
OWL 2 learn profile: an ontology
sublanguage for the learning domain
Sudath R. Heiyanthuduwage*  , Rolf Schwitter and Mehmet A. Orgun

Background
An ontology is a conceptual specification of a domain that represents concepts, rela-
tions and constraints of that domain. A well designed learning ontology helps to clearly
represent a learning domain (LD) and eventually could be used to search for learning
resources. Moreover, the use of a learning ontology in an online learning system could
assist students who ask questions and search for learning resources by using the domain
knowledge specified in the ontology. Different learning ontologies have already been
designed for various purposes for some higher educational institutions.

Early attempts on learning ontologies focused more on conceptual modelling of learn-
ing ontologies. For example, a topic map ontology for e-learning has been proposed by
Kolås (2006) to share learning resources. UML (unified modelling language) diagrams
have been used by Knight et al. (2006) who propose an ontology-based approach for
adaptive and flexible learning. Some of the learning ontologies that have been proposed
later have focused more on ontology design, using design tools and the web ontology
language (OWL) (Hitzler et al. 2012). OWL and OWL 2 have been used to specify vari-
ous aspects of learning ontologies. For example, a learning ontology has been used to
measure the semantic relevance between a learning resource and the learning context
of a learner (Yessad et al. 2011). In this work, concept maps have been used initially to

Abstract 

Many experimental ontologies have been developed for the learning domain for use
at different institutions. These ontologies include different OWL/OWL 2 (Web Ontol-
ogy Language) constructors. However, it is not clear which OWL 2 constructors are the
most appropriate ones for designing ontologies for the learning domain. It is possible
that the constructors used in these learning domain ontologies match one of the three
standard OWL 2 profiles (sublanguages). To investigate whether this is the case, we
have analysed a corpus of 14 ontologies designed for the learning domain. We have
also compared the constructors used in these ontologies with those of the OWL 2 RL
profile, one of the OWL 2 standard profiles. The results of our analysis suggest that the
OWL 2 constructors used in these ontologies do not exactly match the standard OWL 2
RL profile, but form a subset of that profile which we call OWL 2 Learn.

Keywords:  Ontology, Semantic web, Knowledge representation, Learning information
systems

Open Access

© 2016 Heiyanthuduwage et al. This article is distributed under the terms of the Creative Commons Attribution 4.0 International
License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any
medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons
license, and indicate if changes were made.

RESEARCH

Heiyanthuduwage et al. SpringerPlus (2016) 5:291
DOI 10.1186/s40064-016-1826-0

*Correspondence:
sudath_h@yahoo.com
Department of Computing,
Faculty of Science
and Engineering, Macquarie
University, Sydney, NSW
2109, Australia

http://orcid.org/0000-0002-8521-7297
http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s40064-016-1826-0&domain=pdf

Page 2 of 24Heiyanthuduwage et al. SpringerPlus (2016) 5:291

model an ontology and then OWL to build the ontology for measuring the semantic
relatedness for relevance ranking of learning resources. OWL/OWL 2 based ontologies
have also been used to recommend the contents in a tutoring system (Vesin et al. 2013).
The ontologies of this work (ontologies for learning resources, tasks, learner model
and teaching strategy) have been developed using the ontology design tool Protégé. An
OWL-based ontology for teaching mathematical word problems has been proposed by
Lalingkar et al. (2014). These studies show the increasing popularity of OWL/OWL 2 for
implementing learning ontologies.

In a recent study, the Higher Education Reference Ontology (HERO) developed in
OWL (HERO_ONTOLOGY_V 25.06.2013.owl) has been proposed to overcome the
problems in building application specific ontologies in the higher education domain
(Zemmouchi–Ghomari and Ghomari 2012). This study has found that the development
and interoperability of application specific ontologies are difficult. Therefore, we believe
that the identification of a set of common features (OWL/OWL 2 constructors) in exist-
ing ontologies of the LD might help ontology designers in their work. However, we could
not find any studies in the literature that attempt to identify a common set of OWL 2
constructors for the LD.

The World Wide Web Consortium (W3C) has recommended OWL 2 as a stand-
ard ontology language for the Semantic web which is based on a particular version
of description logic (DL) (Hitzler et al. 2012). The W3C has also recommended three
standard profiles: OWL 2 EL, OWL 2 QL, and OWL 2 RL that are targeted at different
application areas (Motik et al. 2012). Each standard OWL 2 profile includes a subset of
OWL 2 constructors and has different computational properties (Motik et al. 2009).

To the best of our knowledge, no one has investigated so far how well learning ontolo-
gies are aligned with any of these three standard OWL 2 profiles. This paper aims at
answering this question and identifying a common subset of OWL 2 constructors (a
sublanguage or a profile) for the LD. In our study, we have first collected and analysed
a corpus of 14 learning ontologies that have been developed in OWL/OWL 2, including
one in RDF/RDFS. When we consider the ontologies in our corpus, we can find a lot of
object and/or data properties that require an expressive version of DL. Hence, one could
presume that the OWL 2 RL profile is a good starting point for modelling the LD. How-
ever, if it is the case that the learning ontologies in our corpus have different features,
then it would make sense to propose a new OWL 2 profile for the LD.

We expect that modelling a LD requires different institution-specific ontologies whose
expressive power depends on specific applications. For example, one of the ontologies in
our corpus, the university ontology (university.owl1), is based on a highly expressive DL
language. This ontology includes nominals (individual names) and cardinality restric-
tions (counting quantifiers) which increase the expressivity of the underlying DL lan-
guage. On the other hand, another ontology in our corpus, the university benchmark
ontology [uni-bench.owl (see Footnote 1)], does not include nominals or cardinality
restrictions. That means that the university benchmark ontology is based on a less
expressive DL language than the language of the university ontology. This is not

1  http://rpc295.cs.man.ac.uk:8080/repository/browser.

http://rpc295.cs.man.ac.uk:8080/repository/browser

Page 3 of 24Heiyanthuduwage et al. SpringerPlus (2016) 5:291

surprising, since these two learning ontologies have been designed to satisfy different
institutional requirements resulting in different ontology structures and features.

The study reported in this paper substantially extends a preliminary analysis of a cor-
pus of ten learning ontologies (Heiyanthuduwage et al. 2014). In our study, we have first
collected a corpus of 14 ontologies designed for the LD, including several developed in
OWL 2. We then identify and analyse the usage of OWL/OWL 2 constructors in our
corpus and compare these identified constructors with those of the OWL 2 RL profile.
We observe that not all the constructors in the OWL 2 RL profile are used in our corpus.
Finally, we introduce the resulting new profile called OWL 2 Learn and investigate its
expressivity.

The rest of this paper is structured as follows. In “Ontology languages and ontol-
ogy language profiles” section, we introduce ontology languages and the three stand-
ard OWL 2 profiles. In “The corpus of LD ontologies, characteristics and implications”
section, we discuss the corpus of 14 learning ontologies and provide an analysis of the
corpus. In “Analysis of the corpus and findings” section, we discuss the findings of the
analysis of the ontology corpus. In “OWL 2 constructors of the corpus and the OWL 2
RL profile” section, we present a comparison of the constructors found in the corpus and
the constructors of the OWL 2 RL profile. In “OWL 2 learn profile” section, we intro-
duce the new OWL 2 Learn profile and discuss its expressive power. In “Conclusion”
section, we summarize our contribution and discuss future work directions.

Ontology languages and ontology language profiles
An ontology can formally be specified using an ontology language. Different ontology
languages have been proposed over the last two decades. The Resource Description
Framework (RDF) has been accepted by the W3C in 2004 as a framework for describing
resources on the Web (Cyganiak et al. 2014). However, RDF does not include sufficient
constructors to specify a comprehensive ontology. RDFS, a schema language for RDF,
provides a framework for describing application-specific classes and properties (Hor-
rocks 2001). However, OWL superseded RDF/RDFS in 2004 as a Web ontology language
and is now a W3C recommendation for the Semantic Web. As OWL is based on a ver-
sion of description logic, it allows the use of a DL-based reasoner to derive informa-
tion that is not explicitly specified in an OWL ontology (Horrocks and Patel–Schneider
2011). Since 2009, OWL 2 has been used as the W3C recommended ontology language
for the Semantic Web (Motik et al. 2009). OWL 2 is a new and more expressive version
of OWL which mainly improves the relational and datatype expressivity of the language.

OWL, OWL 2 and their expressivity

The expressivity of the underlying DL language is a distinct feature of an ontology lan-
guage and is determined by the type of constructors that are allowed in the language
and how these constructors can be combined. Over the last two decades, the main focus
of DL research was to increase the expressive power of DL languages and to under-
stand their formal properties (Baader et al. 2010). Highly expressive ontology languages
include many types of different constructors. However, high expressivity comes at a
price and query answering over expressive ontologies can be computationally expensive.

