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Background
Bakhtin (1989) and Czerwik (1993) generalized the notion of metric spaces and intro-
duced the concept of b-metric spaces, which is also known as metric type space (Hus-
sain et al. 2012). b-metric space solved some problems, particulary the problem of the 
convergence of measurable functions with respect to a measure, lead to a generaliza-
tion of notation of metric. Using this concept Czerwik (1993, 1998), generalized the 
well known Banach contraction principle in b-metric spaces, see Czerwik (1998), Czer-
wik et al. (1997, 2001). Many researchers including Aydi et al. (2012), Boriceanu (2009a, 
b, c), Bota et  al. (2011), Chugh et  al. (2012), Shih Du and Karapnar (2013), Kir and 
Kiziltunc (2013), Olaru and Branga (2011), Olatinwo and Imoru (2008), Lina and Curar 
(2010) and Pacurar (2010) studied the extension of fixed point theorems in b-metric 
space.

Guo and lakshmikantham (1987) introduced the concept of coupled fixed point for 
partially ordered set. By using the concept of mixed monotone property (Gnana Bhaskar 
and Lakshmikantham 2006) studied the existence and uniqueness of a coupled fixed 
point result in partially ordered metirc space. After that many researchers studied the 
coupled fixed point and discussed it’s application. See Berinde (2012), Gnana Bhaskar 
and Lakshmikantham (2006), Guo and lakshmikantham (1987), Mustafa et  al. (2013), 
Mustafa et al. (2014), Mustafa et al. (2014), Sintunavarat et al. (2012), Sintunavarat et al. 
(2013). Recently Malhotra and Bansal (2015) studied the existence and uniqueness of 
common coupled fixed points for a pair of mappings in complete b-metric space.

Abstract 

In this article, existence and uniqueness of common coupled fixed point for a pair of 
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The aim of this manuscript is to study the existence and uniqueness of common cou-
pled fixed point for a pair of mappings in the setup of complete b-metric space. The 
derived results generalizes some well known results from the existing literature.

Preliminaries
Throughout this paper R is the set of real and R+ is set of positive real numbers.

Definition 1  (Bakhtin 1989; Boriceanu 2009c) Suppose X be a non empty set and 
s ≥ 1, s ∈ R. A function d : X × X → R

+ is said to be b-metric if for all x, y, z ∈ X, the 
following condition are satisfied:

(1) 	 d(x, y) = 0 ⇔ x = y;

(2) 	 d(x, y) = d(y, x);

(3) 	 d(x, z) ≤ s[d(x, y)+ d(y, z)].

Then the pair (X, d) with parameter s is said to be b-metric space.

Example 1  (Boriceanu 2009c) The lp space, 0 < p < 1, lp = {(xn) ∈ R :
∑

|xn|
p < ∞} 

and function is defined as d : lp × lp → R by

d(x, y) =
(
∑

|xn − yn|
p
)
1
p , x = (xn), y = (yn) ∈ lp then (X, d) is said to b-metric space 

with parameter s = 2
1
2 provided that d(x, z) ≤ 2

1
2 [d(x, y)+ d(y, z)].

Example 2  The space Lp with 0 < p < 1 of all real functions x(t), t ∈ [0, 1] such that 
∫ 1

0
|x(t)|p < ∞, if d(x, y) = [

∫ 1

0
|x(t)− y(t)|pdt]

1
p for all x,  y ∈ Lp, then d satisfy all the 

condition of b-metric on the Lp space.

Definition 2  Boriceanu (2009c) Let (X, d) be a b-metric space. Then a sequence {xn} is 
said be converge to x ∈ X if for each ǫ > 0 there exists i(ǫ) ∈ N , such that d(xn, x) < ǫ 
for all n ≥ i(ǫ).

Definition 3  Boriceanu (2009c) Let (X, d) be a b-metric space. Then a sequence {xn} is 
said be a Cauchy sequence if for each ǫ > 0 there exists i(ǫ) ∈ N , such that d(xn, xm) < ǫ 
for all n,m ≥ i(ǫ).

Definition 4  Gnana Bhaskar and Lakshmikantham (2006) An element (x, y) ∈ X × X 
is said to be a coupled fixed point of T : X × X → X if x = T (x, y) and y = T (y, x).

