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Background
Finding the largest code (in cardinality) with a given length and minimum distance is one 
of the most fundamental problems in coding theory. The most well-known upper bounds 
for the Hamming metric are the Hamming bound, Plotkin bound, Singleton bound and 
Elias bound, and these bounds have been formulated for the Lee metric also, although 
the expressions are slightly more complicated. Delsarte (1973) introduced association 
schemes to coding theory to deal with topics involving the inner distribution of a code. 
An important approach arises from association schemes to the problem of determining 
the upper bound for the size of a code, namely the linear programming approach. The 
asymptotically best upper bound in the Hamming metric is the McEliece–Rodemich–
Rumsey–Welch bound, see McEliece et al. (1977), which is based on the linear program-
ming approach, and gives a substantial improvement to the earlier best upper bound, 
which is the Elias bound. In the Hamming metric, the distance relations between code-
words directly define an association scheme, but in the Lee metric, the distance rela-
tions between the Lee-compositions define the association scheme. The Lee association 
scheme and linear programming bounds for Lee codes have been discussed by Astola 
(1982a), Solé (1988), and Tarnanen (1982). Generalizing to finite Frobenius rings, the 
linear programming bound for codes equipped with homogeneous weight, including the 
Lee weight on Z4, has been studied by Byrne et al. (2007).

Abstract 

Based on an invariance-type property of the Lee-compositions of a linear Lee code, 
additional equality constraints can be introduced to the linear programming problem 
of linear Lee codes. In this paper, we formulate this property in terms of an action of 
the multiplicative group of the field Fq on the set of Lee-compositions. We show some 
useful properties of certain sums of Lee-numbers, which are the eigenvalues of the 
Lee association scheme, appearing in the linear programming problem of linear Lee 
codes. Using the additional equality constraints, we formulate the linear programming 
problem of linear Lee codes in a very compact form, leading to a fast execution, which 
allows to efficiently compute the bounds for large parameter values of the linear codes.
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We denote Zn
q = {x = [x1, . . . , xn]|xi ∈ {0, 1, . . . , q − 1}} the set of length n vec-

tors having q−ary elements. The Hamming distance between two vectors x, y ∈ Z
n
q is 

dH (x, y) = |{i | xi �= yi}|, and penalizes equally any non-zero error between the com-
ponents of x and y, being a natural measure for errors in many communication chan-
nels. However, in communication channels with phase modulation, where the symbols 
0, 1, . . . , q − 1 are transmitted as phases 0, 2πq , . . . , (q − 1) 2πq , the errors are measured as 
the shortest distance between the symbols along the unit circle and hence we consider 
in the following the error between two symbols i, j ∈ Zq to be defined as the Lee distance 
dL(i, j) = min(|i − j|, q − |i − j|), which was introduced by Lee (1958). The Lee distance 
between two vectors x, y ∈ Z

n
q is defined as

The Lee weight of one symbol j ∈ Zq is wL(j) = min(j, q − j) and that of one vector 
x ∈ Z

n
q is wL(x) = dL(0, x). The number of components of the vector x ∈ Z

n
q having the 

Lee weight equal to i is denoted li(x) and, since li(x) = lq−i(x), only s = ⌊ q
2
⌋ such num-

bers describe completely the distribution of the Lee weights of the elements of x. This 
distribution, denoted l(x), is called the Lee-composition of x, defined as:

We denote Ln
q = {t0, . . . , tα} = {l(x)|x ∈ Z

n
q} the set of distinct Lee-compositions, where 

(α + 1) is their number, and we reserve the notation t0 for l(0) = [n, 0, . . . , 0].
A code is defined as a subset of vectors of Zn

q. Keeping with the communication 
scenario, only the codewords belonging to the code C are sent as messages over the 
communication channel, say the codeword x ∈ C is sent and is corrupted due to com-
munication errors, being received as a different vector, z ∈ Z

n
q. If the minimum dis-

tance d between all codewords of C is 2e + 1, then all the spheres {y|dL(x, y) ≤ e, x ∈ C} 
around each codeword x ∈ C are non-intersecting, and the received vector z can be 
correctly decoded if dL(z, x) ≤ e. When designing codes C, the minimum distance d of 
the code is imposed as an initial requirement. The goal is then to design a code hav-
ing the largest number of codewords, so that one can send reliably as many messages as 
possible, with the guarantee of correcting errors of Lee weight smaller than or equal to 
e. Since the problem of designing the largest codes is not solved yet in general, finding 
upper bounds on the size of the code C for a given d is considered one of the major prob-
lems in information theory. For example when new codes are proposed, comparing their 
size against the known upper bounds allows to prove their optimality if they achieve the 
upper bounds.