Page 4 of 24Heiyanthuduwage et al. SpringerPlus (2016) 5:291

The ontology languages RDF/RDFS, OWL and OWL 2 show a gradual increase in
expressive power. OWL includes a range of constructors and axioms that provide a
higher expressivity than RDF/RDFS.

OWL 2 includes a number of extensions to OWL such as new constructors for
expressing additional restrictions and characteristics of properties and property chains
and keys (Motik et al. 2012). Self-restriction ObjectHasSelf() is one of them. OWL
includes only three constructors for non-qualified cardinality restrictions as shown in
(1) below whereas OWL 2 includes constructors for both non-qualified and qualified
cardinality restrictions as shown in both (1) and (2) below.

OWL 2 also includes different constructors for object properties and data properties.
For example, OWL includes a single constructor rdfs:domain() to specify both the
object property domain and the data property domain whereas OWL 2 includes two
separate constructors ObjectPropertyDomain() and DataPropertyDomain()
to specify the object property domain and the data property domain respectively.

OWL includes the constructor DisjointClasses(C1C2) to specify disjoint classes.
In addition to the above, OWL 2 introduces two constructors DisjointObject-
Properties() and DisjointDataProperties() to specify disjoint object prop-
erties and disjoint data properties respectively. OWL 2 also introduces the constructor
ObjectPropertyChain() to help specify property chains and the constructor Has-
Key() to define unique keys. OWL 2 includes extended datatypes; for example, owl:real
and owl:rational. OWL 2 also provides additional features on data types that include
datatype restrictions, range of datatypes, datatype definitions, new datatypes, and data
range combinations. Data ranges can be combined by means of intersection, union
and complement. Another new feature of OWL 2 is punning, that is, using the same
name for a class and an individual or for properties and individuals or classes and object
properties.

Even though OWL includes property assertions, it does not distinguish
between object and data property assertions. For example, OWL uses the con-
structor samePropertyAs(PN a1a2/v) for both object and data prop-
erty assertions. On the other hand, OWL 2 includes two separate constructors
ObjectPropertyAssertion(PN a1a2) and DataPropertyAssertion(R a

v) for object property assertion and data property assertion, respectively.
It has been shown that OWL has the expressivity of the DL language SHOIN(D) (Hor-

rocks et al. 2003). OWL 2 is more expressive than OWL as it supports complex property
inclusion axioms. It also includes new constructors to gain syntactic freedom; for exam-
ple, it allows ontology designers to use DisjointUnion and DisjointClasses to express
disjointness in a more compact way (Golbreich et al. 2012). Overall, OWL 2 has the
expressivity of the DL language SROIQ(D) which is strictly more expressive than the DL
language SHOIN(D) (Horrocks et al. 2006).

(1)
(ObjectMaxCardinality(n R), ObjectMinCardinality(n R),

ObjectExactCardinality(n R))

(2)
(ObjectMaxCardinality(n R D), ObjectMinCardinality(n R D),

ObjectExactCardinality(n R D))

Page 5 of 24Heiyanthuduwage et al. SpringerPlus (2016) 5:291

OWL 2 standard profiles and learning ontologies

In recent years, research on DL based ontology languages has paid an increasing atten-
tion to identifying sublanguages to specify different types of application domains that
require restricted expressivity. OWL profiles include subsets of OWL 2 constructors and
are designed for particular applications and reasoning tasks. The OWL 2 EL profile is
suitable for ontologies with a large number of concepts and/or properties for which the
basic reasoning tasks require polynomial time in terms of the size of the ontology (Motik
et al. 2012). The OWL 2 QL profile is recommended for applications that work on large
volumes of data where the query answering tasks require logarithmic space in terms of
the size of the data (Motik et al. 2012). The OWL 2 RL profile has been proposed for
domains that require scalable reasoning but do not require too much expressive power
compared to full OWL 2. OWL 2 RL implementations can use rule-based reasoning
engines and query answering over OWL 2 RL ontologies require polynomial time in
terms of the size of the ontology (Motik et al. 2012).

As we can see, each OWL 2 standard profile has been recommended for specific types
of applications. We could not find any works in the literature that discuss the applicabil-
ity of OWL 2 standard profiles to the learning domain. Therefore, as a starting point, it
is worth analysing the OWL 2 constructors used in proposed learning ontologies and
investigate the required expressivity of the DL language which can be used to model this
domain.

The corpus of LD ontologies, characteristics and implications
The corpus of the learning ontologies that we collected for our analysis consists of 14
ontologies (Table 1). 12 of these ontologies are publicly available and have been devel-
oped by researchers for use at different institutions. In addition to these 12 ontologies,
the corpus includes two ontologies that we have developed for Charles Sturt University
and Macquarie University. This section describes the characteristics of this corpus.

Table 1  The corpus of learning ontologies

Ontology file name Institution

1 university.owl Manchester University

2 univ-bench.owl Leehigh University

3 AIISO schema-20080925.owl Talis Information Ltd

4 swrc_v0.3.owl University of Karlsruhe

5 TMDU.owl Tokyo Institute of Technology

6 HU.owl Tokyo Institute of Technology

7 TITech.owl Tokyo Institute of Technology

8 ecs.owl University of Southampton

9 AcademicInstitute.rdfs University of Aberdeen

10 lom.owl University of Alcala, Pontifical University of Salamanca

11 HERO_ONTOLOGY_V 25.06.2013.owl M’hammed Bouguerra Boumerdès University

12 instOntology.owl Indian Statistical Institute

13 CSU_Ontology.owl Charles Sturt University

14 MQ_Ontology.owl Macquarie University

Page 6 of 24Heiyanthuduwage et al. SpringerPlus (2016) 5:291

RDF/RDFS and OWL/OWL 2 ontologies

We identified a number of learning ontologies in OWL/OWL 2 format and in RDF/
RDFS format in the open domain. Only one RDF/RDFS ontology (AcademicInstitute.
rdfs) was included in the corpus. This might be, because RDF/RDFS is not very expres-
sive and has been outdated by OWL/OWL 2 in recent years. We came across many
other learning ontologies discussed in research papers; however, they were not included
in the corpus, because we do not have access to the full ontologies.

Syntax of OWL 2 ontologies

The ontologies in our corpus use three different syntaxes: OWL/XML syntax, OWL
functional-style syntax and Turtle syntax. Although the choice of the syntax provides
some flexibility for the ontology designer, it makes searching for OWL/OWL 2 construc-
tors in the corpus difficult. For our analysis, we searched for OWL/OWL 2 constructors
in all these three different syntaxes.

The most commonly used syntax in our corpus is based on OWL/XML. This makes
the ontologies machine-readable but also very verbose. For example, the university.owl
ontology uses the constructor rdf:subClassOf(C1, C2) to state that an artificial
intelligence student (AIStudent) is a computer science student (CS_Student) as
in (Fig. 1). The same statement can be expressed more concisely in the DL notation (3)
or in the OWL 2 functional-style syntax (4):

Similarly, the uni-bench.owl ontology uses the constructor ObjectProperty(C1,
C2) to state that a person has got a degree from a University as in (Fig. 2). This statement
can also be written in functional-style syntax as shown in (5) below:

(3)AIStudent ⊆ CS_Student

(4)SubClassOf(:AI_Student :CS_Student)

(5)degreeFrom (:Person :University)

Fig. 1  A class defined in OWL/XML syntax

Fig. 2  An object property defined in OWL/XML syntax

Page 7 of 24Heiyanthuduwage et al. SpringerPlus (2016) 5:291

In the following discussion, we present our examples in the DL notation or in the
OWL 2 functional-style syntax.

Use of RDF constructors in OWL/OWL 2 ontologies

All ontologies of the corpus include OWL/OWL 2 constructors. In addition, some
ontologies include RDF/RDFS constructors as well. RDF/RDFS constructors are used to
specify domain information that refers to RDF resources (Carroll et al. 2012). For exam-
ple, some named classes are defined with the help of the OWL 2 constructor owl:Class.
Some named classes that are RDF resources are defined with the help of the RDF/
RDFS constructor rdfs:Class. In addition to rdfs:Class, a number of additional RDF/
RDFS constructors have been used in some ontologies; for example, rdf:DataType,
rdfs:subClassOf, rdfs:subPropertyOf, etc. The reason for this is that
semantic web languages are layered and those at a higher level borrow constructors from
those at a lower level to avoid redundancy (W3C 2013; Carroll et al. 2012).

Analysis of the corpus and findings
This section provides a detailed discussion of our analysis of the corpus. In order to
identify the OWL/OWL 2 constructors in the corpus, we used a pattern matching pro-
gram. In the following, we discuss the usage patterns of OWL/OWL 2 constructors in
the corpus and the DL expressivity of the corpus.

The usage patterns of OWL/OWL 2 constructors in the corpus

Different OWL/OWL 2 constructors have been used within the corpus to express dif-
ferent aspects of the LD. We first identified whether each OWL/OWL 2 constructor was
used in the corpus or not. If a constructor was used, then we recorded its location and
its frequency.