Definition 5  An element (x, y) ∈ X × X is said to be a coupled coincidence point of 
S,T : X × X → X if S(x, y) = T (x, y) and S(y, x) = T (y, x).

Example 3  Suppose X = R and S,T : X × X → X defined as S(x, y) = x2y2 and 
T (x, y) = (9/4)(x + y) for all x, y ∈ X. Then (3,1), (1,3) and (0,0) are coupled coincidence 
points of S, T.

Definition 6  Let S,T : X × X → X a point (x, y) ∈ X × X is said to be common fixed 
point of S, T if
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Main results
This section derives some fixed point results in the setup of b-metric spaces.

Theorem 1  Let (X , d) be a complete b-metric space with parameter s ≥ 1 and let the 
mapping S,T : X × X → X satisfy:

For allx, y,u, v,∈ X and α1,α2,α3,α4,α5,α6,α7,α8 ≥ 0 with sα1 + α2 + α4 + α5 + α6 < 1 
and α1 + α3 + α4 + α5 + α7 + α8 < 1. Then S and T have unique common coupled fixed 
point in X.� □

Proof  Take two arbitrary points x0, y0 in X, define x2k+1 = S(x2k , y2k), y2k+1 = S(y2k , x2k) , 
x2k+2 = T (x2k+1, y2k+1), y2k+2 = T (y2k+1, x2k+1) for k = 0, 1, 2, . . . .

Consider

x = S(x, y) = T (x, y) and y = S(y, x) = T (y, x).

(1)

d(S(x, y),T (u, v)) ≤ α1
d(x,u)+ d(y, v)

2

+ α2
d(x, S(x, y))d(u,T (u, v))

1+ d(x,u)+ d(y, v)

+ α3
d(u, S(x, y))d(x,T (u, v))

1+ d(x,u)+ d(y, v)

+ α4
d(S(x, y),T (u, v))d(x,u)

1+ d(x,u)+ d(y, v)

+ α5
d(S(x, y),T (u, v))d(y, v)

1+ d(x,u)+ d(y, v)

+ α6
d(u,T (u, v))d(y, v)

1+ d(x,u)+ d(y, v)

+ α7
d(u, S(x, y)d(x,u))

1+ d(x,u)+ d(y, v)

+ α8
d(u, S(x, y))d(y, v)

1+ d(x,u)+ d(y, v)

d(x2k+1, x2k+2) = d(S(x2k , y2k),T (x2k+1, y2k+1)).
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Then by using condition (1) of Theorem 1, we have

which implies that

d(x2k+1, x2k+2) ≤ α1
d(x2k , x2k+1)+ d(y2k , y2k+1)

2

+ α2
d(x2k , S(x2k , y2k))d(x2k+1,T (x2k+1, y2k+1))

1+ d(x2k , x2k+1)+ d(y2k , y2k+1)

+ α3
d(x2k+1, S(x2k , y2k))d(x2k ,T (x2k+1, y2k+1))

1+ d(x2k , x2k+1)+ d(y2k , y2k+1)

+ α4
d(S(x2k , y2k),T (x2k+1, y2k+1))d(x2k , x2k+1)

1+ d(x2k , x2k+1)+ d(y2k , y2k+1)

+ α5
d(S(x2k , y2k),T (x2k+1, y2k+1))d(y2k , y2k+1)

1+ d(x2k , x2k+1)+ d(y2k , y2k+1)

+ α6
d(x2k+1,T (x2k+1, y2k+1))d(y2k , y2k+1)

1+ d(x2k , x2k+1)+ d(y2k , y2k+1)

+ α7
d(x2k+1, S(x2k , y2k))d(x2k , x2k+1)

1+ d(x2k , x2k+1)+ d(y2k , y2k+1)

+ α8
d(x2k+1, S(x2k , y2k))d(y2k , y2k+1)

1+ d(x2k , x2k+1)+ d(y2k , y2k+1)

= α1
d(x2k , x2k+1)+ d(y2k , y2k+1)

2

+ α2
d(x2k , x2k+1)d(x2k+1, x2k+2)

1+ d(x2k , x2k+1)+ d(y2k , y2k+1)