In the case of Lee distance, the constraints that need to be satisfied by an error cor-
recting code with a given distance d can be conveniently analyzed using the associa-
tion scheme introduced by Delsarte (1973). The scheme has α + 1 relations denoted 
Kt0 , . . . ,Ktα, where (x, y) belongs to Kti if l(x − y) = ti, with x, y ∈ Z

n
q and ti ∈ Ln

q.
Introduce the inner distribution of the code C as

dL(x, y) =
n

∑

i=1

min
(

|xi − yi|, q − |xi − yi|
)

.

l(x) = [l0(x), l1(x), . . . , ls(x)].
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where |C| denotes the cardinality of the set C, and in particular Bt0 = 1. Hence the 
desired quantity to be optimized for a code, its cardinality |C|, can be simply expressed 
in terms of the variables Bti as

The fundamental result of the association scheme introduced by Delsarte (1973) is the 
formulation of the linear constraints between the variables Bti, using as coefficients the 
so-called Lee-numbers, which are the eigenvalues of the Lee association scheme. Let 
ξ = exp(2π

√
−1/q). The Lee-number Lt(u) with t,u ∈ Ln

q can be computed as follows: 
take any vector v having the Lee-composition u = l(v) and compute (see Astola 1982b)

The linear inequality constraints between the variables Bti are then expressed as (see 
Astola 1982b):

where 
[n
k

]

=
(n
k

)

2n−k0 for q = 2s + 1, and 
(n
k

)

 is the multinomial coefficient 
( n
k0,...,ks

)

.
With these constraints, the cardinality 

∑

ti∈Ln
q
Bti = |C| of any code can be upper 

bounded by solving a linear programming problem, as stated in the following (see 
Astola 1982b). Let B∗

t , t ∈ {t1, . . . , tα} be an optimal solution of the linear programming 
problem

where I = {i | l(x) = ti ⇒ wL(x) ≥ d}. Then 1+
∑α

i=1 B
∗
ti
 is an upper bound to the size 

of the code C with the minimum distance d.
We have previously shown that in the case of linear Lee codes we can use the follow-

ing sharpening of the linear programming problem (see Astola and Tabus 2015). Let 
B∗
t , t ∈ {t1, . . . , tα} be an optimal solution of the linear programming problem

Bti =
1

|C|
|Kti ∩ C2|, ti ∈ L

n
q ,

∑

ti∈Ln
q

Bti = |C|.

(1)Lt(u) =
∑

x|l(x)=t

(

n
∏

i=1

ξ vixi

)

.

α
∑

i=1

Bti Lk(ti) ≥ −
[

n
k

]

,

(2)

maximize

α
∑

i=1

Bti

Bti ≥ 0, i ∈ I and Bti = 0, i ∈ {1, . . . ,α}\I
α
∑

i=1

Bti Lk(ti) ≥ −
[

n
k

]

, for all k ∈ L
n
q

(3)
maximize

α
∑

i=1

Bti

Bti ≥ 0, i ∈ I and Bti = 0, i ∈ {1, . . . ,α}\I
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where τ (ti) is the set of Lee-compositions that are obtained when the vectors x having the 
Lee-composition ti are multiplied by all r ∈ Fq\{0}, and I = {i | l(x) = ti ⇒ wL(x) ≥ d} , 
i.e., the indices of those Lee-compositions corresponding to vectors of Lee weight ≥ d . 
Then 1+

∑α
i=1 B

∗
ti
 is an upper bound to the size of the code C with the minimum dis-

tance d.
The above sharpening is based on an invariance-type property of the Lee-compositions 

of a linear code. In the Hamming metric, multiplying codewords by a constant does not 
change the weight of the codewords. However, in the Lee metric, multiplication typically 
changes the Lee-composition of the codeword and so also usually the Lee weight. With 
linear codes, since they are linear subspaces of vector spaces, all the multiplied versions 
of any codeword also belong to the code. The authors have previously shown that there 
are as many codewords having the Lee-composition of a given codeword x as there are 
codewords having the Lee-composition of rx that is obtained by multiplication of the 
given codeword x by some constant r (see Astola and Tabus 2015).

