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Background
The theory of dynamic equations on time scales was introduced by Hilger (1990) in 1988 
in order to unify the study of continuous and discrete calculus. Since then, the study 
on dynamic equations on time scales has received much attention of many scholars. 
For example, in DaCunha (2005), the author studied the stability of the following linear 
dynamic equation on time scales:

In Du and Tien (2007), the authors obtained some conditions ensuring the stability of 
the trivial solution for the following dynamic equation on time scales:

For other studies on dynamic equations on time scales, we refer the reader to Bohner and 
Peterson (2001), Graef and Hill (2015), Li and Sun (2013), Li and Xu (2011), Lupulescu 
and Younus (2011), Su and Feng (2014), Wang et al. (2010), Zhang et al. (2010a, b, 2014), 
Zhou and Li (2010, 2012) and the references therein.

Since it is natural and important that systems will contain some information about the 
derivative of the past state to further describe and model the dynamics for such complex 

x�(t) = A(t)x(t), x(t0) = x0, t0 ∈ T.

x�(t) = A(t)x(t)+ f (t, x), t ∈ T.

Abstract 

In this paper, by using the existence of the exponential dichotomy of linear dynamic 
equations on time scales and the theory of calculus on time scales, we study the exist-
ence and global exponential stability of periodic solutions for a class of n-dimensional 
neutral dynamic equations on time scales. We also present an example to illustrate 
the feasibility of our results. The results of this paper are completely new and comple-
mentary to the previously known results even in both the case of differential equations 
(time scale T = R) and the case of difference equations (time scale T = Z).

Keywords: Periodic solution, Neutral delay, Exponential stability, n-Dimensional 
neutral dynamic equations, Time scale

Mathematics Subject Classification: 34K13, 34K20, 34K40, 34N05

Open Access

© 2016 Li et al. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://
creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided 
you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate 
if changes were made.

RESEARCH

Li et al. SpringerPlus  (2016) 5:224 
DOI 10.1186/s40064‑016‑1872‑7

*Correspondence:   
yklie@ynu.edu.cn 
1 Department 
of Mathematics, Yunnan 
University, Kunming 650091, 
Yunnan, People’s Republic 
of China
Full list of author information 
is available at the end of the 
article

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s40064-016-1872-7&domain=pdf


Page 2 of 13Li et al. SpringerPlus  (2016) 5:224 

reactions, many authors have studied the existence of solutions of various neutral delay 
models (Abbas and Bahuguna 2008; Ardjouni and Djoudi 2012; Chen and Lin 2010; Hov-
hannisyan 2014; Kaufmann and Raffoul 2006; Li and Saker 2014; Xu et al. 2007; Zhang 
et al. 2009). However, to the best of our knowledge, there are few papers published on the 
existence and stability of periodic solutions to neutral dynamic equations on time scales.

Motivated by the above discussion, in this paper, we are concerned with the following 
neutral dynamic equation on time scales:

where T is an ω-periodic time scale and satisfies that for t, s ∈ T, t + s ∈ T , 
A(t) = (aij(t))n×n is a regressive and rd-continuous matrix-valued function, 
f ∈ Crd(T× BC × BC ,Rn) and f (t, xt , x�t ) is ω-periodic whenever x is a �-differen-
tiable ω-periodic function with rd-continuous �-derivative, where BC denotes the 
Banach space of all bounded rd-continuous functions ϕ : [−θ , 0] ∩ T → R

n with the 
norm |ϕ|0 = max1≤i≤n sups∈[−θ ,0]∩T |ϕi(s)| where ϕ = (ϕ1,φ2, . . . ,ϕn)

T ,ω > 0 is a 
constant, θ is a positive number or ∞ and if θ = ∞, then we set [−θ , 0] = (−∞, 0]. If 
x, x� ∈ Crd(T,R

n), then for any t ∈ T, xt and x�t ∈ BC are defined by xt(s) = x(t + s) 
and x�t (s) = x�(t + s) for s ∈ [−θ , 0] ∩ T, respectively.

Remark 1 Throughout this paper, we denote the class of all functions 
f : T× BC × BC → R

n that are rd-continuous with respect to their first argument and 
continuous with respect to their second and third arguments by Crd(T× BC × BC ,Rn).

