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Background
The well-known nonlinear third-order Falkner–Skan equation is one of the nonlinear 
two-point boundary value problem (BVP) on infinite intervals. This problem arises in 
the study of laminar boundary layers exhibiting similarity in fluid mechanics. The solu-
tions of the one-dimensional third-order boundary-value problem described by the 
Falkner–Skan equation are the similarity solutions of the two-dimensional incompress-
ible laminar boundary layer equations (Cheng 1977; Merkin 1980; Salama 2004; Postel-
nicu and Pop 2011; Mosayebidorcheh 2013).

Considering the following differential equation (Aly et al. 2003):

subject to the boundary conditions

where β ≥ 0 and f ′(+∞) := limt→+∞ f ′(t).
The nonlinear BVP (1–2) with β = 0 is studied (Aly et al. 2003; Nazar et al. 2004) and 

comes from the study of a plane mixed convection boundary-layer flow near a semi-
infinite vertical surface, with a prescribed power law of the distance from the leading 
edge for the temperature. About BVP (1–2), there have existed some interesting results 

(1)f ′′′(η)+ (1+ �)f (η)f ′′(η)+ 2�(1− f ′(η))f ′(η) = 0, 0 ≤ η < +∞,

(2)f (0) = 0, f ′(0) = β , f ′(+∞) = 1,
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about the problem above. For example, there admits a unique convex solution (i.e., such 
that f ′′(η) > 0) for � > 0 and 0 < β < 1 (Brighi and Hoernel 2006); also there admits a 
unique concave solution (i.e., such that f ′′(η) < 0) for � > 0 and β > 1. It is unfortunate 
that they did not consider the case of � ≤ 0 and few results are available for � ≤ 0.

Current numerical analysis is an important technique for the solution of the Falkner–
Skan equation. One key problem for numerical technique is how to deal with the infinite 
boundary. Early approaches have mainly used shooting or invariant imbedding (Cebeci 
and Keller 1971; Na 1979). Asaithambi presented an asymptotic condition and truncated 
the infinite boundary condition by an unknown η∞ (Asaithambi 1998, 2004, 2005). Ado-
mian decomposition method was developed to obtain series solutions instead of trun-
cating the infinite boundary (Elgazery 2005; Alizadeh et al. 2009). Yang and Hu (2008) 
transformed the problem to a singular boundary value problem on finite interval and 
proposed Galerkin finite element method.

Based on ideas (Yang 2003; Lan and Yang 2008), the purpose of this paper is to trans-
form the problem mentioned above to a singular boundary value problem on a finite 
interval and develop a finite difference method which is much more effective and sim-
pler than the other existing methods for BVP (1–2), and which requires much less com-
putational effort.

Transformation formula
Lan and Yang (2008) established the equivalence between the Falkner–Skan equation 
and a singular integral equation. In this paper, the BVP (1–2) is transformed to a second-
order singular boundary value problem, and the solution of BVP (1–2) is characterized 
by f ′′(0).

Let 0 < β < 1 and f ′′(η) > 0(η ≥ 0), function t = f ′(η) is strictly increasing in interval 
[0,+∞), and its inverse function η = g(t) exits and strictly increases in interval [β , 1). 
Then we have g(β) = 0, g(1− 0) = +∞, and

Differentiating Eq. (3) with respect to t yields

Differentiating Eq. (4) with respect to t yields

According to Eq. (3), we obtain tg ′(t) = f ′(g(t))g ′(t), i.e.,

Integrating Eq. (6) from β to t with respect to s, we get

(3)t = f ′(g(t)), t ∈ [β , 1).

(4)w(t) := f ′′(g(t)) =
1

g ′(t)
, β ≤ t < 1.

(5)f ′′′(g(t)) = w(t)w′(t), β ≤ t < 1.

(6)
t

w(t)
= f ′(g(t))g ′(t), β ≤ t < 1.