+ α3
d(x2k+1, x2k+1)d(x2k , x2k+2)

1+ d(x2k , x2k+1)+ d(y2k , y2k+1)

+ α4
d(x2k+1, x2k+2)d(x2k , x2k+1)

1+ d(x2k , x2k+1)+ d(y2k , y2k+1)

+ α5
d(x2k+1, x2k+2)d(y2k , y2k+1)

1+ d(x2k , x2k+1)+ d(y2k , y2k+1)

+ α6
d(x2k+1, x2k+2)d(y2k , y2k+1)

1+ d(x2k , x2k+1)+ d(y2k , y2k+1)

+ α7
d(x2k+1, x2k+1)d(x2k , x2k+1)

1+ d(x2k , x2k+1)+ d(y2k , y2k+1)

+ α8
d(x2k+1, x2k+1)d(y2k , y2k+1)

1+ d(x2k , x2k+1)+ d(y2k , y2k+1)

≤ α1
d(x2k , x2k+1)

2
+ α1

d(y2k , y2k+1)

2

+ α2d(x2k+1, x2k+2)+ α4d(x2k+1, x2k+2)

+ α5d(x2k+1, x2k+2)+ α6d(x2k+1, x2k+2).

(1− (α2 + α4 + α5 + α6))d(x2k+1, x2k+2) ≤ α1
d(x2k , x2k+1)

2
+ α1

d(y2k , y2k+1)

2

(2)

d(x2k+1, x2k+2) ≤ α1
d(x2k , x2k+1)

2(1− (α2 + α4 + α5 + α6))

+ α1
d(y2k , y2k+1)

2(1− (α2 + α4 + α5 + α6))
.
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Proceeding similarly one can prove that

Adding, (2) and (3), we get

where

Also,

Adding, (4) and (5), we get

Continuing this way, we have

If d(xn, xn+1)+ d(yn, yn+1) = δn Then δn ≤ hδn−1 ≤ h2δn−2 ≤ · · · ≤ hnδ0.

For m > n,

(3)d(y2k+1, y2k+2) ≤ α1
d(y2k , y2k+1)

2(1− (α2 + α4 + α5 + α6))
+ α1

d(x2k , x2k+1)

2(1− (α2 + α4 + α5 + α6))
.

d(x2k+1, x2k+2)+ d(y2k+1, y2k+2) ≤
α1

(1− (α2 + α4 + α5 + α6))

[d(x2k , x2k+1)+ d(y2k , y2k+1)]

= h[d(x2k , x2k+1)+ d(y2k , y2k+1)].

h =
α1

(1− (α2 + α4 + α5 + α6))
< 1.

(4)

d(x2k+2, x2k+3) ≤ α1
d(x2k+1, x2k+2)

2(1− (α2 + α4 + α5 + α6))

+ α1
d(y2k+1, y2k+2)

2(1− (α2 + α4 + α5 + α6))

(5)

d(y2k+2, y2k+3) ≤ α1
d(y2k+1, y2k+2)

2(1− (α2 + α4 + α5 + α6))

+ α1
d(x2k+1, x2k+2)

2(1− (α2 + α4 + α5 + α6))

d(x2k+2, x2k+3)+ d(y2k+2, y2k+3) ≤
α1

(1− (α2 + α4 + α5 + α6))

[d(x2k+1, x2k+2)+ d(y2k+1, y2k+2)]

= h[d(x2k+1, x2k+2)+ d(y2k+1, y2k+2)]

≤ h2[d(x2k , x2k+1)+ d(y2k , y2k+1)].

d(xn, xn+1)+ d(yn, yn+1) ≤ h[d(xn−1, xn)+ d(yn−1, yn)]

≤ h2[d(xn−2, xn−1)+ d(yn−2, yn−1)]

≤ · · · ≤ hn[d(x0, x1)+ d(y0, y1)]

[d(xn, xm)+ d(yn, ym)] ≤ s[d(xn, xn+1)+ d(yn, yn+1)]

+ s2[d(xn+1, xn+2)+ d(yn+1, yn+2)] + · · ·

+ sm−n[d(xm−1, xm)+ d(ym−1, ym)]

≤ hnsδ0 + s2hn+1δ0 + · · · + sm−nhm−1δ0

< shn[1+ sh+ (sh)2 + · · · ]δ0

=
shn

1− sh
−→ 0 as n −→ ∞.
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Shows that {xn} and {yn} are Cauchy sequences in X. As X is complete b-metric space, so 
there exists x, y ∈ X such that xn −→ x and yn −→ y as n−→ ∞.