In this analysis, we used two main metrics to measure the usage of the construc-
tors: a score and a frequency. Score (n) is the number of ontologies within the corpus
where a given OWL 2 constructor is used. Frequency (f) is the percentage of the use of a
given OWL 2 constructor within the corpus. Frequency is calculated as (the total num-
ber (sum) of occurrences of a given constructor within the corpus)/(the total number
of occurrences of all the constructors in the corpus)×100. Both metrics are required,
because a particular constructor may have been used a lot in a large ontology whereas
the same constructor may have not been used much in a small ontology (Power and
Third 2010). For example, the constructor disjointClasses(C1Cn) has a frequency
of 8.85 % (sum = 544) whereas the constructor dataProperty(P1Pn) has a frequency
of 16.79 % (sum = 1032) (Table 2). However, the score for both constructors is nine,
since they occur in the same number of ontologies. We have observed that most of the
constructors that have higher scores also have higher frequencies.

Each OWL/OWL 2 constructor used in an ontology corresponds to a specific DL
constructor. The corpus also includes multiple OWL/OWL 2 constructors that corre-
spond to the same DL constructor with a specific DL expressivity. We list OWL/OWL
2 constructors found in the corpus with the corresponding DL syntax (Tables 2, 4). In
our work, some counts (n) were taken on individual constructors and some on OWL 2

Page 8 of 24Heiyanthuduwage et al. SpringerPlus (2016) 5:291

constructor groups, each of which corresponds to a specific DL constructor. For exam-
ple, the three OWL 2 constructors for qualified cardinality restriction that are given in
“Analysis of the corpus and findings” section correspond to a single DL constructor of
qualified cardinality restriction (Q). Again, both RDF/RDFS constructor rdfs:Class and
OWL/OWL 2 constructor owl:Class refer to the same DL constructor of Atomic Con-
cept (A).

Based on the score and frequency of OWL 2 constructors or constructor groups, we
found that there are three identifiable categories of constructors: (1) commonly used con-
structors, (2) infrequently used constructors, and (3) unused constructors. In the following
subsections, we discuss each of these categories of constructors in more detail.

Commonly used OWL/OWL 2 constructors

Our analysis shows that some OWL/OWL 2 constructors have been commonly used
in a majority of ontologies. The OWL 2 constructors or constructor groups that have
a score of greater than or equal (≥) to 8 and a frequency of greater than (>) 5 % were

Table 2  Commonly used and infrequently used OWL/OWL 2 constructors in the corpus

OWL 2 Constructor/s DL Syntax DL Example n f sum

Commonly used OWL 2 constructors

1 Class(C) A, C, D CS_Student 14 12.27 754

2 SubClassOf(C1 C2) C ⊑ D CS_Student ⊑ Student 14 12.41 763

3 ObjectProperty(P) P advisorOf 12 10.85 667

4 DisjointClasses(C1 C2)
DisjointClasses(C1 Cn)

C1⊔…⊔Cn AI_Student ⊔ HCI_Student 9 8.85 544

5 rdfs:DataType(),
DataProperty(D), DataType-
Property()

D hasTenure Boolean, NonNega-
tiveInteger

9 16.79 1032

6 SubObjectPropertyOf(P1 P2),
SubPropertyOf(P1 P2)

H—Role hierarchy doctoralDegreeFrom ⊑
degreeFrom

8 5.60 344

Infrequently used OWL 2 constructors

7 SomeValuesFrom(P C),
ObjectSomeValuesFrom(P C)

∃P.C ∃hasAdvisor.PhDStudent 7 1.59 98

8 AllValuesFrom(P C),
ObjectAllValuesFrom(P C)

∀P.C ∀takesCourse.CS_Course 6 1.40 86

9 owl:Thing ⊤ Class: Thing 7 1.09 56

10 ObjectIntersectionOf(C1…Cn),
IntersectionOf(C1…Cn)

C1⊓…⊓Cn CS_Department ⊓ hasRe-
searchArea.AI

6 1.27 78

11 MaxCardinality(n R D),
MinCardinality(n R D),
ExactCardinality(n R D)

(≥ nR)
(≤ nR)

≥3 takesCourse.CS_Course ≤ 1
takesCourse.CS_Course

6 1.16 71

12 EquivalentClass(C1…Cn),
EquivalentClasses(C1…Cn)

C1 ≡ C2 AI_Academic ≡ CS_Depart-
ment ⊓ hasResearchArea.AI

6 0.86 53

13 ObjectUnionOf(C1…Cn),
UnionOf(C1…Cn)

C1⊔…⊔Cn owl_SemanticLink ⊔ oc_Seman-
ticLink

6 0.57 35

14 InverseObjectProperties(P1 P2),
InverseOf(PN)

P− advisorOf − ≡ hasAdvisor 8 0.46 28

15 ObjectHasValue(P a),
DataHasValue(R v), has-
Value(), ObjectOneOf(a1…
an), oneOf

∃R. {x}, {x1, …, xn} ∃hasResearchArea. {AI}, {A26, A27} 4 0.23 14

16 TransitiveObjectProperty P transitive role SubOrganisation of is a transitive
role

4 0.18 10

Page 9 of 24Heiyanthuduwage et al. SpringerPlus (2016) 5:291

included in this category (Table 2). The constructors Class() and SubClassOf(C,
D) have the highest score of 14 and frequencies of 12.27 and 12.41 %, respectively. The
constructor SubPropertyOf(P1 P2) has the smallest score of eight within this cat-
egory and a frequency of 5.6 %.

Infrequently used OWL/OWL 2 constructors

In our analysis, we have also identified a set of infrequently used OWL/OWL 2 con-
structors. These OWL/OWL 2 constructors or constructor groups have a score of less
than (<) 8 and a frequency of less than (<) 5 % (Table 2). They also have a low sum that is
below 100. These measures show that infrequently used OWL/OWL 2 constructors are
not required much within the corpus. Furthermore, all these OWL/OWL 2 construc-
tors have a frequency below 2 % and some of them have frequencies even below 1 %
(Table 2).

Unused OWL/OWL 2 constructors

OWL 2 provides many constructors to specify concepts, object properties, and data type
properties. However, we have found that some OWL/OWL 2 constructors are not used
within the corpus; for example, object and data complement constructors: Object-
ComplementOf() and DataComplementOf(). None of the ontologies in the cor-
pus specified individual values and reflexivity. Furthermore, the ontologies in the corpus
did not use some of the data and object properties. More details of the unused OWL/
OWL 2 constructors are provided in “OWL 2 RL constructors not used in the corpus”
section.

The expressivity of LD ontologies of the corpus

We can measure the diversity of an ontology based on the number of different OWL/
OWL 2 constructors used in a single ontology. A higher diversity means that a wide vari-
ety of OWL/OWL 2 constructors is used in that ontology. However, it is possible that
some OWL/OWL 2 constructors or constructor groups are slight variations that refer to
the same DL constructor. In such a situation, the DL expressivity of the ontology would
not change. For example, all the OWL 2 constructors on qualified cardinality restrictions
refer to the same DL expressivity (Q). Based on the different types of OWL/OWL 2 con-
structors used in each ontology of the corpus, we identified the DL expressivity of these
ontologies (Table 3).

The diversity of the ontologies in the corpus varies from 9 to 32 whereas their expres-
sivity varies from FL−(D) to FL−R+ION(D). Still, we further analysed the usage of OWL/
OWL 2 constructors used in the corpus to reveal a broader view of the OWL/OWL 2
constructors within the corpus. All the learning ontologies of the corpus include OWL/
OWL 2 constructors that refer to the Frame Language (FL−). FL− includes intersection
of concepts, value restrictions and simple existential quantification (Baader et al. 2003).
FL− is a sublanguage of the Attributive Language (AL) that is obtained by disallowing
atomic negation from AL (Baader et al. 2003). AL includes the features of atomic con-
cept, universal concept, bottom concept, intersection, value restriction, limited exis-
tential quantification and atomic negation (Baader and Nutt 2003). If full negation/
complement (C) is included, then we end up with the DL language ALC.

