
(Wn)

)2 + δ1 + δ2 + δ3

≤≤ −η(1−M�η(1+ α)2)
∥

∥EW (Wn)
∥

∥

2

+ c1η
2(1+ α)2

∥

∥EW (Wn)
∥

∥

2

= −η(1−M�η(1+ α)2 − C1η(1+ α)2)
∥

∥EW (Wn)
∥

∥

2

≤ 0

E(Wn+1) ≤ E(Wn)− β
∥

∥EW (Wn)
∥

∥

2

≤ · · ·

≤ E(W 0)− β

n
∑

k=0

∥

∥

∥EW (Wk)

∥

∥

∥

2

β

n
∑

k=0

∥

∥

∥EW (Wk)

∥

∥

∥

2
≤ E(W 0)

∞
∑

k=0

∥

∥

∥EW (Wk)

∥

∥

∥

2
≤ 1

β
E(W 0) < ∞

lim
n→∞

∥

∥EW (Wn)
∥

∥

2 = 0

(34)lim
n→∞

∥

∥EW (Wn)
∥

∥ = 0.
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i.e.

According to the assumption (A4), (34), (35) and Lemma 1, there exists a point 
W ∗ ∈ �0, such that

 �

Now, we proved the Theorem 1 by Step 1–Step 4.
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