Now we will prove that x = S(x, y) and y = S(y, x). On contrary suppose that 
x �= S(x, y) and y �= S(x, y). Then d(x, S(x, y)) = l1 > 0 and d(y, S(x, y)) = l2 > 0.

Consider the following and using condition (1) of Theorem 1, we get

Since {xn} and {yn} are convergent to x and y, therefore by taking limit as k → ∞ we get 
l1 ≤ 0. Which is contradiction, so d(x, S(x, y)) = 0 ⇒ x = S(x, y).

Similarly we can prove that y = S(y, x). Also we can prove that x = T (x, y) and 
y = T (y, x), Thus (x, y) is a common coupled fixed point of S and T.

l1 = d(x, S(x, y)) ≤ s[d(x, x2k+2)+ d(x2k+2, S(x, y))]

= sd(x, x2k+2)+ sd(T (x2k+1, y2k+1), S(x, y))

= sd(x, x2k+2)+ sd(S(x, y),T (x2k+1, y2k+1))

≤ sd(x, x2k+2)+ sα1
d(x, x2k+1)+ d(y, y2k+1)

2

+ sα2
d(x, S(x, y))d(x2k+1,T (x2k+1, y2k+1))

1+ d(x, x2k+1)+ d(y, y2k+1)

+ sα3
d(x2k+1, S(x, y))d(x,T (x2k+1, y2k+1))

1+ d(x, x2k+1)+ d(y, y2k+1)

+ sα4
d(S(x, y),T (x2k+1, y2k+1))d(x, x2k+1)

1+ d(x, x2k+1)+ d(y, y2k+1)

+ sα5
d(S(x, y),T (x2k+1, y2k+1))d(y, y2k+1)

1+ d(x, x2k+1)+ d(y, y2k+1)

+ sα6
d(x2k+1,T (x2k+1, y2k+1))d(y, y2k+1)

1+ d(x, x2k+1)+ d(y, y2k+1)

+ sα7
d(x2k+1, S(x, y))d(x, x2k+1)

1+ d(x, x2k+1)+ d(y, y2k+1)

+ sα8
d(x2k+1, S(x, y))d(y, y2k+1)

1+ d(x, x2k+1)+ d(y, y2k+1)

= sd(x, x2k+2)+ sα1
d(x, x2k+1)+ d(y, y2k+1)

2

+ sα2
d(x, S(x, y))d(x2k+1, x2k+2)

1+ d(x, x2k+1)+ d(y, y2k+1)

+ sα3
d(x2k+1, S(x, y))d(x, x2k+2)

1+ d(x, x2k+1)+ d(y, y2k+1)

+ sα4
d(S(x, y), x2k+2)d(x, x2k+1)

1+ d(x, x2k+1)+ d(y, y2k+1)

+ sα5
d(S(x, y), x2k+2))d(y, y2k+1)

1+ d(x, x2k+1)+ d(y, y2k+1)

+ sα6
d(x2k+1, x2k+2)d(y, y2k+1)

1+ d(x, x2k+1)+ d(y, y2k+1)

+ sα7
d(x2k+1, S(x, y))d(x, x2k+1)

1+ d(x, x2k+1)+ d(y, y2k+1)

+ sα8
d(x2k+1, S(x, y))d(y, y2k+1)

1+ d(x, x2k+1)+ d(y, y2k+1)
.
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Uniqueness
Let (x∗, y∗) ∈ X× X be second common coupled fixed point of S and T.
Then by using condition (1) of Theorem 1, we have

Thus

Similarly,

Adding, (6) and (7), we get

d(x, x∗) = d(S(x, y),T (x∗, y∗))

≤ α1
d(x, x∗)+ d(y, y∗)

2
+ α2

d(x, S(x, y)d(x∗,T (x∗, y∗))