Page 10 of 24Heiyanthuduwage et al. SpringerPlus (2016) 5:291

We have found that transitive roles (R+) were included in four ontologies of the cor-
pus (Table 3), which means that their expressivity corresponds to the DL language S
(ALCR+) provided that complement is included. Also, six of the learning ontologies of
the corpus include role hierarchy (H). Inverse properties (I) are used in nine ontologies.
Number restriction (N) or qualified number restriction (Q) is included in four ontolo-
gies. Constructors that refer to nominals (O) were found in five ontologies. Finally, all
the ontologies of the corpus include data types (D). These language features result in
higher expressivity. In short, our analysis shows that the corpus includes ontologies with

Table 3  An analysis of the expressivity of the corpus

Ontology file name Diversity FL− R+ H I N/Q O D Expressivity

1 TMDU.owl 11 √ √ FL−(D)

2 TITech.owl 12 √ √ FL−(D)

3 HU.owl 11 √ √ FL−(D)

4 AcademicInstitute.rdfs 9 √ √ √ FL−H(D)

5 swrc_v0.3.owl 31 √ √ √ FL−I(D)

6 AIISO schema-20080925.owl 21 √ √ √ √ FL−HI(D)

7 univ-bench.owl 21 √ √ √ √ √ FL−R+HI(D)

8 MQ_Ontology.owl 27 √ √ √ √ Q √ FL−R+HIQ(D)

9 CSU_Ontology.owl 23 √ √ √ √ Q √ FL−R+HIQ(D)

10 HERO_ONTOLOGY_V 25.06.2013.owl 13 √ √ Q √ √ FL−OIQ(D)

11 ecs.owl 21 √ √ N √ √ FL−HON(D)

12 instOntology.owl 22 √ √ N √ √ FL−OIN(D)

13 lom.owl 32 √ √ N √ √ FL−OIN(D)

14 university.owl 32 √ √ √ N √ √ FL−R+OIN(D)

Table 4  The constructors of the OWL 2 learn profile

OWL 2 constructor/s DL constructor/s DL language

1 Thing, Nothing Top—⊤, Bottom—⊥ FL− AL (with atomic negation),
ALC (with full negation)

S/(ALCR +)

2 Class Atomic concept—A

3 ObjectIntersectionOf Conjunction—⊓
4 ObjectAllValuesFrom Universal restriction—∀
5 ObjectSomeValuesFrom Limited/Full Existential

restriction—∃
6 ObjectProperty Atomic role—R

7 ClassAssertion, ObjectProp-
ertyAssertion

Assertions C(a), R(b, c)

8 ObjectComplementOf Negation—¬

9 TransitiveObjectProperty Transitive role—Tr (R) R+
10 SubObjectPropertyOf Sub-

DataPropertyOf
Role hierarchy—H H

11 InverseObjectProperties Inverse role—I I

12 Max/Min/Exact Cardinality Qualified cardinality
restrictions—Q

Q

13 DisjointClasses Disjunction—⊔ U

14 DataProperty, DataProper-
tyAssertion, xsd:{integer,
string, …}

Data {types, values} (D) D

Expressivity of the OWL 2 Learn Profile SHIQ(D)

Page 11 of 24Heiyanthuduwage et al. SpringerPlus (2016) 5:291

a range of expressivities. Also, it is worth studying the expressivity of the corpus in com-
parison to the OWL 2 standard profiles.

OWL 2 constructors of the corpus and the OWL 2 RL profile
The OWL 2 RL profile includes a subset of OWL 2 constructors recommended by the
W3C. In this section, we compare the constructors of the OWL 2 RL profile with those
of the corpus. We check which OWL 2 RL constructors are used in the corpus and
which ones are not used.

OWL 2 RL constructors used in the corpus

The corpus includes OWL 2 RL constructors that belong to different categories. How-
ever, in some situations, the corpus includes “old” OWL constructors as well. These old
OWL constructors are the predecessors of the OWL 2 RL constructors and each of these
old OWL constructors and its corresponding OWL 2 constructor refer to the same DL
constructor. Hence, in cases where an old OWL constructor was found, it was inter-
preted as an OWL 2 constructor.

Predefined class expressions

All predefined class expressions of OWL 2 RL, except the empty class owl:Nothing,
were found in the corpus. The universal class (or top concept in DLs) owl:Thing is
used as the superclass of all the other classes. The universal class owl:Thing includes all
the individuals of an ontology. For example, in the instOntology.owl ontology, the class
expression in (6) specifies that the class Research_Interest is a subclass of the universal
class owl:Thing.

Therefore, according to (6), instances (individuals) of the class Research_Inter-
est become individuals of the universal class owl:Thing as well. The concepts in a
domain are defined as named classes. In the above example, Research_Interest is a
named class that is specific to the instOntology.owl learning ontology.

Boolean connectives and enumeration

The Boolean connectives intersection IntersectionOf() and enumeration
OneOf() were found in both the OWL 2 RL profile and in the corpus. The connective
IntersectionOf () has been used in the university.owl ontology. For example, the
statement in (7) specifies that every artificial intelligence (AI) department is fully defined
as a computer science (CS) department that has the research area AI.

Enumeration OneOf () has only been used in the ecs.owl ontology of the corpus
with a single value for each enumeration: OneOf (“A27″^^xsd:string), OneOf
(“A41″^^xsd:string) and OneOf (“A47″^^xsd:string).

(6)SubClassOf(:Research_Interest owl:Thing)

(7)

EquivalentClasses(:AI_Dept ObjectIntersectionOf(ObjectHasValue

(:hasResearchArea :AI) :CS_Department))

Page 12 of 24Heiyanthuduwage et al. SpringerPlus (2016) 5:291

Object and data property restrictions

Both the OWL 2 RL profile and the corpus include data property restrictions. The OWL
data property constructors domain() and range() used in the university.owl ontol-
ogy correspond to the OWL 2 RL data property constructors DataPropertyDo-
main() and DataPropertyRange(), and they can be directly substituted by them
in an OWL 2 ontology. For example, the domain and range restrictions of the data prop-
erty hasTenure can be specified as shown in (8).

The data property constructors domain() and range() have also been used in
the uni_bench.owl ontology to specify the domain and the range of the data property
emailAddress.

All object property restrictions of the OWL 2 RL profile, except self-restriction
ObjectHasSelf(), were found in the corpus. Universal quantification ObjectAll-
ValuesFrom() was found in seven ontologies of the corpus and existential quantifica-
tion ObjectSomeValuesFrom() in six ontologies of the corpus (Table 2).

Individual value restriction ObjectHasValue() has been used in a few ontologies
of the corpus. This restriction appears in the university.owl ontology twice. It is used to
specify that AI is a research area of the computer science department as shown in (9)
below.

Again, it has been used to specify that a teaching faculty has no tenure as shown in
(10) below.

The HERO Ontology also includes individual value restriction to specify three differ-
ent situations. Firstly, it has been used to specify that a dean who is a technical staff has a
doctorate degree (11).

Secondly, in the statement (12) below, it has been used to specify that a degree that is a
deliverable is obtained by a doctorate.

(8)

Declaration(DataProperty(:hasTenure))

DataPropertyDomain(:hasTenure :TeachingFaculty)

DataPropertyRange(:hasTenure xsd :boolean)

(9)

ObjectPropertyAssertion(:hasResearchArea :CS_Department :AI);

ObjectHasValue(:hasResearchArea :AI)

(10)

ObjectPropertyAssertion(:hasTenure :TeachingFaculty :False);

ObjectHasValue(:hasTenure :False)

(11)

SubClassOf(:Dean :TechnicalStaff);

SubClassOf(:Dean ObjectHasValue(:HasDegree :doctorate)))

(12)

SubClassOf(:Degree :Deliverable)

SubClassOf(:Degree ObjectHasValue(:ObtainedBy :doctorate))

Page 13 of 24Heiyanthuduwage et al. SpringerPlus (2016) 5:291

Finally, in the statement (13) below, it has also been used to specify that a registrar
who is a department staff works with a chair.

The individual value restriction ObjectHasValue() was also found in the instOn-
tology.owl ontology. The statement (14) below specifies that a teacher who is a person
has a PhD qualification.

Object and data property expressions

OWL 2 properties are used to state property expressions (Motik et al. 2009). A named
object property expression can be used to connect the individuals of a domain. For
example, the statement (14) below from the university.owl ontology specifies that an AI
student has a professor in HCI or AI as an advisor. The named object property expres-
sion hasAdvisor is used in (15) to specify that John has Peter as his advisor.

Similarly, a named data property expression can be used to connect an individual with
a literal. For example, the statement (16) below from the university.owl ontology features
a named data property expression hasTenure which is used to specify that Peter has
tenure.

Class expressions

A number of class expression constructors that are included in the OWL 2 RL profile
were found in the corpus as well. As shown in (17) below, the class expression construc-
tor SubClassOf() is used in the university.owl ontology to specify that computer sci-
ence students are a subclass of students.

The equivalent class expression constructor EquivalentClasses() as shown in
(18) has been used in the university.owl ontology to specify that the class AI_Dept is
equivalent to the class CS_Department which has AI as a research area.

In the university.owl ontology, it has also been stated that the class AssistantProfessor
and the class Professor are disjoint as shown in (19).