(7)

∫ t

β

s

w(s)
ds =

∫ t

β

f ′(g(s))g ′(s)ds = f (g(t))− f (g(β)).
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It follows from f (g(β)) = 0 that

Substituting Eqs. (3), (4), (5), and (8) into Eq. (1), we obtain

Differentiating Eq. (9), we have

and

On the other hand, according to Eq. (4) and boundary condition f ′(+∞) = 1, we could 
obtain boundary condition

Numerical solutions of boundary value problem
Equation (10) can be changed to the following equivalent form

subject to the boundary conditions

In this paper, the numerical solution of Eq.  (13) with boundary conditions (14, 15) is 
based on the the finite difference method. The interval [β , 1] is divided into N subintervals 
with step size h =

1−β
N , and define tj = β + jh for j = 0, 1, . . . ,N . Let wj denotes the values 

of w(tj) for j = 0, 1, . . . ,N . Let t = tj, the finite difference formulation of Eq. (13) writes as

for j = 1, 2, . . . ,N − 1. The boundary condition (14) corresponds to

And the discretization of boundary condition (15) reads as

(8)f (g(t)) =

∫ t

β

s

w(s)
ds, β ≤ t < 1.

(9)w(t)w′(t)+ (1+ �)w(t)

∫ t

β

s

w(s)
ds + 2�(1− t)t = 0, β ≤ t < 1.

(10)w′′(t) =
(3�− 1)t − 2�

w(t)
+

2�(1− t)tw′(t)

w2(t)
, β ≤ t < 1.

(11)w′(β) =
−2�(1− β)β

w(β)
.

(12)w(1) = 0.

(13)w′′(t)w2(t)+ 2�(t − 1)tw′(t)+ [(1− 3�)t + 2�]w(t) = 0, t ∈ [β , 1),

(14)w(1) = 0,

(15)w′(β) =
−2�(1− β)β

w(β)
.

(16)
wj+1 − 2wj + wj−1

h2
w2
j + 2�(tj − 1)tj

wj+1 − wj−1

2h
+

[

(1− 3�)tj + 2�
]

wj = 0,

(17)wN = 0.

(18)
w1 − w0

h
w0 + 2�(1− β)β = 0.
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The discretization formulation (16–18) is a nonlinear equation system, so Newton 
iteration method is recommended to solve approximate solutions. We now proceed 
to describe the iterative process for the solution of the nonlinear system (16–18). Let 
wT = [w0 · · · wN ], and

where

and

for j = 1, 2, . . . ,N − 1.
The solving Eqs. (16–18) is equivalent to solving the system described by

Newton’s iteration method is recommended to solve nonlinear system (22). 
Given � and initial values w0

j , j = 0, 1, 2, . . . ,N , the k-th Newton’s iterates 
wk = [wk

0 ,w
k
1 , . . . wk

N ]
T , k = 1, 2, . . . , can be obtained by solving system (22). New-

ton’s method for the solution of Eq. (22) proceeds to yield subsequent iterates for w as

where △wk satisfies the equation

The iterative process described by Eqs.  (23, 24) may be repeated in succession until 
�△wk�∞ < ε for some prescribed error tolerance ε.

The algorithm is then given as:

Step 1.	  Input the values �, number of subintervals N and stopping condition ε
Step 2.  Initialize β,k ← 0, step size h ←

1−β
N  and wN ← 0,

Step 3.	  Compute wk ,△wk by Eqs. (23, 24); k ← k + 1

Step 4.	  Repeat through step 3 until �△wk�∞ < ε is satisfied.

Results and discussion
The Falkner–Skan equation has two parameters β and �, and Aly et al. (2003) obtained 
some numerical solution for various β and �. Also, the numerical solutions of the equa-
tion have been simulated by using Galerkin finite element methods for various values 
of β and � (Yang and Hu 2008). In order to demonstrate the reliability and efficiency of 
the proposed theory. The numerical results have been obtained by solving the bound-
ary value problems (13–15) with different parameters � and β. And comparison of the 

(19)H(w; �) =







H0(w; �)
.
.
.

HN−1(w; �)






,

(20)H0(w; �) = w0w1 − w2
0 + 2h�(1− β)β ,

(21)Hj(w; �) = (wj+1 − 2wj + wj−1)w
2
j + �h(tj − 1)tj(wj+1 − wj−1)+

[

(1− 3�)tj + 2�
]

h2wj ,

(22)H(w; �) = 0.