Remark 2 If θ is a finite positive number, then Eq. (1) is a bounded delay neutral 
dynamic equation on time scales and if θ is infinite then Eq. (1) is a unbounded delay 
neutral dynamic equation on time scales.

Our main purpose of this paper is to study the existence and global exponential stabil-
ity of periodic solutions for (1) by using the exponential dichotomy of linear dynamic 
equations and the theory of calculus on time scales. As we all know, Eq. (1) contains 
many differential equation models and difference equation models as its special cases. 
For example, if we take

where ϕ = (ϕ1,ϕ2, . . . ,ϕn), then (1) reduces to the following neural network with neutral 
type delays:

(1)x�(t) = A(t)x(t)+ f
(

t, xt , x
�
t

)

, t ∈ T,

T = R, A(t) = diag[−b1(t),−b2(t), . . . ,−bn(t)], f = (f1, f2, . . . , fn),

fi(t,ϕ,ϕ
′) =

n
∑

j=1

aij(t)fj(ϕj(0))+

n
∑

j=1

bij(t)fj(ϕj(−τij(t)))

+ ciϕ
′
i(−σi(t))+ Ii(t), i = 1, 2, . . . , n,

x′i(t) = −bi(t)xi(t)+

n
∑

j=1

aij(t)fj(xj(t))+

n
∑

j=1

bij(t)fj(xj(t − τij(t)))

+ cix
′
i(t − σi(t))+ Ii(t), i = 1, 2, . . . , n,
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which was studied in Li et al. (2012). If we take

then (1) reduces to

which was studied in Liu and Li (2004). Even in both the case of differential equations 
(time scale T = R) and the case of difference equations (T = Z), our results are com-
pletely new and complementary to the previously known results.

For convenience, we denote [a, b]T = {t|t ∈ [a, b] ∩ T}. For an rd-continuous ω-periodic 
function h : T → R, denote h+ = supt∈[0,ω]T |h(t)|, h

− = inf t∈[0,ω]T |h(t)| . For an rd-con-
tinuous ω-periodic function u : T → R

n, we define |u|0 = max1≤i≤nmaxt∈[0,ω]T |ui(t)|.  
For matrices or vectors A, B, A ≥ B (or A > B) means that all entries of A are greater 
than or equal to (or greater than) corresponding entries of B. For A(t) = (aij(t))n×n, we 
can take ||A|| = max1≤i≤n

∑n
j=1 |a

+
ij |.

The initial condition of (1) is

where φ ∈ C1
rd([−θ , 0]T,R

n).
Throughout this paper, we assume that the following condition holds: 

(H1)  f ∈ Crd(T× BC × BC ,Rn) is ω-periodic with respect to its first argument and 
there exist positive constants L1, L2 such that 

 for all t ∈ T and ϕi,ψi ∈ BC , i = 1, 2.

Preliminaries
In this section, we introduce some definitions and state some preliminary results.

Let T be a nonempty closed subset (time scale) of R. The forward and backward jump 
operators σ , ρ : T → T and the graininess µ : T → R

+ are defined, respectively, by

A point t ∈ T is called left-dense if t > inf T and ρ(t) = t, left-scattered if ρ(t) < t, 
right-dense if t < supT and σ(t) = t, and right-scattered if σ(t) > t. If T has a left-scat-
tered maximum m, then Tk = T\{m}; otherwise Tk = T. If T has a right-scattered mini-
mum m, then Tk = T\{m}; otherwise Tk = T.

A function f : T → R is right-dense continuous provided it is continuous at right-
dense points in T and its left-side limits exist at left-dense points in T. If f is continuous 
at each right-dense point and each left-dense point, then f is said to be continuous on T. 
We denote the class of all rd-continuous functions f : T → R by Crd(T,R).

For y : T → R and t ∈ T
k, we define the delta derivative of y(t), y�(t), to be the num-

ber (if it exists) with the property that for a given ε > 0, there exists a neighborhood U of 
t such that

T = R, A(t) = diag[a1(t), a2(t), . . . , an(t)],

f (t,ϕ,ϕ′) = �F(t,ϕt),

x′ = A(t)x(t)+ �F(t, xt),

x(s) = φ(s), x�(s) = φ�(s), s ∈ [−θ , 0]T,

|f (t,ϕ1,ψ1)− f (t,ϕ2,ψ2)|0 ≤ L1|ϕ1 − ϕ2|0 + L2|ψ1 − ψ2|0

σ(t) = inf{s ∈ T : s > t}, ρ(t) = sup{s ∈ T : s < t} and µ(t) = σ(t)− t.
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for all s ∈ U .
We denote the class of all �-differentiable functions with rd-continuous �-derivative 

f : T → R by C1
rd(T,R).

