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Background
The small parameter assumption is one of the most characteristic limitations of the 
perturbation methods. For nonlinear problems, this corresponds to a weakly nonlin-
ear system. In recent decades, efforts have been intensified to overcome the limitation 
of the perturbation methods and to produce uniform solutions for large perturbation 
parameters.

One such attempt is to incorporate perturbation solutions with the iteration proce-
dures to advance to the real solutions for large parameters. For algebraic equations, the 
systematic way of constructing single point iteration algorithms for root finding was out-
lined in the pioneering work due to Pakdemirli and Boyacı (2007). It was shown that 
many different root finding algorithms, some of which are original can be constructed 
by the perturbation–iteration algorithms. The algorithms are classified as PIA(n,m), n 
representing the number of correction terms in the perturbation expansion and m rep-
resenting the highest order of derivatives in the Taylor series expansions. Although 
PIA(1,1) corresponds to the well-known Newton–Raphson algorithm, many different 
algorithms non-existent in the literature can be constructed with different selections of 
the numbers n and m with n ≤ m (Pakdemirli and Boyacı 2007; Pakdemirli et al. 2007, 
2008).

Abstract 

The recently developed perturbation iteration method is applied to boundary layer 
type singular problems for the first time. As a preliminary work on the topic, the 
simplest algorithm of PIA(1,1) is employed in the calculations. Linear and nonlinear 
problems are solved to outline the basic ideas of the new solution technique. The 
inner and outer solutions are determined with the iteration algorithm and matched to 
construct a composite expansion valid within all parts of the domain. The solutions are 
contrasted with the available exact or numerical solutions. It is shown that the per-
turbation–iteration algorithm can be effectively used for solving boundary layer type 
problems.

Keywords:  Perturbation methods, Perturbation–iteration algorithm, Boundary layer 
problems, Ordinary differential equations, Singular perturbation problems

Mathematics subject classification:  34B05, 34B15, 34B16, 34E10

Open Access

© 2016 Pakdemirli. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://
creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided 
you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate 
if changes were made.

RESEARCH

Pakdemirli ﻿SpringerPlus  (2016) 5:208 
DOI 10.1186/s40064-016-1859-4

*Correspondence:   
mpak@cbu.edu.tr 
Applied Mathematics 
and Computation Center, 
Celal Bayar University, 
45140 Muradiye, Manisa, 
Turkey

http://orcid.org/0000-0003-1221-9387
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s40064-016-1859-4&domain=pdf


Page 2 of 16Pakdemirli ﻿SpringerPlus  (2016) 5:208 

The classification of such algorithms for algebraic equations turns out to be quite orig-
inal. Motivated by the successful results, the systematic and algorithmic way of incor-
porating the methods were applied to first order ordinary differential equations in the 
pioneering work of Pakdemirli et al. (2011). The extension of the method to differential 
equations is non-trivial as the dependent variable and its derivatives are considered as 
separate variables inspired from the Lie Group theory applied to differential equations. 
The method is called as “the perturbation iteration method” to distinguish it from the 
past literature on the so-called “iteration-perturbation methods” (He 2001; Mickens 
1987, 2005, 2006) which are not systematic approaches and does not produce general 
algorithms valid for various types of differential equations. The new perturbation–itera-
tion method is directly applicable in a systematic algorithmic way, does not require spe-
cial transformations or ad hoc assumptions. Second order differential equations were 
treated by the same method by Aksoy and Pakdemirli (2010) for Bratu type equations. 
Aksoy et al. (2012) further solved some nonlinear heat transfer equations. Dolapci et al. 
(2013) applied the method to Fredholm and Volterra integral equations. Şenol et  al. 
(2013) treated the first order differential equation systems using the method. Pakdemirli 
(2013) reviewed the mentioned work. The basic idea behind the new method is to con-
struct an approximate solution as in the classical perturbation methods, but then to 
iterate over this approximate solution to converge to the real solution of the problem. 
The iterations indeed enable one to converge to the real solutions for large perturba-
tion parameters also. The mentioned work contains only applications to the regular per-
turbation problems which do not have secular terms in the analysis. In a very recent 
work, Pakdemirli (2015) successfully applied the method to problems with secularities 
also. The work considers the modifications of the method for non-regular problems con-
taining secular terms which possess slow convergence problems and truncation leads to 
unphysical unbounded solutions.