1+ d(x, x∗)+ d(y, y∗)

α3
d(x∗, S(x, y))d(x,T (x∗, y∗))

1+ d(x, x∗)+ d(y, y∗)
+ α4

d(S(x, y),T (x∗, y∗))d(x, x∗)

1+ d(x, x∗)+ d(y, y∗)

+ α5
d(S(x, y),T (x∗, y∗))d(y, y∗)

1+ d(x, x∗)+ d(y, y∗)
+ α6

d(x∗,T (x∗, y∗))d(y, y∗)

1+ d(x, x∗)+ d(y, y∗)

+ α7
d(x∗, S(x, y))d(x, x∗)

1+ d(x, x∗)+ d(y, y∗)
+ α8

d(x∗, S(x, y))d(y, y∗)

1+ d(x, x∗)+ d(y, y∗)

= α1
d(x, x∗)+ d(y, y∗)

2
+ α2

d(x, x)d(x∗, x∗)

1+ d(x, x∗)+ d(y, y∗)

α3
d(x∗, x)d(x, x∗)

1+ d(x, x∗)+ d(y, y∗)
+ α4

d(x, x∗)d(x, x∗)

1+ d(x, x∗)+ d(y, y∗)

+ α5
d(x, x∗)d(y, y∗)

1+ d(x, x∗)+ d(y, y∗)
+ α6

d(x∗, x∗)d(y, y∗)

1+ d(x, x∗)+ d(y, y∗)

+ α7
d(x∗, x)d(x, x∗)

1+ d(x, x∗)+ d(y, y∗)
+ α8

d(x∗, x)d(y, y∗)

1+ d(x, x∗)+ d(y, y∗)

≤ α1
d(x, x∗)

2
+ α1

d(y, y∗)

2
+ α3d(x, x

∗)+ α4d(x, x
∗)

+ α5d(x, x
∗)+ α7d(x, x

∗)+ α8d(x, x
∗).

(

1−
α1

2
− α3 − α4 − α5 − α7 − α8

)

d(x, x∗) ≤ α1
d(y, y∗)

2

(2− α1 − 2α3 − 2α4 − 2α5 − 2α7 − 2α8)

2
d(x, x∗) ≤ α1

d(y, y∗)

2

(6)d(x, x∗) ≤
α1

(2− α1 − 2α3 − 2α4 − 2α5 − 2α7 − 2α8)
d(y, y∗).

(7)d(y, y∗) ≤
α1

(2− α1 − 2α3 − 2α4 − 2α5 − 2α7 − 2α8)
d(x, x∗).

d(x, x∗)+ d(y, y∗) ≤
α1

(2− α1 − 2α3 − 2α4 − 2α5 − 2α7 − 2α8)
[d(y, y∗)+ d(x, x∗)]

[

1−
α1

(2− α1 − 2α3 − 2α4 − 2α5 − 2α7 − 2α8)

]

[d(y, y∗)+ d(x, x∗)] ≤ 0

2(1− α1 − α3 − α4 − α5 − α7 − α8)

2− α1 − 2α3 − 2α4 − 2α5 − 2α7 − 2α8
[d(x, x∗)+ d(y, y∗)] ≤ 0.
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Since α1 + α3 + α4 + α5 + α7 + α8 < 1.

Therefore,

Hence

Which implies that x = x∗ and y = y∗ ⇒ (x, y) = (x∗, y∗).
Thus, S and T have unique common coupled fixed point.
Theorem 1 yields the following corollary.

Corollary 1  Let (X , d) be a complete b-metric space with parameter s ≥ 1 and let the 
mapping T : X × X → X mapping satisfy:

for all x, y,u, v,∈ X and α1,α2,α3,α4,α5,α6,α7,α8 ≥ 0 with sα1 + α2 + α4 + α5 + α6 < 1 
and α1 + α3 + α4 + α5 + α7 + α8 < 1. Then T has unique common coupled fixed point 
in X.

Proof  The proof follows from Theorem 1 by taking S = T .� □

Theorem 2  Let (X, d) be a complete b metric space with parameter s ≥ 1 and let the 
mapping S,T : X × X −→ X satisfy:

For all x, y,u, v ∈ X and α,β are non-negative real numbers with s(α + β) < 1. Then S 
and T have unique common coupled fixed point.�

2(1− α1 − α3 − α4 − α5 − α7 − α8)

2− α1 − 2α3 − 2α4 − 2α5 − 2α7 − 2α8
> 0.