If y is continuous, then y is right-dense continuous, and if y is �-differentiable at t, then 
y is continuous at t.

Let y be right-dense continuous. If Y�(t) = y(t), then we define the delta inte-
gral by 

∫ t
a y(s)�s = Y (t)− Y (a). Assume that f : T → R

n is a function and 
f (t) = (f1(t), . . . , fn(t)), then we define 

∫ t
a f (s)�s = (

∫ t
a f1(s)�s, . . . ,

∫ t
a fn(s)�s)(pro-

vided it exists).

Definition 1 (Bohner and Peterson 2001) Let A be an m× n-matrix-valued function 
on T. We say that A is rd-continuous on T if each entry of A is rd-continuous on T. We 
say that A is differentiable on T provided each entry of A is differentiable on T, and in 
this case we put A� = (a�ij )m×n, where A = (aij)m×n.

Definition 2 (Kaufmann and Raffoul 2006) We say that a time scale T is periodic if 
there exists p > 0 such that if t ∈ T, then t ± p ∈ T. For T �= R, the smallest positive p is 
called the period of the time scale.

Definition 3 (Kaufmann and Raffoul 2006) Let T �= R be a periodic time scale with 
period p. We say that the function f : T → R is periodic with period ω if there exists a 
natural number n such that ω = np, f (t + ω) = f (t) for all t ∈ T and ω is the smallest 
positive number such that f (t + ω) = f (t).

Definition 4 (Bohner and Peterson 2001) A n× n-matrix-valued function A on time 
scale T is called regressive (respect to T) provided I + µ(t)A(t) is invertible for all t ∈ T

k .

Definition 5 (Bohner and Peterson 2001) Let A, B be two n× n-matrix-valued regres-
sive functions on T, we define

for all t ∈ T
k.

Definition 6 (Bohner and Peterson 2001) Let t0 ∈ T and assume that A ∈ R is a n× n

-matrix-valued function. The unique matrix-valued solution of the initial value problem

where, I denotes as usual the n× n-identity matrix, is called the matrix exponential 
function (at t0) and it is denoted by eA(·, t0).

|[y(σ (t))− y(s)] − y�(t)[σ(t)− s]| < ε|σ(t)− s|

(A⊕ B)(t) := A(t)+ B(t)+ µ(t)A(t)B(t),

(⊖A)(t) := −[I + µ(t)A(t)]−1A(t) = −A(t)[I + µ(t)A(t)]−1,

(A(t))⊖ (B(t)) := (A(t))⊕ (⊖(B(t)))

x�(t) = A(t)x(t), x(t0) = I ,
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Remark 3 Assume that A is a constant n× n-matrix. If T = R, then eA(t, t0) = eA(t−t0), 
while if T = Z and I + A is invertible, then eA(t, t0) = (I + A)(t−t0).

Lemma 1 (Bohner and Peterson 2001) Let A ∈ R be a n× n-matrix-valued functions 
on T and suppose that f : T → R

n is rd-continuous. Let t0 ∈ T and x0 ∈ R
n. Then the 

initial value problem

has a unique solution x : T → R
n, which is given by

Lemma 2 (Bohner and Peterson 2001) If A,B ∈ R are matrix-valued functions on T, 
then

(i)   e0(t, s) ≡ I and eA(t, t) ≡ I;
(ii)  eA(σ (t), s) = (I + µ(t)A(t))eA(t, s);
(iii) eA(t, s) = e−1

A (s, t);
(iv) eA(t, s)eA(s, r) = eA(t, r);
(v)  eA(t, s)eB(t, s) = eA⊕B(t, s), if  eA(t, s) and B(t) commute.