So far, the method has not been applied to boundary layer type singular problems 
which remain an open area of research. The work presented here is an initial attempt to 
address the implementation of the method to such singular problems. It is well known 
that for such problems, the method of matched asymptotic expansions is the most reli-
able method. In the method of matched asymptotic expansions, a solution valid outside 
the boundary layer is constructed first, which is the regular solution of the original prob-
lem, named the outer solution. Then another solution inside the boundary layer region 
where abrupt changes in the solutions is observed is constructed, called the inner solu-
tion. The outer and inner solutions are matched over the overlapping region and a com-
posite expansion valid throughout the whole domain is constructed as a final step.

In the previous work, the systematic way of constructing perturbation–iteration algo-
rithms are named as PIA(n,m), n representing the number of correction terms in the 
perturbation expansion and m representing the order of highest derivatives in the Tay-
lor series expansion. The simplest algorithm is the PIA(1,1) with one correction term in 
the perturbation expansion and first order derivatives in the Taylor series expansion. For 
consistency and solvable iteration equations, n should be equal or less than m (n ≤ m). 
As n or m increases, the convergence became faster but the algebraic complexity of 
the equations may end up with analytically unsolvable equations. In the previous work 
on differential equations, solutions are presented for PIA(1,1), PIA(1,2), PIA(1,3) and 
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PIA(2,2) algorithms. In this pioneering and preliminary work on boundary layers, only 
the PIA(1,1) algorithms are applied to boundary layer type problems. Linear and non-
linear problems are treated with the PIA(1,1) method and solutions are contrasted with 
the available exact or numerical solutions of the original problem. For PIA(1,1), since 
the order of equations to be solved is less than the number of boundary conditions, the 
outer and inner solutions must be found by separate iterations and matched together 
similar to the method of matched asymptotic expansions.

Finally, as a last comment, the Lie Group methods of constructing exact solutions to 
differential equations cannot be applied to the problems considered here. The main rea-
son is that the problems are defined over finite domains. For such domains, the sym-
metries of the equations do not remain stable after the boundary conditions are applied. 
To obtain group invariant solutions (similarity solutions) the equations as well as the 
boundary conditions and boundaries should remain invariant under the transformations 
especially for nonlinear problems (Bluman and Kumei 1989). For infinite or semi-infi-
nite domains, this is more likely to occur but for finite domains, the symmetries are lost. 
For the singular problems with finite domains, the perturbation solutions, especially the 
method of matched asymptotic expansions is one of the most reliable analytical method. 
Here, an alternative approach which is a modification of the perturbation–iteration 
method to handle such problems is developed.

Theory of the perturbation iteration algorithm for second order differential 
equations
In this section, PIA(1,1) algorithm is derived for second order differential equations. In 
accordance, only one correction term in the perturbation expansion and Taylor expan-
sions up to first order derivatives are taken in constructing the iteration procedure. Con-
sider a general second order differential equation,

with y = y(x) and ε is the perturbation parameter. Note that a parameter such as ε may 
not exist at all in the original equation. In that case, the parameter should carefully be 
inserted into the appropriate part of the equation. The role of the perturbation param-
eter is to simplify the resulting iteration equations which cannot be solved otherwise. If 
the parameter is artificially introduced, it can be taken as 1 at the end. Only one correc-
tion term is taken in the perturbation expansion

Upon substitution of (2) into (1) and expanding in a Taylor series with first order deriva-
tives only yields

where Fy = ∂F
∂y, Fy′ =

∂F
∂y′, Fy′′ =

∂F
∂y′′, Fε =

∂F
∂ε

 and all derivatives are evaluated at ε =  0. 
It is readily observed that the above equation is a variable coefficient non-homogenous 
linear second order differential equation with respect to the unknown (yc)n in its most 

(1)F(y′′, y′, y, ε) = 0

(2)yn+1 = yn + ε(yc)n

(3)