(13)
SubClassOf(:Registrar :DepartmentStaff)

SubClassOf(:Registrar ObjectHasValue(:WorksWith :Chair))

(14)

SubClassOf(:Teacher :Person)

SubClassOf(:Teacher ObjectHasValue(:hasQualification :PhD))

(15)

Declaration(ObjectProperty(:hasAdvisor))

SubClassOf(:AIStudent ObjectSomeValuesFrom

(:hasAdvisor : ProfessorInHCIorAI))

ObjectPropertyAssertion(:hasAdvisor :John :Peter)

(16)DataPropertyAssertion(hasTenure :Peter :True)

(17)SubClassOf(:CS_Student :Student)

(18)

EquivalentClasses(:AI_Dept ObjectIntersectionOf(ObjectHasValue

(:hasResearchArea :AI) :CS_Department))

Page 14 of 24Heiyanthuduwage et al. SpringerPlus (2016) 5:291

Object properties

In order to specify object properties, OWL 2 RL includes the subobject property con-
structor SubObjectPropertyOf(), the object property domain constructor
ObjectPropertyDomain() and the object property range constructor Object-
PropertyRange(). Similarly, the corpus includes the uses of the following OWL
property constructors: subPropertyOf (), PropertyDomain() and Proper-
tyRange() to specify object and data properties. For example, in the uni_bench.owl
ontology, it is stated that the object property doctoralDegreeFrom is a subobject
property of degreeFrom, as shown in (20).

Additional object property constructors were found in the corpus (Table 2). The OWL
functional property constructor FunctionalProperty() that is similar to the OWL
2 RL functional object property constructor FunctionalObjectProperty() was
found in both the ecs.owl ontology and the HERO_ONTOLOGY_V 25.06.2013.owl ontol-
ogy. The statement in (21) specifies that each individual teacher is hired by at most one
faculty.

The OWL inverse functional property constructor InverseFunctional-

Property() that is similar to the OWL 2 RL inverse object functional property
constructor InverseFunctionalObjectProperty() was also found in the
HERO_ONTOLOGY_V 25.06.2013.owl ontology. For example, (22) states that the
inverse of the property Teaches is functional in this ontology.

The OWL transitive property constructor was found in the uni-bench.owl. The tran-
sitive property constructor TransitiveProperty() is similar to the OWL 2 RL
transitive object property constructor TransitiveObjectProperty(). Using the
TransitiveObjectProperty() constructor, the property subOrganizationOf is
defined to be transitive.

Similarly, the university.owl ontology also includes the TransitiveObjectProp-
erty() constructor as shown in (24). It is used to specify that a university A is affiliated
with another university C whenever A is affiliated with a university B and B is affiliated
with C.

(19)DisjointClasses(:AssistantProfessor :Professor)

(20)SubObjectPropertyOf(:doctoralDegreeFrom :degreeFrom)

(21)

FunctionalObjectProperty(:IsHiredBy))

ObjectPropertyDomain(:IsHiredBy :Teacher)

ObjectPropertyRange(:IsHiredBy :Faculty)

(22)InverseFunctionalObjectProperty(:Teaches)

(23)TransitiveObjectProperty(:subOrganizationOf)

(24)TransitiveObjectProperty(:affiliatedWith)

Page 15 of 24Heiyanthuduwage et al. SpringerPlus (2016) 5:291

Assertions

Assertions provide facts about individuals (Smith et al. 2004). Both the OWL 2 RL profile
and the corpus include the uses of some constructors to make assertions about individu-
als or instances of OWL classes. The class assertion constructor ClassAssertion(C
a) has been used in the corpus to specify the individuals of each class. For example,
in the MQ_Ontology.owl ontology, the class assertion shown in (25) below states that
ISYS114 is a unit.

Object property assertions are made by using the OWL 2 constructor
ObjectPropertyAssertion(PN a1 a2). For example, in the Macquarie.owl ontol-
ogy, the object property assertion shown in (26) states that the unit ISYS114 has particu-
lar lecture slides for week 1.

Again, the data properties are asserted using the constructor
DataPropertyAssertion(R a v). For example, the following assertion (27) states
that the unit ISYS114 is worth three credit points.

OWL 2 RL constructors not used in the corpus

Some of the constructors of OWL 2 RL were not found in the corpus. In the following,
we discuss them in more detail and their potential use in learning ontologies.

Class expressions

The constructor for pairwise disjoint classes DisjointClasses() is included in the
OWL 2 RL profile, but it was not found in the corpus. Also, even though many prede-
fined class expressions of OWL 2 RL were found in the corpus, the empty class con-
structor (or the bottom concept in DLs) owl:Nothing was not found. The empty class
constructor owl:Nothing is used to define terminal classes in a class hierarchy.

Boolean connectives and enumeration

The OWL 2 RL profile includes Boolean connectives for union: ObjectUnionOf()
and DataUnionOf() and for complement: ObjectComplementOf() and Data-
ComplementOf(). However, the corpus does not include these connectives or variants
thereof: UnionOf() and ComplementOf(). In spite of that, the W3C has proposed
three situations where union can be used (Motik et al. 2012).

1	 Union of data ranges can be used to create a new data range by combining two or
more data types. For example, xsd:string and xsd:integer can be joined
as shown in (28) below to create a new data range with both xsd:string and
xsd:integer.

(25)ClassAssertion(:Unit :ISYS114)

(26)
ObjectPropertyAssertion

(:hasLectureSlides :ISYS114 :ISYS114LectureSlidesWk1)

(27)DataPropertyAssertion(:creditPoints :ISYS114
′′
3
′′∧∧

xsd : integer)

(28)DataUnionOf(xsd :string xsd :integer)

Page 16 of 24Heiyanthuduwage et al. SpringerPlus (2016) 5:291

2	 A union of class expressions can be used to form a new class that contains all the
individuals that are instances of at least one of those class expressions (Motik et al.
2012). For example, the class expression in (29) could be used to create a new class
that consists of all the individuals that are instances of either an assignment or a quiz.

3	 A disjoint union of class expressions states that a class is the pairwise disjoint union
of one or many class expressions (Motik et al. 2012). For example, the assertion
shown in (3) below states that each assessment is either an assignment or an exam.
Also, each assignment is an assessment, each exam is an assessment, and nothing
can be both an assignment and an exam.

The W3C shows that complement can be used in two different ways: to specify the
complement of class expressions using the constructor ObjectComplementOf()
and to specify the complement of data ranges using the constructor DataComple-

mentOf() (Motik et al. 2012). A complement of class expressions consists of all
individuals that are not instances of that class expression. For example, the comple-
ment class expression in (31) specifies all those things that are not instances of the class
Assignment.

A complement of a data range can be specified using the constructor DataComple-
mentOf() and consists of all the tuples of literals that are not contained in the given
data range (Motik et al. 2012). For example, in the statement in (32) describes literals
that are not positive integers.

Object and data property restrictions

The self-restriction ObjectHasSelf() is included in OWL 2 RL, but it was not found
in the corpus. A self-restriction includes an object property expression (OPE). In addi-
tion, self-restriction includes all those individuals that are connected via an OPE to
themselves (Motik et al. 2012). For example, the statements in (33) below specify that
Mary loves herself.

Even though OWL 2 RL includes all the OWL 2 RL data property restrictions, the cor-
pus did not include any of them. OWL 2 RL includes data property restrictions that are
similar to the object property restrictions except that there is no data property construc-
tor for specifying reflexivity.

(29)ObjectUnionOf(:Assignment :Quiz)

(30)DisjointUnion(:Assessment :Assignment :Exam)

(31)ObjectComplementOf(:Assignment)

(32)DataComplementOf(xsd :positiveInteger)

(33)
ObjectHasSelf(:loves)

ObjectPropertyAssertion(:loves :Mary :Mary)

Page 17 of 24Heiyanthuduwage et al. SpringerPlus (2016) 5:291

Object properties

The OWL 2 RL profile allows for property chain inclusion, however, we did not find any
examples in the corpus. For instance, in the statement shown in (34), the property chain
inclusion constructor ObjectPropertyChain(OPE1 … OPEn) can be used to spec-
ify that the extension of one object property expression is included in the extension of
another property expression (Motik el al. 2012).

The equivalent object property constructor EquivalentObjectProperties

(OPE1… OPEn) can be used to specify that all of the OPEs from 1 to n are semantically
equivalent to each other (Motik et al. 2012). Therefore in specifying domain information
in an ontology, one OPE can be replaced with another OPE. For example, in the learning
domain, this constructor could be used to state that the properties hasTeacher and
hasLecturer are equivalent properties as shown in (35).

Pairwise disjoint properties are also included in the OWL RL profile; however, they
were not found in the corpus. The disjoint object property constructor DisjointObj
ectProperties(OPE1… OPEn) can be used to specify that all of the OPEs from 1 to
n are pairwise disjoint (Motik et al. 2012). For example, in the learning domain, we could
specify that the object properties hasFinalExam and hasAssignment are disjoint
as shown in (36).

Reflexivity is an important property in general, however, the reflexivity object property
constructor ReflexiveObjectProperty(OPE) of OWL 2 is not included in OWL
2 RL and was not found in the corpus. This constructor says that the OPE is reflexive.
Hence, each individual that is connected by OPE refers to itself (Motik et al. 2012). Simi-
larly, The irreflexivity object property constructor IrreflexiveObjectProperty(
OPE) says that the OPE is irreflexive, that is, no individual is connected by the OPE to
itself (Motik et al. 2012). For example, in the learning domain, we could specify that the
object property prerequisiteOf is irreflexive as shown in (37).