Lemma 3 (Bohner and Peterson 2001) If A ∈ R and a, b, c ∈ T, then

and

Definition 7 (Zhang et al. 2010a) Let x ∈ R
n and A(t) be a n× n matrix-valued func-

tion on T, the linear system

is said to admit an exponential dichotomy on T if there exist positive constants 
ki,αi, i = 1, 2, projection P and the fundamental solution matrix X(t) of (2) satisfying

Lemma 4 (Zhang et al. 2010a) If (2) admits an exponential dichotomy, then the follow-
ing ω-periodic system:

has an ω-periodic solution as follows:

where X(t) is the fundamental solution matrix of (2).

x�(t) = A(t)x(t)+ f (t), x(t0) = x0

x(t) = eA(t, t0)x0 +

∫ t

t0

eA(t, σ(s))f (s)�s.

[eA(c, ·)]
� = −[eA(c, ·)]

σA

∫ b

a
eA(c, σ(t))A(t)�t = eA(c, a)− eA(c, b).

(2)x�(t) = A(t)x(t), t ∈ T

|X(t)PX−1(s)|0 ≤ k1e⊖α1(t, s), s, t ∈ T, t ≥ s,

|X(t)(I − P)X−1(s)|0 ≤ k2e⊖α2(s, t), s, t ∈ T, t ≤ s.

X�(t) = A(t)X(t)+ g(t), t ∈ T

X(t) =

∫ t

−∞

X(t)PX−1(σ (s))g(s)�s −

∫ +∞

t
X(t)(I − P)X−1(σ (s))g(s)�s,
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Lemma 5 (Zhang et  al. 2010a) If A(t) is a uniformly bounded rd-continuous n× n 
matrix-valued function on T and there is a δ > 0 such that

then (2) admits an exponential dichotomy on T.

Definition 8 Let x(t) be an ω-periodic solution of (1) with initial value ϕ(s). If there 
exists a positive constant � with −� ∈ R

+ such that for t0 ∈ [−θ , 0]T, there exists M > 1 
such that for an arbitrary solution y(t) of (1) with initial value ψ(s) satisfies

Then the solution x(t) is said to be globally exponentially stable.

Existence of periodic solutions
Set X = {ϕ ∈ C1

rd(T,R
n)|ϕ is ω-periodic on T} with the norm ||ϕ||X = max{|ϕ|0, |ϕ

�|0}, 
where |ϕ|0 = max1≤i≤n supt∈[0,ω]T |ϕi(t)|, |ϕ

�|0 = max1≤i≤n supt∈[0,ω]T |ϕ
�
i (t)|, then X is 

a Banach space.

Theorem 1 Let (H1) hold. Suppose that

(H2)  system (2) admits an exponential dichotomy on T with constants ki,αi, i = 1, 2 ;

(H3)  q =: max

{

k1(1+ ϑα1)

α1
+

k2

α2
, ||A||

(

k1(1+ ϑα1)

α1
+

k2

α2

)

+ 1

}

(L1 + L2) < 1 , 

where ϑ = supt∈T µ(t). Then (1) has a unique ω-periodic solution.

Proof By (H3), we can take a positive constant L satisfying

where a = |f (·, 0, 0)|0. We set X0 = {ϕ ∈ X| ||ϕ||X ≤ L}. For any given ϕ ∈ X0, we con-
sider the following periodic system:

Since (H2) holds, by Lemma 4, we obtain that (3) has an ω-periodic solution, which is 
expressed as follows:

For ϕ ∈ X0, define the following operator:

First we show that for any ϕ ∈ X0, we have �ϕ ∈ X0. Note that

|aii(t)| −
�

j �=i

|aij(t)| −
1

2
µ(t)





n
�

j=1

|aij(t)|





2

− δ2µ(t) ≥ 2δ, t ∈ T, i = 1, 2, . . . , n,

||y− x||X ≤ M||ϕ − ψ ||Xe⊖�(t, t0), t ∈ [−θ ,∞)T, t ≥ t0.

max

{

k1(1+ ϑα1)

α1
+

k2

α2
, ||A||

(

k1(1+ ϑα1)

α1
+

k2

α2

)

+ 1

}

((L1 + L2)L+ a) ≤ L,

(3)x�(t) = A(t)x(t)+ f
(

t,ϕt ,ϕ
�
t

)

.

xϕ(t) =

∫ t

−∞

X(t)PX−1(σ (s))f
(

s,ϕs,ϕ
�
s

)

�s −

∫ +∞

t
X(t)(I − P)X−1(σ (s))f

(

s,ϕs,ϕ
�
s

)

�s.