F(y′′n, y
′
n, yn, 0)+ Fy(y

′′
n, y

′
n, yn, 0) ε (yc)n + Fy′(y

′′
n, y

′
n, yn, 0)ε (y

′
c)n

+ Fy′′(y
′′
n, y

′
n, yn, 0)ε (y

′′
c )n + Fε(y

′′
n, y

′
n, yn, 0) ε = 0
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general form. Starting with an initial guess y0, first (yc)0 is calculated from (3) and then 
substituted into (2) to calculate y1. The iteration procedure is repeated using (3) and (2) 
until a satisfactory result is obtained. In solving boundary layer problems, for outer solu-
tion, the original equation is iterated. However for constructing the inner solution, first 
the equation is expressed in terms of the boundary layer variable and then the iteration 
is performed over the transformed equation. The last step is to match the solutions and 
construct a composite expansion valid within all the domain. This last step is similar to 
the calculations of the method of matched asymptotic expansions. If the inner and outer 
solutions cannot be matched, possible reasons may be the wrong location of the bound-
ary layer or a bad initial guess for the iterations.

Applications to linear differential equations
Two linear second order constant coefficient problems, one homogenous and the other 
non-homogenous are treated using the PIA(1,1) algorithm.

Example Problem 1

Consider the singular perturbation problem

For the problem, an outer solution and an inner solution will be sought and both solu-
tions will be matched to construct a composite solution.

The outer solution

To find the outer solution, the original equation is taken in the analysis

Before starting, one of the important issues is the location of the boundary layer. This 
requires knowledge of the physics of the problem. For variable coefficient linear second 
order singular equations, a systematic way of locating the boundary condition indeed 
exists (Nayfeh 1981). For the problem considered, the boundary layer is located near 
x ≈ 0. Therefore, the outer solution is not expected to satisfy the condition at x = 0. Sub-
stituting (5) into (3) and re-arranging, the iteration equation is

Note that due to the small term multiplying the highest derivative, the original equation 
yields a first order iteration equation which leads to inconsistencies if both conditions 
are forced to satisfy the solution. This justifies an outer and inner solutions to be con-
structed separately.

Inspired by the condition at the right, a simple initial guess is suggested

to start the iteration. Substituting this initial guess into (6) and solving for (yc)0 yields

(4)εy′′ + 2y′ − y = 0 y(0) = 0, y(1) = 1

(5)F(y, y′, y′′, ε) = εy′′ + 2y′ − y = 0

(6)2y′n − yn − ε(yc)n + 2ε(y′c)n + εy′′n = 0, n = 0, 1, 2, . . .

(7)y0 = 1

(8)(yc)0 = −
1

ε
+

c1

2
ex/2
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Hence, the first iteration result is

and imposing the right hand side boundary condition yields

Progressing in a similar way, the second iteration result is

This result can also be found with the method of matched asymptotic expansions. How-
ever, with PIA(1,1), the same solution is retrieved from a very simple initial guess. This 
solution does not satisfy the boundary condition at the left hand side i.e. y2(0) �= 0.

The inner solution

The inner solution is valid within a small region called the boundary layer where the 
solution has a sharp turn. The first step is to determine the boundary layer variable by 
stretching the coordinate inside this layer

Substituting the transformed variable into the original equation yields

where Y = Y (ξ). Balancing should be performed for the terms. There are two options: 
Balancing the first and second term or the first and third term. Balancing the second and 
third term is not an option because ν = 0 and the original equation is retrieved with no 
stretching.

1.	 First and second term

For this case 1− 2ν = −ν ⇒ ν = 1. Equation (13) after multiplication with ε is

The goal is to retain as much terms as one can at the leading order. In this case, two 
terms remain in the first order and the choice is admissible.