In this paper, we formulate this property of Lee-compositions of a linear Lee code in 
terms of an action of the multiplicative group of the field Fq on the set of Lee-compo-
sitions. This formulation gives theoretical tools for studying the Lee-compositions and 
linear Lee-codes. For simplicity, we let q be prime, Fn

q = {x | xi ∈ Fq , i = 1, . . . , n}. In 
addition, we show some useful properties of certain sums of Lee-numbers. Using the 
equality constraints introduced by Astola and Tabus (2015) and the properties of cer-
tain sums of Lee-numbers, we may compact the set of variables and linear constraints in 
the linear programming problem, and perform all computations with rational numbers. 
Compacting the problem leads to a faster execution, which allows to efficiently compute 
the bounds for large parameter values.

The group action
In the paper by Astola and Tabus (2015), a mapping τ (t) that maps the Lee-composition 
t into the set of Lee-compositions, which are obtained from t by multiplication of vec-
tors having the Lee-composition t by all r ∈ {1, . . . , q − 1}, was defined in the following 
way:

where

The mapping of the Lee-compositions can be formulated in terms of a group action.

(4)Bti = Btj for all tj ∈ τ (ti)

(5)

α
∑

i=1

Bti Lk(ti) ≥ −
[

n
k

]

, for all k ∈ L
n
q

τ (t) =
{[

tπr (0)(x), tπr (1)(x), . . . , tπr (s)(x)
]

| t = l(x),πr(i) = |k|,
kr ≡ i mod q,−s ≤ k ≤ s, 1 ≤ r ≤ q − 1

}

,

πr(i) = |k| such that rk ≡ i mod q and − s ≤ k ≤ s.
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Definition 1  If G is a group and X is a set, then a group action ϕ of G on X is a function

that satisfies the following conditions for all x ∈ X:

1.	 ϕ(e, x) = x, where e is the identity element of G (identity).
2.	 ϕ(g ,ϕ(h, x)) = ϕ(gh, x) for all g , h ∈ G (compatibility).
For notational reasons, denote in the following the set of Lee-compositions Ln

q as 
{ρ(0), . . . , ρ(α)}. Now, let us define the function ϕ as follows. Denote by F∗

q the multiplica-
tive group of the field Fq.

where

where

Lemma 1  The function ϕ is a group action of F∗
q, where q is prime, on the set 

{ρ(0), . . . , ρ(α)} of Lee-compositions.

Let us show that the above function ϕ is in fact a group action. Clearly the identity 
property is satisfied as

The compatibility property requires that ϕ(r1,ϕ(r2, ρ(i))) = ϕ(r1 · r2, ρ(i)), where 
r1, r2 ∈ F

∗
q. Let us write

Then,

Now,

Therefore, we need to show that πr1(πr2(l))
= πr1·r2(l).

Now,

ϕ : G × X → X

ϕ : F∗
q ×

{

ρ(0), . . . , ρ(α)
}

→
{

ρ(0), . . . , ρ(α)
}

,

ϕ(r, ρ(i)) =
[

ρ
(i)
0 , ρ(i)

πr(1)
, . . . , ρ(i)

πr(s)

]

= ρ(j),

πr(l) = |k| such that rk ≡ l mod q and − s ≤ k ≤ s, r ∈ F
∗
q .

ϕ(1, ρ(i)) =
[

ρ
(i)
0 , ρ

(i)
1 , . . . , ρ(i)

s

]

= ρ(i).

ϕ(r2, ρ
(i)) =

[

ρ
(i)
0 , ρ(i)

πr2(1)
, . . . , ρ(i)

πr2(s)

]

.

ϕ(r1, (ϕ(r2, ρ
(i))) =

[

ρ
(i)
0 , ρ(i)

π
r1

(

πr2(1)

) , . . . , ρ(i)
π
r1

(

πr2(s)

)

]

.