The object property symmetry constructor SymmetricObjectProperty(OPE)
states that the OPE is symmetric. That is, if x is connected to y by an OPE, then y is also
connected to x by the same OPE. For example, in the learning domain, suppose that two
particular subjects should be studied by a student in the same semester, then the OPE
corequisiteOf could be used as shown in (38).

The object property asymmetry constructor AsymmetricObjectProperty(OPE)
states that the OPE is asymmetric. That is, if x is connected by an OPE to y, then y can-
not be connected to x by the same OPE. For example, in the learning domain if one unit

(34)SubPropertyOf(ObjectPropertyChain(:locatedIn :partOf) :locatedIn)

(35)EquivalentObjectProperties(:hasTeacher otherOnto :hasLecturer)

(36)DisjointObjectProperties(:hasFinalExam :hasAssignment)

(37)IrreflexiveObjectProperty(:prerequisiteOf)

(38)SymmetricObjectProperty(:corequisiteOf)

Page 18 of 24Heiyanthuduwage et al. SpringerPlus (2016) 5:291

is the prerequisite of another unit, then, the second unit cannot be the prerequisite of
the first unit as shown in (39).

Assertions

The assertions used to compare individuals (equality or inequality) such as
SameIndividual(a1… an), DifferentIndividual(a1 a2) and
DifferentIndividuals(a1… an) were not found in the corpus. The corpus did
not include negative property assertions of the form NegativeObjectPropertyA
ssertion(P a1 a2) and NegativeDataPropertyAssertion(R a v) either.
The reason for this could be that the corpus includes ontologies that are specific to each
institution. However, the above assertions would be more useful to compare elements of
different ontologies. For example, the statement in (40) implies that John Miller and the
lecturer of ISYS332 are the same individual in the two different ontologies Onto-A and
Onto-B.

OWL 2 RL vs the Learning Domain

Based on the above comparison between the constructors of the OWL 2 RL profile and
the constructors used in the corpus, we observe that the corpus has fewer constructors
than the OWL 2 RL profile. In particular, the OWL 2 RL profile includes all the different
OWL 2 constructors that are associated with nominals (O). In addition to many object
property restrictions, data property restrictions and assertions can be used in an ontol-
ogy based on the OWL 2 RL profile. However, the corpus did not include those OWL
2 RL constructors that relate to nominals as well as object property restrictions, data
property restrictions and assertions. Also, the corpus did not include object properties
such as reflexivity, irreflexivity and role disjointness that contribute to the DL expres-
sivity of R. Hence, we conclude that LD ontologies could be specified with a smaller set
of OWL 2 constructors than those available in the OWL 2 RL profile. Such a subset of
OWL 2 constructors may form an OWL 2 profile that is specific to the learning domain.

OWL 2 learn profile
The new OWL 2 profile that we derived from the results of our analysis is called the
OWL 2 Learn profile. The OWL 2 Learn profile includes the commonly used construc-
tors of the corpus and some others that are infrequently used. We also include some
OWL 2 constructors that are not used in the corpus. The inclusion or exclusion of a con-
structor depends on four factors: (1) the count (n) and the frequency (f) of the construc-
tor, (2) the relative importance of the constructors, (3) the possibility of representing a
constructor in an alternative way and, (4) the impact of the constructor on the computa-
tional complexity of the profile.

The constructors included in the OWL 2 learn profile

The constructors that are commonly used in the corpus have higher scores of count (n)
and frequencies (f). This shows that the commonly used constructors are required in
many situations of the LD. Many infrequently used constructors are also included in the

(39)AsymmetricObjectProperty(:prerequisiteOf)

(40)SameIndividual(Onto-A :JohnMiller Onto-B :ISYS332Lecturer)

Page 19 of 24Heiyanthuduwage et al. SpringerPlus (2016) 5:291

profile. The rationale for this is that some infrequently used constructors have a higher
relative importance than some other infrequently used constructors. The constructor
AllValuesFrom() is required to specify various basic situations of the domain. For
example, in the university.owl ontology, the constructor AllValuesFrom() is used to
specify that all the courses taken by students in the computer science department are
computer science courses (see Table 2).

The inclusion of InverseObjectProperty() constructor provides the flexibility
of navigating through an ontology in either direction of the OPE. For example, the OPE
hasResource has the inverse property isResourceOf. Therefore, we can find the
learning resources of a given unit using the OPE hasResource as well as the unit for
which the learning resources are provided. The use of the inverse property makes query
answering on a learning ontology easier.

Qualified cardinality restrictions are also infrequently used. They are more specific
than non-qualified cardinality restrictions. Qualified cardinality restrictions clearly qual-
ify what objects or data the restrictions are imposed on. Hence, specific results can be
generated in query answering. For example, the qualified cardinality constructor Max-
Cardinality() of OWL has been used in the university.owl ontology. For example,
the statement (41) specifies that a teaching faculty can take a maximum of three com-
puter science courses. The OWL constructor MaxCardinality() correspond to the
OWL 2 RL constructor ObjectMaxCardinality().

The transitive object property constructor TransitiveObjectProperty() is
infrequently used but it is included in the OWL 2 Learn profile. Transitivity cannot be
naturally expressed using other constructors. For example, the OPE subOrganiza-
tionOf as shown in (42) of the uni-bench.owl ontology defines a transitive relationship
between organisations. We can specify that every department is a suborganization of a
faculty and every faculty is a suborganization of a university in the following way.

Another relevant example would be the prerequisite relationships between units of
study where enrolment at certain units may require the completion of some other units.
The transitive object property prerequisiteOf is used in the statements (43) below to
specify that the unit COMP115 is a prerequisite of the unit COMP125 and the
unit COMP125 is a prerequisite of the unit COM225.

(41)MaxCardinality (3 :takesCourse :CS_Course)

(42)

TransitiveObjectProperty(:subOrganizationOf);

ObjectPropertyDomain(:subOrganizationOf :Organization);

ObjectPropertyRange(:subOrganizationOf :Organization);

subOrganizationOf(:Department :Faculty); subOrganizationOf

(:Faculty :University)

(43)

TransitiveObjectProperty(:prerequisiteOf);

prerequisiteOf(:COMP115 :COMP125);

prerequisiteOf(:COMP125 :COMP225)

Page 20 of 24Heiyanthuduwage et al. SpringerPlus (2016) 5:291

Inclusion of unused constructors

As we discussed above, some OWL 2 constructors have not been used to express the
domain knowledge in the corpus. However, some of them would seem to be required to
specify specific domain knowledge. It could also be possible that some unused OWL 2
constructors may become useful to specify particular information of a future LD ontol-
ogy. Therefore, we consider a few unused OWL/OWL2 constructors as candidates for
inclusion in the OWL 2 Learn profile.

The OWL 2 constructor ObjectComplementOf() was not found in the corpus.
However, the derived constructor SubClassOf() is found in the corpus and can
be defined by means of disjunction and negation. That means, the OWL 2 construc-
tor ObjectComplementOf() is indirectly an element of the OWL 2 Learn profile.
Also, we include some additional datatypes in the OWL 2 Learn profile which were not
found in the corpus (xsd:decimal, xsd:integer, xsd:long, xsd:int, xsd:float, xsd:double,
xsd:string, xsd:Boolean, xsd:dateTime). Inclusion of these datatypes does not increase
the expressivity of the profile, but they offer more syntactic freedom and flexibility for
the ontology engineers.

The excluded constructors

A number of OWL 2 constructors are excluded from the OWL 2 Learn profile. Many
of them are not used in the corpus and some are infrequently used. Reflexive and irre-
flexive object properties, symmetric and asymmetric object properties are some of
those excluded constructors. We think that those excluded constructors would rarely be
required to specify an ontology in the LD.

Another main group of OWL 2 constructors that are excluded from the OWL 2 Learn
profile are nominals. The OWL 2 constructors that refer to nominals are: ObjectO-
neOf(), DataOneOf(), ObjectHasValue() and DataHasValue(). They have
been used only in three ontologies of the corpus. Even though the inclusion of nomi-
nals gives the ontology designers more syntactic freedom, it increases the computa-
tional complexity. While OWL 2 RL includes nominals, nominals have been excluded
from several Semantic Web languages and are not used in some ontologies. For example,
nominals have been excluded from the DL ontology proposed by Kepler et al. (2006).
The DL reasoner RacerPro approximates nominals by atomic concepts (Haarslev et al.
2012).

With respect to the LD, we propose that domain information provided with the value
constraint hasValue() can instead be specified using a primitive class. For example,
in the university.owl ontology, the nominal AI could be replaced by a primitive class
ResearchArea. Similarly, the uni-bench.owl and lom.owl ontologies also use nominals
to specify domain information that can also be expressed using primitive classes.