(23)wk+1 = wk +△wk
,

(24)JH(w)△wk = −H(wk; �).
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accuracy for calculation f ′′(0)(= w(β)) is made between our method and Galerkin 
finite element method proposed in (Yang and Hu 2008), the errors are simulated and 
shown in Table 1. In numerical simulation, we choose h = 10−3 and ε = 10−10, respec-
tively. By virtue of equivalent Eqs.  (13–15), we can obtained the numerical solution of 
f ′′(0)(= w(β)) = 0.4695998.

It can be seen from Fig. 1, where f ′′(0)(= w(β)) is plotted as a function of β in the range 
of 0 ≤ β ≤ 1, curves are drawn for value � = −0.30,−0.25,−0.20,−0.18,−0.15,−0.10. 
It is also shown that f ′′(0)(= w(β)) changes smoothly with β. As � increases, the results 
also increase in the range of 0 ≤ β ≤ 1.

Figure 2 shows the characteristics of numerical solutions f ′′(0)(= w(β)) for β = 0.0–
0.9 by solving the boundary value problems (13–15). The solutions indicate that 
f ′′(0)(= w(β)) decreases with increasing of the parameter β, i.e., f ′′(0)(= w(β)) is a 
decrease function of parameter β. For each fixed value of �, solution of f ′′(0)(= w(β)) 
decreases with increase of β in the range of [0, 1 ], and especially, when β = 0 and � = 0, 
the classical Balasis solution is obtained (Aly et al. 2003).

Table 1  Error results of finite difference method and Galerkin finite element method

β �

0.10 0.15 0.18 0.20 0.25 0.30

0 2.985× 10−6 3.433× 10−6 3.780× 10−6 4.051× 10−6 4.892× 10−6 5.427× 10−6

0.1 3.010× 10−6 3.465× 10−6 3.818× 10−6 4.096× 10−6 4.976× 10−6 5.882× 10−6

0.2 3.074× 10−6 3.543× 10−6 3.910× 10−6 4.202× 10−6 5.167× 10−6 6.962× 10−6

0.3 3.174× 10−6 3.664× 10−6 4.051× 10−6 4.364× 10−6 5.452× 10−6 8.674× 10−5

0.5 3.516× 10−6 4.076× 10−6 4.532× 10−6 4.913× 10−6 6.419× 10−6 1.540× 10−5

0.7 4.270× 10−6 4.993× 10−6 5.609× 10−6 6.151× 10−6 8.662× 10−6 4.706× 10−5

0.9 7.320× 10−6 8.807× 10−6 1.021× 10−5 1.157× 10−5 1.993× 10−5 1.303× 10−4
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Fig. 1  Curve of f ′′(0)(=w(β)) as a function of β at interval [0,1] for 
� = −0.30,−0.25,−0.20,−0.18,−0.15,−0.10
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Because the Eq. (13) is a second-order boundary value problem, the amount of compu-
tational effort used by finite difference method is significantly less than the other numer-
ical methods of the third-order differential equation which essentially solve two or more 
initial value problems during each iteration (Asaithambi 2004). In general, the numerical 
simulation shows that the initial guess for w0 could be far away from the exact value. For 
each fixed value of w0, the method in this paper required 2–6 iterations in order to solve 
system (22) to the desired accuracy.

Conclusions
In this work, we have demonstrated the effectiveness of the finite difference method to 
Falkner–Skan equation. Applying equivalent transformation to Falkner–Skan equation, 
a third-order boundary value problem in infinite interval is transformed into a second-
order boundary value problem in finite interval. By using finite difference method and 
Newton’s iteration approximation, the numerical solution have been calculated.

The results of comparison studied in this paper indicate that, the values of the New-
ton’s iteration for f ′′(0)(= w(β)) are in excellent agreement with those results obtained 
by previous authors. Therefore, the method presented in this work shows its validity 
and great potential for the solution of Falkner–Skan equations arising in science and 
engineering.
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Fig. 2  Ten branches of solution f ′′(0)(=w(β)) at interval [β,1] for � = −0.1 and 
β = 0.0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9
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