ϕ(r1 · r2, ρ(i)) =
[

ρ
(i)
0 , ρ(i)

πr1 ·r2(1)
, . . . , ρ(i)

πr1·r2(s)

]

.



















πr2(l) = |k1| such that r2k1 ≡ l mod q, −s ≤ k1 ≤ s,

πr1(πr2(l)) = |k2| such that r1k2 ≡ |k1| mod q, −s ≤ k2 ≤ s,

πr1r2(l) = |k3| such that r1r2k3 ≡ l mod q, −s ≤ k3 ≤ s.
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We need to prove that |k2| = |k3|.

Proof  We have two cases. If 1 ≤ k1 ≤ s we have

and since q is prime and −s ≤ k2, k3 ≤ s it must be that k2 = k3.
If −s ≤ k1 < 0 we have

and since q is prime and −s ≤ k2, k3 ≤ s it must be that |k2| = |k3|. � �

The action of F∗
q on the set of Lee-compositions partitions the set into equivalence 

classes, which are called orbits. So, the orbit of an element ρ(i) is

Clearly there is a correspondence between τ (ti) and the orbits Orb(ρ(i)), i.e., the sets τ (t) 
are the orbits of the above group action. Therefore, the theory of group actions can be 
used for studying the Lee-compositions and the linear programming problem, e.g., for 
the compact problem that we introduce in this paper, the orbit-counting theorem (see, 
for instance, Burnside 1897) can be used for determining the complexity of the problem 
as the number of orbits equals the number of variables in the compact problem.

Properties of certain sums of Lee‑numbers
In this section we study certain sums of Lee-numbers, where the Lee-numbers are taken 
over Lee-compositions belonging to a given orbit. We show that this type of a sum is 
rational as opposed to the Lee-numbers, which in many cases are irrational numbers, 
and that it satisfies certain equality constraints.

Since the values of the coefficients of the inner distribution are equal for all composi-
tions in τ (ti), we will have in (5) sums of the form

Therefore, for each coefficient Bti we are computing a sum of Lee-numbers, where the 
Lee-numbers are taken over the Lee-compositions belonging to τ (ti).

Let us introduce the following lemma.

Lemma 2  Let τ (ti) = {ti1 , . . . , tiu}. Then the sum

is a rational number.

Proof  First, we want to change each term Lk(ti) into Lti(k). There is the following rela-
tionship between the Lee-numbers Lk(t) and Lt(k) (see Astola 1982b):

r1k2 ≡ k1 mod q ⇒ r2k1r1k2 ≡ k1l mod q ⇒ r2r1k2 ≡ l mod q,

r1k2 ≡ −k1 mod q ⇒ r2k1r1k2 ≡ −k1l mod q ⇒ r2r1(−k2) ≡ l mod q,

Orb(ρ(i)) =
{

ϕ

(

r, ρ(i)
)

: r ∈ F
∗
q

}

.

Bti ·
(

Lk(ti1)+ Lk(ti2)+ · · · + Lk(tiu)
)

.

(6)Lk(ti1)+ Lk(ti2)+ · · · + Lk(tiu),

(7)

[

n
t

]

Lk(t) =
[

n
k

]

Lt(k),
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where the coefficient 
[n
t

]

 corresponds to the number of vectors in Fn
q for which the Lee-

composition is t (see Astola 1982b). Hence, we can write (6) as

Now, we notice that since all ti belong to the same τ, they are permutations of each other. 
This means that the coefficients 

[n
ti

]

 are all equal and (6) takes the form

where 
[n
k

]

/
[ n
ti1

]

= 1 if k ∈ τ (ti), and a rational number otherwise.
Now, using Eq. (1), we can write the sum in parentheses above as

where u is the cardinality of τ (ti) and l(v) = k.
Since the Lee-numbers Lti(k) correspond to compositions according to τ, then for each 

vector x, the sum in (8) includes all the vectors rx, where r ∈ {1, . . . , q − 1}. Also, each vec-
tor can only have one Lee-composition and thus can appear in only one of the sums in (8).

We may now rearrange and group the terms in (8) as

This forms a partition of the set of vectors having a Lee-composition in τ (ti), since the 
relation R defined as (x, y) ∈ Rx iff x = ry, r ∈ {1, . . . , q − 1} is clearly an equivalence 
relation.