� : X0 → X0, ϕ → xϕ .
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So, we have that

On the other hand, we have

|f
(

s,ϕs,ϕ
�
s

)

|0 ≤ |f
(

s,ϕs,ϕ
�
s

)

− f (s, 0, 0)|0 + |f (s, 0, 0)|0

≤ L1|ϕ|0 + L2|ϕ
�|0 + a

≤ (L1 + L2)�ϕ�X + a.

|�ϕ|0 =

∣

∣

∣

∣

∫ t

−∞

X(t)PX−1(σ (s))f
(

s,ϕs,ϕ
�
s

)

�s

−

∫ +∞

t
X(t)(I − P)X−1(σ (s))f

(

s,ϕs,ϕ
�
s

)

�s

∣

∣

∣

∣

0

≤ sup
t∈[0,ω]T

(
∫ t

−∞

∣

∣

∣X(t)PX−1(σ (s))
∣

∣

∣

0

∣

∣f
(

s,ϕs,ϕ
�
s

)∣

∣

0
�s

+

∫ +∞

t

∣

∣

∣X(t)(I − P)X−1(σ (s))
∣

∣

∣

0

∣

∣f
(

s,ϕs,ϕ
�
s

)∣

∣

0
�s

)

≤ ((L1 + L2)�ϕ�X + a)

(

sup
t∈[0,ω]T

∣

∣

∣

∣

∫ t

−∞

k1e⊖α1(t, σ(s))�s

∣

∣

∣

∣

+ sup
t∈[0,ω]T

∣

∣

∣

∣

∫ +∞

t
k2e⊖α2(σ (s), t)�s

∣

∣

∣

∣

)

= ((L1 + L2)�ϕ�X + a)

(

sup
t∈[0,ω]T

∣

∣

∣

∣

k1

∫ t

−∞

(1+ µ(s)α1)eα1(s, t)�s

∣

∣

∣

∣

+ sup
t∈[0,ω]T

∣

∣

∣

∣

k2

∫ +∞

t
(1+ µ(s)⊖ α2)e⊖α2(s, t)�s

∣

∣

∣

∣

)

= ((L1 + L2)�ϕ�X + a)

(

k1(1+ ϑα1)

α1
sup

t∈[0,ω]T

∣

∣

∣

∣

∫ t

−∞

α1eα1(s, t)�s

∣

∣

∣

∣

+ sup
t∈[0,ω]T

∣

∣

∣

∣

−
k2

α2

∫ +∞

t
⊖α2e⊖α2(s, t)�s

∣

∣

∣

∣

)

≤ ((L1 + L2)�ϕ�X + a)

(

k1(1+ ϑα1)

α1
+

k2

α2

)

.

|(�ϕ)�|0 =

∣

∣

∣

∣

(∫ t

−∞

X(t)PX−1(σ (s))f
(

s,ϕs,ϕ
�
s

)

�s

−

∫ +∞

t
X(t)(I − P)X−1(σ (s))f

(

s,ϕs,ϕ
�
s

)

�s

)�

t

∣

∣

∣

∣

∣

0

=

∣

∣

∣

∣

f
(

t,ϕs,ϕ
�
s

)

+ A(t)

(∫ t

−∞

X(t)PX−1(σ (s))f
(

s,ϕs,ϕ
�
s

)

�s

−

∫ +∞

t
X(t)(I − P)X−1(σ (s))f

(

s,ϕs,ϕ
�
s

)

�s

)∣

∣

∣

∣

0

≤ ((L1 + L2)�ϕ�X + a)

(

||A||

(

k1(1+ ϑα1)

α1
+

k2

α2

)

+ 1

)

.
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Hence, we have ||�ϕ||X ≤ L, that is, �ϕ ∈ X0. Next, we show that � is a contraction. For 
any ϕ,ψ ∈ X0, we have

and

By (H3), we have ||�ϕ −�ψ ||X ≤ q�ϕ − ψ�X. It follows that � is a contraction. There-
fore, according to the Banach fixed-point theorem, � has a fixed point in X0, that is, (1) 
has a unique periodic solution in X0. This completes the proof of Theorem 1. 