[d(x, x∗)+ d(y, y∗)] ≤ 0.

d(T (x, y),T (u, v)) ≤ α1
d(x,u)+ d(y, v)

2
+ α2

d(x,T (x, y))d(u,T (u, v))

1+ d(x,u)+ d(y, v)

+ α3
d(u,T (x, y))d(x,T (u, v))

1+ d(x,u)+ d(y, v)

+ α4
d(T (x, y),T (u, v))d(x,u)

1+ d(x,u)+ d(y, v)

+ α5
d(T (x, y),T (u, v))d(y, v)

1+ d(x,u)+ d(y, v)

+ α6
d(u,T (u, v))d(y, v)

1+ d(x,u)+ d(y, v)

+ α7
d(u,T (x, y)d(x,u))

1+ d(x,u)+ d(y, v)

+ α8
d(u,T (x, y))d(y, v)

1+ d(x,u)+ d(y, v)

(8)

d(S(x, y),T (u, v)) ≤ α
(d(x,u))+ d(y, v)

2

+ β
d(x, S(x, y))d(u,T (u, v))

1+ s[d(x,T (u, v))+ d(u, S(x, y))+ d(x,u))+ d(y, v)]
.
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Proof  Take two arbitrary points x0, y0 in X. Define x2k+1 = S(x2k , y2k), y2k+1 =)

S(y2k , x2k), x2k+2 = T (x2k+1, y2k+1) and y2k+2 = T (y2k+1, x2k+1) for k = 0, 1, 2, . . ..

Consider

Then by using condition (8) of Theorem 2, we have

which implies that

Similarly we can prove

Adding (9) and (10), we get

Also

d(x2k+1, x2k+2) = d(S(x2k , y2k),T (x2k+1, y2k+1)).

d(x2k+1, x2k+2) ≤ α
d(x2k , x2k+1)+ d(y2k , y2k+1)

2

+ β
d(x2k , S(x2k , y2k ))d(x2k+1,T (x2k+1, y2k+1))

1+ s[d(x2k ,T (x2k+1, y2k+1))+ d(x2k+1, S(x2k , y2k ))+ d(x2k , x2k+1)+ d(y2k , y2k+1)]

= α
d(x2k , x2k+1)+ d(y2k , y2k+1)

2

+ β
d(x2k , x2k+1)d(x2k+1, x2k+2)

1+ s[d(x2k , x2k+2)+ d(x2k+1, x2k+1)+ d(x2k , x2k+1)+ d(y2k , y2k+1)]

= α
d(x2k , x2k+1)

2
+ α

d(y2k , y2k+1)

2

+ β
d(x2k , x2k+1)d(x2k+1, x2k+2)

1+ s[d(x2k+1, x2k+2)+ d(y2k , y2k+1)]

≤ α
d(x2k , x2k+1)

2
+ α

d(y2k , y2k+1)

2
+ βd(x2k , x2k+1)

(9)d(x2k+1, x2k+2) ≤
α + 2β

2
d(x2k , x2k+1)+

α

2
d(y2k , y2k+1).

(10)d(y2k+1, y2k+2) ≤
α + 2β

2
d(y2k , y2k+1)+

α

2
d(x2k , x2k+1).

[d(x2k+1, x2k+2)+ d(y2k+1, y2k+2)] ≤ (α + β)[d(x2k , x2k+1)+ d(y2k , y2k+1)].

d(x2k+2, x2k+3) = d(T (x2k+1, y2k+1), S(x2k+2, y2k+2))

= d(S(x2k+2, y2k+2),T (x2k+1, y2k+1))

≤ α
d(x2k+2, x2k+1)+ d(y2k+2, y2k+1)

2

+ β
d(x2k+2, S(x2k+2, y2k+2))d(x2k+1,T (x2k+1, y2k+1))

1+ s[d(x2k+1,T (x2k+1, y2k+1))+ d(x2k+2, S(x2k+2, y2k+2))+ d(x2k+2, x2k+1)+ d(y2k+2, y2k+1)]