2.	 First and third term

Balancing the first and third term requires 1− 2ν = 0 ⇒ ν = 1/2. Equation (13) is

(9)y1 = y0 + ε(yc)0 =
c1ε

2
ex/2

(10)y1 = e(x−1)/2

(11)y2 = e(x−1)/2 +
ε

8
(1− x)e(x−1)/2

(12)ξ =
x

εν

(13)ε1−2ν d
2Y

dξ2
+ 2ε−ν dY

dξ
− Y = 0

(14)
d2Y

dξ2
+ 2

dY

dξ
− εY = 0

(15)
d2Y

dξ2
+ 2ε−1/2 dY

dξ
− Y = 0
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Since the middle term is the only leading dominant term, this choice is not an admissible 
choice and hence discarded.

To summarize, the distinguished limit is ν = 1 and the boundary layer variable is

and the transformed equation to be solved is

Equation (3) takes the special form then

Using (18) and (2) and applying the boundary condition at the left, i.e. Y(0) = 0, an itera-
tion process can be constructed. Starting from a very simple guess

The successive two iteration are

Note that this solution is valid in the neighborhood of x  =  0 and therefore is not 
expected to satisfy the boundary condition at the right hand side. The equations solved 
are second order while the conditions are less than the required value of 2. The undeter-
mined coefficients will be determined by the matching conditions.

Matching

The inner and outer solutions should smoothly combine in the overlapping region which 
requires solutions to be matched. Employing the Van Dyke’s (1975) matching principle

in the overlapping region. In accordance, the outer expansion is written in terms of the 
inner variable, approximated and equated to the inner expansion written in terms of the 
outer variable and approximated. Hence

and then approximation is taken up to two terms for fixed ξ

Returning back to the original variable x now

(16)ξ =
x

ε

(17)F(Y ,Y ′,Y ′′, ε) = Y ′′ + 2Y ′ − εY = 0

(18)Y ′′
n + 2Y ′

n + 2ε(Y ′
c)n + ε(Y ′′

c )n − εYn = 0, n = 0, 1, 2, . . .

(19)Y0 = 0

(20)Y1 = εc3(1− e−2ξ )

(21)Y2 = εc3(1− e−2ξ )+ ε

{

c7(1− e−2ξ )+
εc3

2
ξ

(

1+ e−2ξ
)}

(22)(y2)
i = (Y 2)

0

(23)(y2)
i = e(εξ−1)/2 +

ε

8
(1− εξ)e(εξ−1)/2

(24)(y2)
i ∼= e−1/2

(

1+ ε
ξ

2

)

+
ε

8
e−1/2 + . . .

(25)(y2)
i ∼= e−1/2

(

1+
x

2

)

+
ε

8
e−1/2 + . . .
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For the right hand side of the equation in the matching, the inner expansion is repre-
sented in terms of the outer variable x

and approximated up to two terms for fixed x

Note that for x kept fixed and not negligibly small, e−2x/ε is an exponentially small term 
which can be neglected. Equating (27) and (25), the constants

are determined from the matching conditions. Hence the final inner and outer solutions 
in terms of the original spatial variable are

The inner solution is valid in the neighborhood of x = 0 (inside the boundary layer) 
and the outer solution is valid outside the boundary layer. A solution which is valid 
throughout the domain is desirable and one can construct a composite solution valid 
within all the domain of interest

To construct the composite expansion, one simply adds the inner and outer solutions 
and subtracts the common overlapping part which is counted twice from the solution. 
Substituting (29), (30) and (25) into (31), the composite expansion is

which is a valid approximation throughout the whole domain. This solution satisfies 
both of the boundary conditions and can also be retrieved by the method of matched 
asymptotic expansions. To compare with the exact solution of the problem

first, the Taylor series expansions are written

(26)(Y2)
0 = εc3(1− e−2x/ε)+ ε

(

c7(1− e−2x/ε)+
εc3

2

x

ε

(

1+ e−2x/ε
))

(27)(Y2)
0 ∼= εc3(1+

x

2
)+ εc7

(28)εc3 = e−1/2, c7 =
1

8
e−1/2

(29)Y2 = e−1/2(1− e−2x/ε)+
1

2
e−1/2x(1+ e−2x/ε)+

ε

8
e−1/2

(

1− e−2x/ε
)