Therefore, we can group the sum into m parts, each having q − 1 terms. We now take 
one such part:

and write it as

If v · xi = 0 it equals q − 1, otherwise, we have a sum of the form

So (8) is a sum of the form m1(q − 1)+m2(−1), where m1 and m2 are integers ≥ 0 
such that m = m1 +m2. 

Furthermore, we notice that when we look at the sums

[

n
k

]

/

[

n
ti1

]

Lti1 (k)+
[

n
k

]

/

[

n
ti2

]

Lti2 (k)+ · · · +
[

n
k

]

/

[

n
tiu

]

Ltiu (k).

[

n
k

]

/

[

n
ti1

]

(

Lti1 (k)+ Lti2 (k)+ · · · + Ltiu (k)
)

,

(8)

Lti1 (k)+ Lti2 (k)+ · · · + Ltiu (k)

=
∑

x|l(x)=ti1

(

n
∏

i=1

ξ vixi

)

+
∑

x|l(x)=ti2

(

n
∏

i=1

ξ vixi

)

+ · · · +
∑

x|l(x)=tiu

(

n
∏

i=1

ξ vixi

)

(

ξ v·x1 + ξ v·2x1 + · · · + ξ v·(q−1)x1
)

+
(

ξ v·x2 + ξ v·2x2 + · · · + ξ v·(q−1)x2
)

+ · · ·

ξ v·xi + ξ v·2xi + · · · + ξ v·(q−1)xi ,

ξ v·xi + ξ2(v·xi) + · · · + ξ (q−1)(v·xi).

ξ + ξ2 + · · · + ξq−1 = −1.

�

(9)

Lki1
(ti1)+ Lki1

(ti2)+ · · · + Lki1
(tiu),

Lki2
(ti1)+ Lki2

(ti2)+ · · · + Lki2
(tiu),

...

Lkiu′
(ti1)+ Lkiu′

(ti2)+ · · · + Lkiu′
(tiu),
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where u is the cardinality of τ (ti) and u′ is the cardinality of τ (ki), they all turn out be 
equal.

Lemma 3  For ti1 , . . . , tiu ∈ τ (ti) and ki, ki′ ∈ τ (ki),

Proof  First, we transform these sums using (7) into sums of the following form

Now we notice that since the Lee-compositions ki and ki′ both belong to τ (ki), the 
coefficients in front of the sums are all equal. What remains to show is that the sums 
(Lti1 (ki)+ Lti2 (ki)+ · · · + Ltiu (ki)) and (Lti1 (ki′)+ Lti2 (ki

′)+ · · · + Ltiu (ki′)) are equal. 
To show this, we rearrange both sums as we did in the previous proof to obtain sums of 
the following form. For the first sum we have

where l(v) = ki and l(xi) = ti.
Now, since the Lee-compositions ki and ki′ belong to τ (ki), we obtain the vectors hav-

ing the Lee-composition ki′ from the vectors having the Lee-composition ki by multipli-
cation by some r. Therefore, for the second sum we have

Now

since if v · xi = 0, they are both equal to q − 1, and otherwise each exponent is distinct. 
Therefore, the sums are equal. � �

The compact linear programming problem
The additional equalities for linear Lee codes in (4) can be used for compacting the set 
of linear constraints in the linear programming problem of linear Lee codes. We enforce 
(3) by replacing all variables Btj for tj ∈ τ (ti) with a single variable γi, so that γi = Btj for 
all tj ∈ τ (ti).

We notice that by replacing the α variables Bt1 , . . . ,Btα of the linear programming 
problem with the set of variables γ1, . . . , γκ, where κ is the number of orbits, i.e., the 
number of different sets τi, we are eliminating the equality constraints from the sharp-
ened linear programming problem. Let us denote by ϒ a matrix, where we have listed all 
the Lee-numbers as

Lki(ti1)+ Lki(ti2)+ · · · + Lki(tiu) = Lki′ (ti1)+ Lki′ (ti2)+ · · · + Lki′ (tiu).

[

n
ki

]

/

[

n
ti1

]

(

Lti1 (ki)+ Lti2 (ki)+ · · · + Ltiu (ki)
)

,

[

n
ki′

]

/

[

n
ti1

]

(

Lti1 (ki
′)+ Lti2 (ki

′)+ · · · + Ltiu (ki′)
)

.