= α
d(x2k+2, x2k+1)+ d(y2k+2, y2k+1)

2

+ β
d(x2k+2, x2k+3)d(x2k+1, x2k+2)

1+ s[d(x2k+1, x2k+2)+ d(x2k+2, x2k+3)+ d(x2k+2, x2k+1)+ d(y2k+2, y2k+1)]

⇒ d(x2k+2, x2k+3) ≤ α
d(x2k+2, x2k+2)

2
+ α

d(y2k+2, y2k+2)

2

+ β
d(x2k+2, x2k+3)d(x2k+1, x2k+2)

1+ s[d(x2k+1, x2k+3)+ d(x2k+2, x2k+1)+ d(y2k+2, y2k+1)]

= α
d(x2k+2, x2k+1)

2
+ α

d(y2k+2, y2k+1)

2
+ β

d(x2k+2, x2k+3)d(x2k+1, x2k+2)

1+ s[d(x2k+2, x2k+3)+ d(y2k+2, y2k+1)]

d(x2k+2, x2k+3) ≤ α
d(x2k+2, x2k+1)

2
+ α

d(y2k+2, y2k+1)

2
+ βd(x2k+1, x2k+2)
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Adding, (11) and (12), we get

continuing the same process, we get

where h = α + β < 1.
Now if d(xn, xn+1)+ d(yn, yn+1) = δn. Then δn ≤ hδn−1 ≤ · · · ≤ hnδ0

so for m > n, we have

Therefore, {xn} and {yn} are Cauchy sequences in X. Since X is complete b-metric space, 
there exists x, y ∈ X such that xn −→ x and yn −→ y as n−→ ∞.

Now we will show that x = S(x, y) and y = S(y, x). Suppose on contrary that x �= S(x, y) 
and y �= S(x, y), so that d(x, s(x, y)) = l1 > 0 and d(y, s(x, y)) = l2 > 0 consider the fol-
lowing and using condition (8) of Theorem 2, we get

Taking limit k → ∞ we get l1 ≤ 0.

(11)d(x2k+2, x2k+3) ≤
(α + 2β)

2
d(x2k+1, x2k+2)+ α

d(y2k+1, y2k+2)

2

(12)d(y2k+2, y2k+3) ≤
(α + 2β)

2
d(y2k+1, y2k+2)+ α

d(x2k+1, x2k+2)

2
.

[d(x2k+2, x2k+3)+ d(y2k+2, y2k+3)] ≤ (α + β)[d(x2k+1, x2k+2)+ d(y2k+1, y2k+2)]

≤ (α + β)2[d(x2k , x2k+1)+ d(y2k , y2k+1)]

d(xn, xn+1)+ d(yn, yn+1) ≤ (α + β)[d(xn−1, xn)+ d(yn−1, yn)]

≤ (α + β)2[d(xn−2, xn−1)+ d(yn−2, yn−1)]

≤ · · · ≤ (α + β)n[d(x0, x1)+ d(y0, y1)]

d(xn, xm)+ d(yn, ym) ≤ s[d(xn, xn+1)+ d(yn, yn+1)]

+ · · · + sm−n[d(xm−1, xm)+ d(ym−1, ym)]

≤ shnδ0 + s2hn+1δ0 + · · · + sm−nhm−1δ0

< shn[1+ (sh)+ (sh)2 + · · · ]δ0

=
shn

1− sh
δ0 −→ 0 as n −→ ∞.

l1 = d(x, s(x, y)) ≤ s[d(x, x2k+2)+ d(x2k+2, S(x, y))]

= sd(x, x2k+2)+ sd(S(x, y), x2k+2)

= sd(x, x2k+2)+ sd(S(x, y),T (x2k+1, y2k+1))

≤ sd(x, x2k+2)+ sα
d(x, x2k+1)+ d(y, y2k+1)

2

+ sβ
d(x, S(x, y))d(x2k+1,T (x2k+1, y2k+1))

1+ s[d(x,T (x2k+1, y2k+1))+ d(u, S(x, y)+ d(x, x2k+1)+ d(y, y2k+1)]