In view of Lemma 5 and Theorem 1, we have the following corollary:

Corollary 1 Let (H1) and (H3) hold. Suppose that

(H ′
2)  there is a constant δ > 0 such that

 Then (1) has a unique ω-periodic solution.

Global exponential stability of periodic solution

Theorem 2 Let (H1)–(H3) hold. Suppose further that

|�ϕ −�ψ |0 =

∣

∣

∣

∣

∫ t

−∞

X(t)PX−1(σ (s))
(

f
(

s,ϕs,ϕ
�
s

)

− f
(

s,ψs,ψ
�
s

))

�s

−

∫ +∞

t
X(t)(I − P)X−1(σ (s))

(

f
(

s,ϕs,ϕ
�
s

)

− f
(

s,ψs,ψ
�
s

))

�s

∣

∣

∣

∣

0

≤ sup
t∈[0,ω]T

∣

∣

∣

∣

∫ t

−∞

|X(t)PX−1(σ (s))|0
∣

∣f
(

s,ϕs,ϕ
�
s

)

− f
(

s,ψs,ψ
�
s

)∣

∣

0
�s

+

∫ +∞

t
|X(t)(I − P)X−1(σ (s))|0

∣

∣f
(

s,ϕs,ϕ
�
s

)

− f
(

s,ψs,ψ
�
s

)∣

∣

0
�s

∣

∣

∣

∣

≤ (L1 + L2)�ϕ − ψ�X

(

k1(1+ ϑα1)

α1
+

k2

α2

)

|(�ϕ −�ψ)�|0 =

∣

∣

∣

∣

[∫ t

−∞

X(t)PX−1(σ (s))
(

f
(

s,ϕs,ϕ
�
s

)

− f
(

s,ψs,ψ
�
s

))

�s

−

∫ +∞

t
X(t)(I − P)X−1(σ (s))

(

f
(

s,ϕs,ϕ
�
s

)

− f
(

s,ψs,ψ
�
s

))

�s

]�

t

∣

∣

∣

∣

∣

0

=

∣

∣

∣

∣

f
(

t,ϕt ,ϕ
�
t

)

− f
(

t,ψt ,ψ
�
t

)

+ A(t)

[∫ t

−∞

X(t)PX−1(σ (s))

×
(

f
(

s,ϕs,ϕ
�
s

)

− f
(

s,ψs,ψ
�
s

))

�s

−

∫ +∞

t
X(t)(I − P)X−1(σ (s))

(

f
(

s,ϕs,ϕ
�
s

)

− f
(

s,ψs,ψ
�
s

))

�s

]∣

∣

∣

∣

0

≤ (L1 + L2)

(

||A||

(

k1(1+ ϑα1)

α1
+

k2

α2

)

+ 1

)

�ϕ − ψ�X.

�

|aii(t)| −
�

j �=i

|aij(t)| −
1

2
µ(t)





n
�

j=1

|aij(t)|





2

− δ2µ(t) ≥ 2δ, t ∈ T, i = 1, 2, . . . , n.
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(H4)  L1 + L2 +
||A||
N < 1 and N (L1 + L2)(1+ ϑ)||A|| < α. Then the periodic solution of 

(1) is globally exponentially stable.
Proof By Theorem  1, (1) has an ω-periodic solution x(t) with the initial value ϕ(s) . 
Suppose that y(t) is an arbitrary solution of (1) with the initial value ψ(s). Denote 
z(t) = y(t)− x(t). Then it follows from (1) that for t ∈ T,

The initial value condition of (4) is

By Lemma 1, for t0 ∈ [−θ , 0)T with t0 < t, we have

Take a constant 0 < � < α with −� ∈ R
+ and let

By (H4), it is easy to verify that M > 1 and hence, we have

We claim that

To prove this claim, we show that for any constant p > 1, the following inequality holds

which means that

and

By way of contradiction, assume that (7) does not hold. We will have the following three 
cases. Case One: (9) is true and (8) is not true. Then there exists t1 ∈ (t0,+∞)T such that

Hence, there must be a constant c ≥ 1 such that

Then, by (5), for t = t1, we have

(4)z�(t) = A(t)z(t)+ f
(

t, yt , y
�
t

)

− f
(

t, xt , x
�
t

)

.