(

ξ v·x1 + ξ2(v·x1) + · · · + ξ (q−1)v·x1
)

+
(

ξ v·x2 + ξ2(v·x2) + · · · + ξ (q−1)v·x2
)

+ · · · ,

(

ξ rv·x1 + ξ r2(v·x1) + · · · + ξ r(q−1)v·x1
)

+
(

ξ rv·x2 + ξ r2(v·x2) + · · · + ξ r(q−1)v·x2
)

+ · · · .

ξ v·xi + ξ2(v·xi) + · · · + ξ (q−1)v·xi = ξ rv·xi + ξ r2(v·xi) + · · · + ξ r(q−1)v·xi ,
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Let A be an α × κ matrix of the form

where the number of rows inside each partition corresponds to the cardinalities of the 
sets τi.

We introduce the vector γ = (γ0, γ1, . . . , γκ) and formulate the linear programming 
problem equivalent to (3):

where I = {i | ∀t ∈ τi : l(x) = t ⇒ wL(x) ≥ d}, i.e., the indices of those sets τi, where all 
Lee-compositions correspond to vectors of Lee weight ≥ d.

The cardinalities |τi| appear in the criterion of the problem since the initial criterion 
expressed in terms of the variables Bt1 , . . . ,Btα is 1TB, where 1 is the all one vector and 
B = [Bt1 , . . . ,Btα ]T, and the criterion in the new variables is 1TAγ, where the new vector 
of coefficients, 1TA, will have as elements the size of the partitions of A, which are equal 
to the cardinalities of the sets τi.

Additionally we notice that the matrix U = ϒA can be seen to have the partition 
structure similar to that of A,

ϒ =









Lk0(t0) Lk0(t1) · · · Lk0(tα)
Lk1(t0) Lk1(t1) · · · Lk1(tα)

...
. . .

...

Lkα (t0) Lkα (t1) · · · Lkα (tα)









A =



























1 0 0 0 · · · 0

0 1 0 0 · · · 0

0 1 0 0 · · · 0

0 1 0 0 · · · 0

0 1 0 0 · · · 0

0 0 1 0 · · · 0

0 0 1 0 · · · 0

· · ·
0 0 0 0 · · · 1



























,

maximize

κ
∑

i=1

|τi|γi

γ0 = 1 and γi ≥ 0, i ∈ I and γi = 0, i ∈ {1, . . . ,α}\I
ϒAγ ≥ 0,

U = ϒA = ϒ



























1 0 0 0 · · · 0

0 1 0 0 · · · 0

0 1 0 0 · · · 0

0 1 0 0 · · · 0

0 1 0 0 · · · 0

0 0 1 0 · · · 0

0 0 1 0 · · · 0

· · ·
0 0 0 0 · · · 1



























=



























�1,1 �1,2 �1,3 �1,4 · · · �1,κ

�2,1 �2,2 �2,3 �2,4 · · · �2,κ

�2,1 �2,2 �2,3 �2,4 · · · �2,κ

�2,1 �2,2 �2,3 �2,4 · · · �2,κ

�2,1 �2,2 �2,3 �2,4 · · · �2,κ

�3,1 �3,2 �3,3 �3,4 · · · �3,κ

�3,1 �3,2 �3,3 �3,4 · · · �3,κ

· · ·
�κ ,1 �κ ,2 �κ ,3 �κ ,4 · · · �κ ,κ



























= A�
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where the matrix � = [�]i,j is κ × κ and the rows in a partition correspond to the Lee-
compositions belonging to the same set τi. Inside a partition the rows of the matrix U are 
identical, due to Lemma 3, since the columns of U inside a partition have the following 
elements

where |τki | = u′ and |τti | = u. This leads to a repeated inequality constraint. In order to 
remove this redundancy, we select from the matrix U only one row per partition block, 
keeping thus only the non-redundant inequalities. This is just the matrix �, and we may 
replace the inequality constraints ϒAγ ≥ 0 with �γ ≥ 0. In addition, due to Lemma 2, 
each element of � is a rational number, and the Lee-numbers can be computed recur-
sively with integers using the recursive formula given by Astola and Tabus (2013). Hence, 
we can perform all computations using integers instead of irrationals.