(30)y2 = e(x−1)/2 +
ε

8
(1− x)e(x−1)/2

(31)y = Y2 + y2 − (y2)
i

(32)y = e(x−1)/2 −
(

1−
x

2

)

e−1/2−2x/ε +
ε

8

{

(1− x)e(x−1)/2 − e−1/2−2x/ε
}

(33)y =
e
(

−1+
√
1+ε

)

x/ε − e
(

−1−
√
1+ε

)

x/ε

e
(

−1+
√
1+ε

)

/ε − e
(

−1−
√
1+ε

)

/ε

(34)
√
1+ ε ∼= 1+

1

2
ε −

1

8
ε2



Page 8 of 16Pakdemirli ﻿SpringerPlus  (2016) 5:208 

The second term is an exponentially small term which can be neglected. Under the 
approximations, the exact solution is

Approximating further the exponential terms with the perturbation parameter

the result is

This approximation is comparable with the perturbation iteration solution if further

is taken in (40).

Example Problem 2

Consider the non-homogenous linear boundary value problem

The outer solution

To find the outer solution, the original equation is used

The boundary layer is located near x ≈ 0. Therefore, the outer solution is not expected 
to satisfy the condition at x = 0. Substituting (43) into (3) and rearranging, the iteration 
equation is

Choose a simple initial guess compatible with the boundary condition at the right

to start the iteration. The first iteration solution satisfying the boundary condition at the 
right is

(35)e(−1+
√
1+ε)/ε ∼= e1/2−ε/8

(36)e(−1−
√
1+ε)/ε ∼= e−2/ε−1/2+ε/8 ∼= 0

(37)ye ∼= e−1/2+ε/8ex/2−εx/8 − e−1/2+ε/8e−2x/ε−x/2+εx/8

(38)eε/8 ∼= 1+
ε

8

(39)e−εx/8 ∼= 1−
ε

8
x

(40)y ∼= e−1/2+x/2 − e−1/2−2x/ε−x/2 +
ε

8

{

(1− x)e−1/2+x/2 − (1+ x)e−1/2−2x/ε−x/2
}

(41)e−x/2 ∼= 1−
x

2

(42)εy′′ + 2y′ = x y(0) = α, y(1) = β

(43)F(y′, y′′, ε) = εy′′ + 2y′ − x = 0

(44)2y′n − x + 2ε(y′c)n + εy′′n = 0, n = 0, 1, 2, . . .

(45)y0 = β

(46)y1 = β +
x2 − 1

4
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This solution is not expected to satisfy the boundary condition at the left hand side i.e. 
y1(0) �= 0.

The inner solution

The inner solution is valid within a small region called the boundary layer where the 
solution has a sharp turn. It turns out that the boundary layer variable by stretching the 
coordinate inside this layer is

and the transformed equation is

Defining

the iteration Eq. (3) takes the form

Starting from a simple guess satisfying the boundary condition at the left

the first iteration is

Note that this solution is valid in the neighborhood of x  =  0 and therefore is not 
expected to satisfy the boundary condition at the right hand side. The undetermined 
coefficient will be determined by the matching conditions.

Matching

The matching of solutions requires

in the overlapping region. In accordance, the outer expansion is written in terms of the 
inner variable, approximated and equated to the inner expansion written in terms of the 
outer variable and approximated. Hence

The inner expansion is represented in terms of the outer variable x and approximated

Note that for x kept fixed and not negligibly small, e−2x/ε is an exponentially small term 
which can be neglected. Equating (54) and (55) gives the undetermined constant

(47)ξ =
x

ε

(48)
d2Y

dξ2
+ 2

dY

dξ
− ε2ξ = 0

(49)F(Y ′,Y ′′, ε) = Y ′′ + 2Y ′ − ε2ξ = 0

(50)Y ′′
n + 2Y ′

n + 2ε(Y ′
c)n + ε(Y ′′

c )n = 0, n = 0, 1, 2, . . .