φ(s) = ψ(s)− ϕ(s), φ�(s) = ψ�(s)− ϕ�(s), s ∈ [−θ , 0]T.

(5)z(t) = eA(t, t0)z(t0)+

∫ t

t0

eA(t, σ(s))
[

f
(

s, ys, y
�
s

)

− f
(

s, xs, x
�
s

)]

�s.

M > max

{

Nα

α − N (L1 + L2)(1+ ϑ)||A||
,

Nα||A||

α − (L1 + L2)
(

α + N (1+ ϑ)||A||2
)

}

.

||z||X ≤ M||φ||Xe⊖�(t, t0), ∀t ∈ [−θ , t0]T.

(6)||z||X ≤ M||φ||Xe⊖�(t, t0), ∀t ∈ (t0,+∞)T.

(7)||z||X < pM||φ||Xe⊖�(t, t0), ∀t ∈ (t0,+∞)T,

(8)|z|0 < pM||φ||Xe⊖�(t, t0), ∀t ∈ (t0,+∞)T

(9)|z�|0 < pM||φ||Xe⊖�(t, t0), ∀t ∈ (t0,+∞)T.

|z|0 ≥ pM||φ||Xe⊖�(t1, t0), |z|0 < pM||φ||Xe⊖�(t, t0), t ∈ (t0, t1)T.

|z|0 = cpM||φ||Xe⊖�(t1, t0), |z|0 < pM||φ||Xe⊖�(t, t0), t ∈ (t0, t1)T.
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which is a contradiction.
Case Two: (8) is true and (9) is not true. Then there exists t2 ∈ (t0,+∞)T such that

Hence, there must be a constant b ≥ 1 such that

In view of (5), for t = t2, we have

|z|0 =

∣

∣

∣

∣

eA(t, t0)z(t0)+

∫ t

t0

eA(t, σ(s))
[

f
(

s, ys, y
�
s

)

− f
(

s, xs, x
�
s

)]

�s

∣

∣

∣

∣

0

≤ |eA(t, t0)|0||φ||X +

∣

∣

∣

∣

∫ t

t0

eA(t, σ(s))
[

f
(

s, ys, y
�
s

)

− f
(

s, xs, x
�
s

)]

�s

∣

∣

∣

∣

0

≤ |eA(t, t0)|0||φ||X + sup
t∈[0,ω]T

∣

∣

∣

∣

∫ t

t0

|eA(t, σ(s))|0|f
(

s, ys, y
�
s

)

− f
(

s, xs, x
�
s

)

|0�s

∣

∣

∣

∣

≤ Ne−α(t1, t0)||φ||X + (L1 + L2)||z||X sup
t∈[0,ω]T

∣

∣

∣

∣

∫ t

t0

|eA(t, σ(s))|0�s

∣

∣

∣

∣

≤ Ne⊖�(t1, t0)||φ||X + (L1 + L2)cpMe⊖�(t1, t0)

× ||φ||X sup
t∈[0,ω]T

∣

∣

∣

∣

∫ t

t0

|(I + µ(s)A(s))eA(t, s)|0�s

∣

∣

∣

∣

≤ Ne⊖�(t1, t0)||φ||X + (L1 + L2)cpNMe⊖�(t1, t0)

× ||φ||X(1+ ϑ ||A||) sup
t∈[0,ω]T

∣

∣

∣

∣

∫ t

t0

e−α(s, t0)�s

∣

∣

∣

∣

≤ Ne⊖�(t1, t0)||φ||X +
(L1 + L2)cpNMe⊖�(t1, t0)||φ||X(1+ ϑ)||A||

α

< cpMe⊖�(t1, t0)||φ||X

(

N

M
+

N (L1 + L2)(1+ ϑ)||A||

α

)

< cpMe⊖�(t1, t0)||φ||X,

|z�|0 ≥ pM||φ||Xe⊖�(t2, t0), |z
�|0 < pM||φ||Xe⊖�(t, t0), t ∈ (t0, t2)T.

|z�|0 = bpM||φ||Xe⊖�(t2, t0), |z
�|0 < pM||φ||Xe⊖�(t, t0), t ∈ (t0, t2)T.