In Tables 1, 2, 3 and 4 there are numerical results for the linear programming bounds 
for linear Lee codes with q = 5, 7, 13, 17. The bounds were computed using the above 
compact linear programming bound for linear Lee codes and compared to the general 
linear programming bound given by (2). Italics indicates an improvement and * indicates 
a tight bound.

Lki1
(ti1)+ Lki1

(ti2)+ · · · + Lki1
(tiu),

Lki2
(ti1)+ Lki2

(ti2)+ · · · + Lki2
(tiu),

...

Lkiu′
(ti1)+ Lkiu′

(ti2)+ · · · + Lkiu′
(tiu),

Table 1  Upper bounds for the dimension k of linear Lee codes when q = 5

The * indicates a tight bound and italics an improvement compared to the bound given by (2)

n\d 3 4 5 6 7 8 9 10 11 12 13 14 15 16 Time [s]

2 1* 0.007

3 1* 1* 0.013

4 2* 2* 1* 1* 0.026

5 3* 3* 2* 1* 1* 0.041

6 4* 3* 3* 2* 1* 1* 1* 0.068

7 5* 4* 3* 3* 2* 1* 1* 1* 0.102

8 6* 5* 4* 4* 3* 2* 2* 1* 1* 1* 0.169

9 7* 6* 5* 5 4* 3* 3 2* 1* 1* 1* 0.249

10 8* 7* 6* 6 5 4 3* 3 2* 2* 1* 1* 1* 0.408

11 9* 8* 7 6* 6 5 4 4 3 2* 2* 1* 1* 1* 0.563

12 10* 9* 8 7 7 6 5 5 4 3* 2* 2* 2* 1*

13 10* 10* 9 8 7 7 6 5 5 4 3* 2* 2* 1*

14 11* 11 10 9 8 8 7 6 5 5 4 3* 3 2*

15 12* 12 11 10 9 9 8 7 6 6 5 4 4 3

n\d 17 18 19 20 21 22 23 24 25 26 27 28 29 30 Time [s]

12 1* 1* 0.872

13 1* 1* 1* 1.426

14 1* 1* 1* 1* 1* 2.517

15 2* 2* 1* 1* 1* 1* 3.951
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In Tables 1, 2, 3 and 4, the computation time is also shown for each n. When com-
puting the sharpened linear programming bound by giving additional equality con-
straints to the linear programming solver, more computation time is required for given 
parameters than with the general linear programming problem given by (2), since the 

Table 2  Upper bounds for the dimension k of linear Lee codes when q = 7

The * indicates a tight bound and italics an improvement compared to the bound given by (2)

n\d 3 4 5 6 7 8 9 10 11 12 13 14 15 16 Time [s]

2 1* 0.009

3 2* 1* 1* 1* 0.028

4 2* 2* 2* 1* 1* 0.047

5 3* 3* 2* 2* 1* 1* 1* 0.098

6 4* 4* 3* 3* 2* 2* 1* 1* 1* 1* 0.212

7 5* 5* 4* 4 3* 3 2* 2* 1* 1* 1* 0.420

8 6* 5* 5* 4* 4* 4 3* 3 2* 2* 1* 1* 1* 0.816

9 7* 6* 6 5* 5 4* 4 3* 3 3 2* 1* 1* 1*

10 8* 7* 7 6* 6 5 5 4 4 3* 3 2* 2* 1*

11 9* 8* 8 7 6* 5 5 5 5 4 4 3 3 2*

12 10* 9* 8* 8 7 7 6 6 5 5 4 4 3 3

13 11* 10* 9* 9 8 8 7 7 6 6 5 5 4 4

14 12* 11* 10* 10 9 9 8 8 7 7 6 6 5 5

15 13* 12* 11* 11 10 10 9 9 8 7 7 6 6 5

n\d 17 18 19 20 21 22 23 24 25 26 27 28 29 30 Time [s]

9 1* 1* 1.621

10 1* 1* 1* 2.959

11 2* 2 1* 1* 1* 6.406

12 3 2* 2 1* 1* 1* 1* 1* 17.580

13 3 3 2* 2* 2 1* 1* 1* 1* 31.983

14 4 4 3 3 2* 2* 2 1* 1* 1* 1* 67.885

15 5 5 4 4 3 3 2* 2* 1* 1* 1* 1* 1* 1* 173.448

Table 3  Upper bounds for the dimension k of linear Lee codes when q = 13

The * indicates a tight bound and italics an improvement compared to the bound given by (2)

n\d 3 4 5 6 7 8 9 10 11 12 13 14 15 16 Time [s]