(51)Y0 = α

(52)Y1 = α + εc3(1− e−2ξ )

(53)(y1)
i = (Y 1)

0

(54)(y1)
i = β +

ε2ξ2 − 1

4
∼= β −

1

4

(55)(Y1)
0 = α + εc3(1− e−2x/ε) ∼= α + εc3



Page 10 of 16Pakdemirli ﻿SpringerPlus  (2016) 5:208 

Hence the inner solution in terms of the original variable is

The composite solution is

or

which is a valid approximation throughout the whole domain. This solution satisfies 
both of the boundary conditions and can also be retrieved by the method of matched 
asymptotic expansions.The exact solution of the problem is

Neglecting the exponentially small term e−2/ε and O(ε) terms, solution (59) is obtained, 
hence the solution is a valid approximation of the exact solution.

Applications to non‑linear differential equations
A first order and a second order nonlinear boundary value problems are solved in this 
section using the method.

Example Problem 3

Consider the first order non-linear boundary value problem

The outer solution

For the outer solution, the original equation is used

The boundary layer is assumed to be located near x ≈ 0. If there arises any inconsistency 
in the solutions, the assumption may be revised. The outer solution is not expected to 
satisfy the condition at x = 0. Substituting (62) into (3) and re-arranging, the iteration 
equation is

Since there is no boundary condition at the right hand side, the initial guess might be 
selected so that the iteration equation takes the simplest form. Hence

(56)εc3 = β −
1

4
− α

(57)Y1 = β −
1

4
+

(

α − β +
1

4

)

e−2x/ε

(58)y = Y1 + y1 − (y1)
i

(59)y = β +
x2 − 1

4
+

(

α − β +
1

4

)

e−2x/ε

(60)y = α +
α − β + 1

4 − 1
4 ε

1− e−2/ε

(

e−2x/ε − 1
)

+
1

4
x2 −

1

4
εx

(61)εy′ + y2 = 4 y(0) = 1

(62)F(y, y′, ε) = εy′ + y2 − 4 = 0

(63)y2n − 4 + 2ynε(yc)n + εy′n = 0, n = 0, 1, 2, . . .

(64)y0 = 2
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The first iteration solution is

which is the same solution with the starting value. Therefore the outer expansion seems 
to be converged.

The inner solution

The boundary layer variable by stretching the coordinate inside this layer is

and the transformed equation is

The iteration Eq. (3) takes the form

Starting from a simple guess

which makes the most simplification in the iteration equation, the successive iterations 
are

Matching

The matching of solutions requires

in the overlapping region. Since the outer solution is constant, the expansion and 
approximation in the inner variable is the same

The inner expansion is represented in terms of the outer variable x and approximated

The solutions are in agreement in the overlapping region. The composite expansion valid 
throughout the domain is

(65)y1 = 2

(66)ξ =
x

ε

(67)
dY

dξ
+ Y 2 − 4 = 0

(68)Y ′
n + Y 2

n − 4 + 2Ynε(Yc)n + ε(Y ′
c)n = 0, n = 0, 1, 2, . . .

(69)Y0 = 2

(70)Y1 = 2− e−4ξ

(71)Y2 = 2−
5

4
e−4ξ +

1

4
e−8ξ

(72)(y2)
i = (Y 2)

0

(73)(y2)
i = 2

(74)(Y2)
0 = 2−

5

4
e−4x/ε +

1

4
e−8x/ε ∼= 2
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The exact solution is

Solution (75) is a very good approximation of the exact solution (76). In Fig. 1, ε = 0.1, 
and in Fig. 2, ε = 100 are taken. For small or large perturbation parameters, the agree-
ment is excellent.

Example Problem 4

Consider the second order non-linear boundary value problem (Cole 1968)

(75)y = 2−
5

4
e−4x/ε +

1

4
e−8x/ε

(76)y = 2 tanh

[

tanh−1

(

1

2

)

+
2x

ε

]

(77)εy′′ + yy′ − y = 0 y(0) = 0, y(1) = 3

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2
1
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1.7

1.8

1.9

2

x

y

exact
approximate

Fig. 1  Comparison of the exact and approximate solutions for ε = 0.1 (Example Problem 3)
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Fig. 2  Comparison of the exact and approximate solutions for ε = 100 (Example Problem 3)
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The outer solution

For the outer solution, the original equation is used

The boundary layer is located near x ≈ 0. The outer solution is not expected to satisfy 
the condition at x = 0. Substituting (78) into (3) and rearranging, the iteration equation 
is

y0 = 3 which is inspired from the right hand side boundary condition would not be a 
good initial guess. Rather, one has to look for a trivial function which most simplifies the 
iteration equation for n = 0. Such an initial guess is

The first and second iteration solutions satisfying the right hand side condition is

which shows that the outer solution converged.