The expressivity of the OWL 2 learn profile

The expressivity of a DL language is determined by the DL constructors included in that
language. Hence, to identify the expressivity of the OWL 2 Learn profile, we list each
OWL 2 constructor or constructor group together with the corresponding DL construc-
tor (Table 4). Accordingly, the OWL 2 Learn profile consists of all the included OWL
2 constructors and is more expressive that the DL language ALC. The profile includes

Page 21 of 24Heiyanthuduwage et al. SpringerPlus (2016) 5:291

transitive properties (R +) which lift the expressivity to the DL language S (ALCR +),
plus several other DL constructors that further increase the expressivity of the profile to
SHIQU(D). Since the symbol C for complement can be used in place of the symbols UE
for union and existential quantification (Baader et al. 2003), the DL expressivity of OWL
2 Learn becomes SHIQ(D).

We note that the OWL 2 Learn profile has a lower expressivity than OWL 2 RL. Still,
it can be used to specify all the learning ontologies of the corpus. The three ontologies:
university.owl, uni-bench.owl and lom.owl that include nominals can also be specified in
OWL 2 Learn with minor changes by converting the nominals to instances of primitive
concepts.

The usage of the OWL 2 learn profile

To demonstrate the usage of OWL 2 Learn profile, an excerpt of the Macquarie Univer-
sity (MQ) ontology is given in Table 5. The MQ ontology is compliant with the OWL 2
Learn profile. The excerpt includes different statements from the MQ ontology that use
different OWL 2 Learn constructors from Table 4. Firstly, the example includes the dec-
laration of a class Person and a class AssessmentTask using the OWL 2 Learn construc-
tor Class() as shown in (44).

Moreover, it includes the subclasses of the class Person and AssessmentTask. Sec-
ondly, it includes the declaration of some object properties such as hasPrerequsite as
shown in (45) followed by other type of properties.

Thirdly, the data property assignmentMark is declared as a subproperty of the prop-
erty assessmentMark. Finally, a class assertion and an object property assertion is given.

Conclusion
Our analysis shows that a corpus of 14 learning ontologies includes a subset of OWL 2
constructors. This subset is different from the OWL 2 constructors in the OWL 2 RL
profile. Predominantly, the OWL 2 RL profile includes all the nominal constructors
whereas the corpus includes only a few occurrences of nominals. Those occurrences of
nominal could also be represented using primitive classes. Since the OWL 2 construc-
tors of the corpus form a subset of the OWL 2 RL profile, we consider this subset as a
new profile and call it OWL 2 Learn profile. The OWL 2 Learn profile includes the great
majority of the OWL 2 constructors that are used in the corpus and is sufficient to build
all the ontologies in it with small modifications.

Our analysis includes a comparison of the OWL/OWL 2 constructors in the corpus
with those of the OWL 2 RL profile. This comparison gives the ontology designers an
insight into the use of OWL 2 constructors in existing LD ontologies. The new OWL 2
Learn profile has the expressivity of SHIQ(D) that is lower than the expressivity of the
OWL 2 RL profile (SROIQ(D)). Hence, the potential ontology designers may select a DL-
based reasoner that supports OWL 2 RL, for reasoning and querying an OWL 2 Learn
ontology. KAON2 (Hufstadt et al. 2004) would be an ideal candidate for a reasoning

(44)Declaration(Class(:Person))

(45)Declaration(ObjectProperty(:hasPrerequisite))

Page 22 of 24Heiyanthuduwage et al. SpringerPlus (2016) 5:291

Table 5  An Excerpt of the MQ Ontology

An excerpt of the MQ ontology The OWL 2 learn constructor Ref to the Table 4

Declaration(Class(:Person)) Class #2

EquivalentClasses(:Person ObjectSomeValuesFrom(:isAssoci
atedTo :Organisation))

ObjectSomeValuesFrom #5

SubClassOf(:Person owl:Thing) Owl:Thing SubClassOf #1

SubClassOf(:Staff :Person)

SubClassOf(:Student :Person)

SubClassOf(:TeachingStaff :Staff)

Declaration(Class(:Topic))

SubClassOf(:Topic owl:Thing)

SubClassOf(:Topic ObjectAllValuesFrom(:hasScheduled
:TopicList))

ObjectAllValuesFrom #4

Declaration(Class:TopicList))

SubClassOf(:TopicList owl:Thing)

SubClassOf(:TopicList ObjectSomeValuesFrom(:hasSchedul
edTopic :Topic))

ObjectSomeValuesFrom #5

SubClassOf(:Unit owl:Thing)

Declaration(Class(:AssessmentTask))

EquivalentClasses(:AssessmentTask ObjectIntersectionOf
(owl:Thing

EquivalentClasses

ObjectSomeValuesFrom(:isWrittenBy :TeachingStaff) ObjectIntersectionOf #3

ObjectExactCardinality(1 :isAssessmentMethodOf :Unit))) ObjectSomeValuesFrom #5

QualifiedExactCardinality #12

DisjointUnionOf(:AssessmentTask :Assignment :Tutorial
:FinalExam))

DisjointUnionOf #13

DisjointClasses

DisjointClasses(:Assignment :FinalExam)

SubClassOf(:AssessmentTask owl:Thing)

SubClassOf(:FinalExam :AssessmentTask)

SubClassOf(:Assignment :AssessmentTask)

Declaration(ObjectProperty(:hasPrerequisite)) ObjectProperty #6

TransitiveObjectProperty(:hasPrerequisite) TransitiveObjectProperty #9

InverseObjectProperties(:isPrerequisiteOf :hasPrerequisite) InverseObjectProperties #11

ObjectPropertyDomain(:hasPrerequisite :Unit) ObjectPropertyRange

ObjectPropertyRange(:hasPrerequisite :Unit) ObjectPropertyDomain

Declaration(ObjectProperty (:commitsTo))

InverseObjectProperties(:commitsTo :isCommitedBy)

ObjectPropertyDomain(:commitsTo :Student)

ObjectPropertyRange(:commitsTo :Enrolment)

ObjectPropertyRange(:commitsTo ObjectMaxCardinality(5
:commitsTo :Enrolment))

MaxQualifiedCardinality #12

Declaration(ObjectProperty:assignmentOf))

SubObjectPropertyOf(:assignmentOf :isAssessmentMetho-
dOf)

SubObjectPropertyOf #10

InverseObjectProperties(:has Assignment:assignmentOf)

Declaration(DataProperty(:assignmentMark)) DataProperty #14

SubDataPropertyOf(:assignmentMark :assessmentMark) SubDataPropertyOf #10

DataPropertyDomain(:assignmentMark :AssignmentSub-
mission)

DataPropertyRange(:assignmentMark^^ xsd:integer)

ClassAssertion(:Unit :ISYS114) ClassAssertion #7
ObjectPropertyAssertion(:isTutorOf
:JohnParker :ISYS114)

ObjectPropertyAssertion #7

Page 23 of 24Heiyanthuduwage et al. SpringerPlus (2016) 5:291

engine for the OWL 2 Learn profile as they have the same expressivity. We are currently
compiling a set of benchmark queries that comply with the OWL 2 Learn profile. We
also plan to develop a suitable query language for the OWL 2 Learn profile and to fur-
ther investigate its applications in learning management systems.

Abbreviations
AL: attributive language; ALC: attributive language with complement; DL: description logic; DPE: data Property expres-
sion; XML: extensible mark-up language (XML); FL: frame language; HERO: higher Education Reference Ontology; KR:
knowledge representation; LD: learning domain; OWL: web ontology language; OPE: object property expression; RDF:
resource description framework; UML: unified modelling language; W3C: World Wide Web Consortium.

Authors’ contributions
All the authors contributed to the design of the study and the search for the learning domain ontologies. SH carried out
the analysis on the ontologies and drafted the manuscript. All the authors reviewed the results of the analysis; they also
read, revised and approved the final manuscript. All authors read and approved the final manuscript.

Authors’ Information
Sudath R. Heiyanthuduwage is a Ph.D. research student at Macquarie University and an IT Lecturer/ IT Course Coordina-
tor at Charles Sturt University Study Centre, Sydney. He received his B.Sc. (Honours) from the University of Kelaniya, Sri
Lanka in 1997, M.Sc. (Comp. Sci.) from the University of Colombo School of Computing, Colombo, Sri Lanka in 2004 and
Graduate Certificate in Teaching and Learning in Higher Education from Charles Sturt University, Australia in 2014. He has
published several research papers in line with his Ph.D. research. He is a professional member of the Australian Computer
Society (ACS), IEEE and IEEE Computer Society.

Rolf Schwitter is a Senior Lecturer in the Department of Computing and associated with the Centre for Language
Technology at Macquarie University. He was the President of the Australasian Language Technology Association
between 2007 and 2008. Between July 2007 and June 2008, he was a NICTA Fellow and worked on the SAIL (Situa-
tion Awareness by Inference and Logic) project where he developed techniques for higher level data fusion. His main
research interests include natural (and formal) language processing, in particular: controlled natural languages, answer
extraction, knowledge representation, automated reasoning and the Semantic Web.