|z�|0 =
∣

∣A(t)eA(t, t0)z(t0)+ f
(

t, yt , y
�
t

)

− f
(

t, xt , x
�
t

)

+A(t)

∫ t

t0

eA(t, σ(s))
(

f
(

s, ys, y
�
s

)

− f
(

s, xs, x
�
s

))

�s

∣

∣

∣

∣

0

≤ ||A|||eA(t, t0)|0||φ||X +
∣

∣f
(

t, yt , y
�
t

)

− f
(

t, xt , x
�
t

)∣

∣

0

+

∣

∣

∣

∣

A(t)

∫ t

t0

eA(t, σ(s))
(

f
(

s, ys, y
�
s

)

− f
(

s, xs, x
�
s

))

�s

∣

∣

∣

∣

0

≤ ||A||Ne−α(t2, t0)|φ||X + (L1 + L2)bpMe⊖�(t2, t0)|φ||X

+
||A||2NbpM(L1 + L2)e⊖�(t2, t0)|φ||X(1+ ϑ)

α

< bpMe⊖�(t2, t0)|φ||X

(

N ||A||

M
+ L1 + L2 +

||A||2N (L1 + L2)(1+ ϑ)

α

)

< bpMe⊖�(t2, t0)|φ||X,
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which is also a contradiction.
Case Three: (8) and (9) are both untrue. By Case One and Case Two, we can obtain a 

contradiction. Therefore, (7) holds. Let p → 1, (6) holds. Hence, we have that

which implies that the periodic solution x(t) of (1) is globally exponentially stable. This 
completes the proof of Theorem 2. 

Corollary 2 Let (H1), (H ′
2) and (H3)–(H5) hold. Then (1) has a unique periodic solution, 

which is globally exponentially stable.

An example
In (1), if we take

where

τ , ζ ∈ C(T,T ∩ R
+) are π-periodic. Then (1) reduces to

By a simple calculation, we have L1 = L2 = 0.0003, ||A|| = 0.002, ⊖α1 = −0.001, 
k1 = 1, ⊖α2 = k2 = 0, α = 0.001. One can easily verify that all the conditions in Corol-
lary 2 are satisfied for 0 ≤ µ ≤ 1. In particularly, if we take T = R, then µ(t) = 0 and if 
we take T = Z, then µ(t) = 1. Therefore, in both the cases of T = R and T = Z, (10) has 
a π-periodic solution, which is exponentially stable.

Remark 4 Example (10) shows that both the continuous case of (10)

and its discrete analogue

have the same dynamical property for the periodic case.

||y− x||X ≤ M||ϕ − ψ ||Xe⊖�(t, t0), t ∈ [−θ ,∞)T, t ≥ t0,

�

A(t) =

(

−0.002 sin 2t 0
0 − 0.001 cos 2t

)

, f = (f1, f2)
T ,

f1(t,ϕ,ϕ
�) = 0.0003(sin ϕ(−τ (t))+ cosϕ�(−ζ(t))),

f2(t,ϕ,ϕ
�) = 0.0002(sin ϕ(−τ (t))+ cosϕ�(−ζ(t))),

(10)

(

x�(t)

x�(t)

)

=

(

−0.002 sin 2t 0
0 − 0.001 cos 2t

)(

x1(t)
x2(t)

)

+

(

0.0003(sin ϕ(−τ (t))+ cosϕ�(−ζ(t)))

0.0002(sin ϕ(−τ (t))+ cosϕ�(−ζ(t)))

)

.

d

dt
x(t) = A(t)x(t)+ f

(

t, x(t − τ (t)), x′(t − ζ(t))
)

, t ∈ R

�x(n) = A(n)x(n)+ f (n, x(n− τ (n)),�x(n− ζ(n))), n ∈ Z
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Conclusion
In this paper, by using the existence of the exponential dichotomy of linear dynamic 
equations on time scales and the inequality techniques, we established the existence and 
global exponential stability of periodic solutions for a very general class of n-dimensional 
neutral dynamic equations on time scales. Our results of this paper are completely new 
and complementary to the previously known results even in both the case of differential 
equations (time scale T = R) and the case of difference equations (time scale T = Z), 
and our methods used in this paper may be used to study the problem of periodic solu-
tions to other types of dynamic equations on time scales.
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