The inner solution

The boundary layer variable by stretching the coordinate inside this layer is

and the transformed equation is

The iteration Eq. (3) takes the form

Starting from a simple guess

which makes the most simplification in the iteration equation, the first iteration is

Matching this solution with the first iteration of the outer solution makes a simplifica-
tion and the constant c1 turns out to be zero. Hence, the final first iteration is

(78)F(y, y′, y′′, ε) = εy′′ + yy′ − y = 0

(79)yny
′
n − yn + (y′n − 1)ε(yc)n + ynε(y

′
c)n + εy′′n = 0, n = 0, 1, 2, . . .

(80)y0 = x

(81)y1 = x + 2

(82)y2 = x + 2

(83)ξ =
x

ε

(84)
d2Y

dξ2
+ Y

dY

dξ
− εY = 0

(85)Y ′′
n + YnY

′
n + Y ′

nε(Yc)n + Ynε(Y
′
c)n + ε(Y ′′

c )n − εYn = 0, n = 0, 1, 2, . . .

(86)Y0 = 2

(87)Y1 = (2+ c1)(1− e−2ξ )+ εξ
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The second iteration yields

Matching

The matching of solutions requires

in the overlapping region. The outer solution is written in the inner variable and approx-
imated including first order terms yield the same result

Then the inner expansion is represented in terms of the outer variable x and 
approximated

since terms of e−2x/ε , e−4x/ε are exponentially small in the overlapping region. Compar-
ing (92) with (91), it is found that c2 = 0. The inner expansion in the final form is

The composite expansion is calculated as a final step

or

Solution (95) is contrasted with the numerical solution of the original equation obtained 
by an adaptive step size Runge–Kutta method combined with shooting. In Fig. 3, ε = 0.1 
is taken and the match is excellent. In Fig. 4, a larger perturbation parameter, namely 
ε = 1 is taken and there is a reasonably good agreement between the results.

Concluding remarks
Boundary layer type problems are treated by the perturbation iteration method for the 
first time. The simplest algorithm of PIA(1,1) in which there is only one correction term 
in the perturbation expansion and at most first order derivatives in the Taylor series 
expansions is considered. For PIA(1,1), due to the reduction of differential order of the 
iterated equations, an outer and an inner expansion must be found independently via 
the appropriate iteration procedures. The solutions are then matched with each other 
to construct a composite expansion valid throughout the whole domain. Singular linear 

(88)Y1 = 2(1− e−2ξ )+ εξ

(89)Y2 = 2
(

1− e−2ξ
)

+ εξ

(

1+ e−2ξ
)

+ e−4ξ + εc2 +
(

εξ2 − 1− εc2

)

e−2ξ

(90)(y2)
i = (Y 2)

0

(91)(y2)
i = 2+ εξ = 2+ x

(92)

(Y2)
0 = 2

(

1− e
−2x/ε

)

+x

(

1+ e
−2x/ε

)

+e
−4x/ε+εc2+

(

x
2

ε
− 1− εc2

)

e
−2x/ε ∼= 2+x+εc2

(93)Y2 = 2
(

1− e−2ξ
)

+ εξ

(

1+ e−2ξ
)

+ e−4ξ +
(

εξ2 − 1
)

e−2ξ

(94)y = Y2 + y2 − (y2)
i

(95)y = 2− 3e−2x/ε + x
(

1+ e−2x/ε
)

+ e−4x/ε +
x2

ε
e−2x/ε
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and nonlinear problems are treated with the method and results are compared with the 
available analytical or numerical solutions. It is shown that the method can be effectively 
applied to singular problems producing admissible analytical approximate solutions.
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Fig. 3  Comparison of the exact and approximate solutions for ε = 0.1 (Example Problem 4)
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