Mehmet A. Orgun is currently a professor at Macquarie University, Sydney, Australia. He received the BSc and MSc
degrees in computer science and engineering from Hacettepe University, Ankara, Turkey in 1982 and 1985; and the PhD
degree in computer science from the University of Victoria, Canada in 1991. His research interests include knowledge
discovery, multi-agent systems, trusted and secure systems, and temporal reasoning. His professional service includes
editorial and review board memberships of several leading journals and program committees, and program committee
memberships of national and international conferences. Recently, he was the Program Co-Chair of the 14th Pacific-Rim
International Conference on Artificial Intelligence in 2010, and the Conference Co-Chair of the 7th and 8th International
Conferences on Security of Information and Networks held in 2014 and 2015 respectively. He is a senior member of IEEE
(SMIEEE).

Competing interests
The authors declare that they have no competing interests.

Received: 1 October 2015 Accepted: 15 February 2016

References
Baader F, Nutt W (2003) Basic description logics. The description logic handbook: theory, implementation and applica-

tions. Cambridge University Press, Cambridge, pp 43–95
Baader F, Calvanese D, McGuinness D, Nardi D, Patel-Schneider PF (2003) The description logic handbook: theory, imple-

mentation and applications. Cambridge University Press, Cambridge
Baader F, Lutz C, Turhan AY (2010) Small is again beautiful in description logics. KI– Künstliche Intelligenz, vol 24(1). pp

25-33
Carroll J, Herman I, Patel-Schneider PF (2012) OWL 2 web ontology language RDF-based semantics (Second Edition),

http://www.w3.org/TR/2012/REC-owl2-rdf-based-semantics-20121211/. Accessed 26 Feb 2015
Cyganiak R, Wood D, Lanthaler M (2014) RDF 1.1 concepts and abstract syntax. http://www.w3.org/TR/rdf11-concepts/.

Accessed 2 January 2015
Golbreich C, Wallace EK, Patel-Schneider PF (2012) OWL 2 web ontology language: new features and rationale. http://

www.w3.org/TR/owl2-new-features/. Accessed 25 Jan 2015
Haarslev V, Hidde K, Möller R, Wessel M (2012) The RacerPro knowledge representation and reasoning system. Semantic

Web 3(3):267–277
Heiyanthuduwage SR, Schwitter R, Orgun MA (2014) Towards an OWL 2 profile for defining learning ontologies. In:

Advanced Learning Technologies (ICALT), 2014 IEEE 14th edn. International Conference on (p 553–555). IEEE
Hitzler P, Krötzsch M, Parsia B, Patel-Schneider PF, Rudolph S (2012) OWL 2 web ontology language primer. W3C recom-

mendation, 11 December 2012. http://www.w3.org/TR/owl2-primer/. Accessed 26 Feb 2015

http://www.w3.org/TR/2012/REC-owl2-rdf-based-semantics-20121211/
http://www.w3.org/TR/rdf11-concepts/
http://www.w3.org/TR/owl2-new-features/
http://www.w3.org/TR/owl2-new-features/
http://www.w3.org/TR/owl2-primer/

Page 24 of 24Heiyanthuduwage et al. SpringerPlus (2016) 5:291

Horrocks I (2001) DAML+OIL: a description logic for the semantic web. Bullet IEEE Comp Soc Tech Committ Data Eng
25:4–9

Horrocks I, Patel-Schneider PF (2011) KR and reasoning on the semantic web: OWL. Handbook of Semantic Web Tech-
nologies. Springer, Berlin Heidelberg, pp 365–398

Horrocks I, Patel-Schneider PF, Van Harmelen F (2003) From SHIQ and RDF to OWL: the making of a web ontology lan-
guage. Web Semant Sci Serv Agents World Wide Web 1(1):7–26

Horrocks I, Kutz O, Sattler U (2006) The even more irresistible SROIQ. In: procedings of the 10th International Conference
of Knowledge Representation and Reasoning (KR 2006), p 57–67

Hufstadt U, Motik B, Sattler U (2004) Reducing SHIQ- description logic to disjunctive datalog programs. Proceedings
of the 9th International Conference on Knowledge Representation and Reasoning (KR2004), June 2004, Whistler,
Canada, p 152–162

Kepler FN, Paz-Trillo C, Riani J, Ribeiro MM, Delgado KV, Barros LND, Wassermann R (2006) Classifying ontologies. In:
Proceedings of the 2nd Workshop on Ontologies and their Applications (WONTO, 2006), CEUR. http://www.ceur-ws.
org/Vol-199/wonto-01.pdf. Accessed 26 Feb 2015

Knight C, Gašević D, Richards G (2006) An ontology-based framework for bridging learning design and learning content.
J Educ Technol Soc 9(1):23–37

Kolås L (2006) Topic maps in e-learning: an ontology ensuring an active student role as producer. In: World Conference
on E-Learning in Corporate, Government, Healthcare, and Higher Education, 2006 (1). p 2107-2113

Lalingkar A, Ramnathan C, Ramani S (2014) Ontology-based smart learning environment for teaching word problems in
mathematics. J Comp Educ 1(4):313–334

Motik B, Patel-Schneider PF, Parsia B, Bock C, Fokoue A, Haase P, Smith M (2009) OWL 2 web ontology language: structural
specification and functional-style syntax. W3C Editor’s Draft 14 September 2009. http://www.w3.org/2007/OWL/
draft/ED-owl2-syntax-20090914/all.pdf. Accessed 4 Jul 2015

Motik B, Grau BC, Horrocks I, Wu Z, Fokoue A, Lutz C (2012) OWL 2 web ontology language: Profiles. W3C recommenda-
tion. http://www.w3.org/TR/owl2-profiles/. Accessed 2 June 2015

Power R, Third A (2010) Expressing OWL axioms by English sentences: dubious in theory, feasible in practice. In: proceed-
ings of the 23rd International Conference on Computational Linguistics. p 1006–1013

Smith M, McGuinness D, Volz R, Welty C (2004) Web ontology language (OWL) guide version 1.0. http://www.w3.org/
TR/2002/WD-owl-guide-20021104/. Accessed 4 Jul 2015

Vesin B, Ivanović M, Klašnja-Milićević A, Budimac Z (2013) Ontology-based architecture with recommendation strategy in
java tutoring system. Comp Sci Inform Systems 10(1):237–261

W3C (2013) W3C semantic web activity. World Wide Web Consortium (W3C). 11th December, 2013. http://www.
w3.org/2007/03/layerCake.svg. Accessed 2 May 2015

Yessad A, Faron-Zuckerc C, Dieng–Kuntzb R, Laskri MT (2011) Ontology-based semantic relatedness for detecting the
relevance of learning resources, interactive learning environments. vol 19 (1) January 2011. p 63–80.

Zemmouchi-Ghomari L, Ghomari, AR (2012) Process of building reference ontology for higher education, proceedings of
the World Congress on Engineering 2013 Vol 3, WCE 2013, July 3–5, 2013, London.

http://www.ceur-ws.org/Vol-199/wonto-01.pdf
http://www.ceur-ws.org/Vol-199/wonto-01.pdf
http://www.w3.org/2007/OWL/draft/ED-owl2-syntax-20090914/all.pdf
http://www.w3.org/2007/OWL/draft/ED-owl2-syntax-20090914/all.pdf
http://www.w3.org/TR/owl2-profiles/
http://www.w3.org/TR/2002/WD-owl-guide-20021104/
http://www.w3.org/TR/2002/WD-owl-guide-20021104/
http://www.w3.org/2007/03/layerCake.svg
http://www.w3.org/2007/03/layerCake.svg

	OWL 2 learn profile: an ontology sublanguage for the learning domain
	Abstract
	Background
	Ontology languages and ontology language profiles
	OWL, OWL 2 and their expressivity
	OWL 2 standard profiles and learning ontologies

	The corpus of LD ontologies, characteristics and implications
	RDFRDFS and OWLOWL 2 ontologies
	Syntax of OWL 2 ontologies
	Use of RDF constructors in OWLOWL 2 ontologies

	Analysis of the corpus and findings
	The usage patterns of OWLOWL 2 constructors in the corpus
	Commonly used OWLOWL 2 constructors
	Infrequently used OWLOWL 2 constructors
	Unused OWLOWL 2 constructors

	The expressivity of LD ontologies of the corpus

	OWL 2 constructors of the corpus and the OWL 2 RL profile
	OWL 2 RL constructors used in the corpus
	Predefined class expressions
	Boolean connectives and enumeration
	Object and data property restrictions
	Object and data property expressions
	Class expressions
	Object properties
	Assertions

	OWL 2 RL constructors not used in the corpus
	Class expressions
	Boolean connectives and enumeration
	Object and data property restrictions
	Object properties
	Assertions

	OWL 2 RL vs the Learning Domain

	OWL 2 learn profile
	The constructors included in the OWL 2 learn profile
	Inclusion of unused constructors
	The excluded constructors
	The expressivity of the OWL 2 learn profile
	The usage of the OWL 2 learn profile

	Conclusion
	Authors’ contributions
	References