= sd(x, x2k+2)+ sα
d(x, x2k+1)+ d(y, y2k+1)

2

+ sβ
d(x, S(x, y))d(x2k+1, x2k+2)

1+ s[d(x, x2k+2)+ d(u, S(x, y))+ d(x, x2k+1)+ d(y, y2k+1)]
.
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Therefore d(x, S(x, y)) = 0. Which implies that x = S(x, y)

Similarly we can prove that y = S(y, x), x = T (x, y) and y = T (y, x).
Hence (x, y) is a common coupled fixed point of S and T.� □
Uniqueness
Let (x∗, y∗) ∈ X× X be another common coupled fixed point of S and T.
Using condition (8) of Theorem 2 here, we get

Therefore,

Similarly, we can prove that

Adding, (13) and (14), we get

d(x, x∗)+ d(y, y∗) ≤ 0, which implies that x = x∗ and y = y∗ ⇒ (x, y) = (x∗, y∗).
Hence, S and T have unique common coupled fixed point.

Corollary 2  Let (x, d) be a complete b metric space with parameter s ≥ 1 and let the 
mapping T : X × X ⇒ X satisfy:

d(x, x∗) = d(S(x, y),T (x∗, x∗)) ≤ α
d(x, x∗)+ d(y, y∗)

2

+ β
d(x, S(x, y))d(x∗,T (x∗, y∗))

1+ s[d(x,T (x∗, y∗))+ d(x∗, S(x, y))+ d(x, x∗)+ d(y, y∗)]

≤ α
d(x, x∗)+ d(y, y∗)

2
+ β

d(x, x)d(x∗, x∗)

1+ s[d(x, x∗)+ d(x∗, x)+ d(x, x∗)+ d(y, y∗)]

= α
d(x, x∗)

2
+ α

d(y, y∗)

2
+ β

d(x, x)d(x∗, x∗)

1+ s[3d(x, x∗)+ d(y, y∗)]
.

d(x, x∗) ≤ α
d(x, x∗)

2
+ α

d(y, y∗)

2
⇒ d(x, x∗)

[

1−
α

2

]

≤ α
d(y, y∗)

2

⇒ d(x, x∗)

[

2− α

2

]

≤ α
d(y, y∗)

2

(13)d(x, x∗) ≤
α

2− α
d(y, y∗).

(14)d(y, y∗) ≤
α

2− α
d(x, x∗).

d(x, x∗)+ d(y, y∗)) ≤
α

2− α
[d(x, x∗)+ d(y, y∗)]

⇒

(

1−
α

2− α

)

[d(x, x∗)+ d(y, y∗)] ≤ 0

d(T (x, y),T (u, v)) ≤ α
(d(x,u))+ d(y, v)

2

+ β
d(x,T (x, y))d(u,T (u, v))

1+ s[d(x,T (u, v))+ d(u,T (x, y))+ d(x,u)+ d(y, v)]
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 For all x,y,u,v ∈ X and α,β are non-negative real numbers with s(α + β) < 1. Then T has 
a unique common coupled fixed point.

Remarks

• • If αi = 0 for i = 4, 5, 6, 7, 8 in Theorem  1, then we get the result of Malhotra and 
Bansal (2015).

• • If we take S = T  and αi = 0 for i = 4, 5, 6, 7, 8 in Theorem 1, then we get the corol-
lary of Malhotra and Bansal (2015).

Example 4  Suppose X = [0, 1]. Defined the function d : X × X → R by 
d(x, y) = 2

3
(x − y)2 ∀x, y ∈ X. Clearly (X, d) is b-metric space with parameter s = 2.

If we define S,T : X × X → X by S(x, y) = x+y
2
,T (x, y) =

x+y
3

 for each x, y ∈ X. Then 
it can be proved simply that the maps S and T satisfy the conditions of Theorem 1 with 
α1 =

1
12
,α2 =

1
15
,α3 =

1
6
,α4 = 1

9
,α5 =

2
15
,α6 =

1
18
,α7 =

5
24
,α8 =

5
36

. Hence (0,0) is a 
unique common coupled fixed point of S and T.

Conclusion
The derived results generalize and extend some results of Malhotra and Bansal (2015) in 
the setting of b-metric spaces.
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