2 1* 1* 1* 0.038

3 2* 1* 1* 1* 1* 1* 1 0.107

4 3* 2* 2* 2* 2* 1* 1* 1* 1* 1* 1 0.487

5 4* 3* 3* 3 2* 2* 2* 2 1* 1* 1* 1* 1* 1

6 5* 4* 4* 3* 3* 3* 3 2* 2* 2* 2 1* 1* 1*

7 5* 5* 5 4* 4* 4 3* 3* 3* 3 2* 2* 2* 2*

8 6* 6* 6 5* 5 5 4* 4 4 3* 3* 3 3 2*

n\d 17 18 19 20 21 22 23 24 25 26 27 28 29 30 Time [s]

5 1 2.288

6 1* 1* 1* 1* 1* 11.508

7 2 1* 1* 1* 1* 1* 57.325

8 2* 2* 2* 2 2 1* 1* 1* 1* 1* 300.543
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linear programming solver is given a larger set of overall constraints. However, using the 
compact problem introduced in this paper reduces the computation time significantly, 
since there are less variables and constraints and all computations can be performed 
with rational numbers. For example, on an Apple iMac 5K (late 2014) with Intel Core i7 
(I7-4790K), 32 gigabytes of memory, and a 64-bit operating system OS X Yosemite, and 
using the linprog linear programming solver of Matlab, for q = 17 and n = 5, com-
puting the regular linear programming bounds took approximately 17 min and comput-
ing the sharpened bounds by using additional equality constraints took over 5 h. When 
using the compact problem, the computation time was less than 20 s, including compu-
tation of the new sets of constraints from the Lee-numbers according to the sets τ (t),  
which is a significant improvement and makes it possible to compute the bounds for 
larger parameter values in a reasonable time. The Lee-numbers were computed sepa-
rately, and computing them recursively for q = 17 and n = 2, . . . , 6 took approximately 
1 min.

The obtained bounds can be used for identifying optimal codes. Consider the bound 
for k given in Table 4 with q = 17, n = 5 and d = 7, which is 2. This means that the maxi-
mum number of codewords in a linear code with these parameters is at most 289. The 
code having the generator matrix

is a [5, 2]-code with the minimum distance 7 and has 172 = 289 codewords, therefore, it 
is an optimal linear code for the above parameters.

Conclusions
In this paper, we formulated the invariance-type property of Lee-compositions intro-
duced by Astola and Tabus (2015) in terms of an action of the multiplicative group of 
the field Fq on the set of Lee-compositions. This formulation is useful in the theoretical 
study of Lee-compositions and linear Lee codes. In addition, we have shown some useful 
properties of certain sums of Lee-numbers that appear in the constraints of the linear 
programming problem of linear Lee codes. Based on the equality constraints and these 
properties, we constructed a more compact linear programming problem for linear Lee 
codes, leading to a fast execution and allowing all computations to be performed using 

G =
[

1 0 5 0 4

0 1 16 15 10

]

Table 4  Upper bounds for the dimension k of linear Lee codes when q = 17

The ∗ indicates a tight bound and italics an improvement compared to the bound given by (2)

n\d 3 4 5 6 7 8 9 10 11 12 13 14 15 16 Time [s]

2 1* 1* 1* 0.043

3 2* 2* 1* 1* 1* 1* 1* 0.276

4 3* 2* 2* 2* 2* 2* 1* 1* 1* 1* 1* 1* 1* 2.271

5 4* 3* 3* 3* 2* 2* 2* 2* 2* 2 1* 1* 1* 1*

6 5* 4* 4* 4* 3* 3* 3* 3 2* 2* 2* 2* 2* 2*

n\d 17 18 19 20 21 22 23 24 25 26 27 28 29 30 Time [s]

5 1* 1* 1* 19.117

6 1* 1* 1* 1* 1* 1* 1* 1* 188.785
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integers. This leads in practice to having available upper bounds for codes with param-
eters higher than available up to now.
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