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Background
Simultaneous Perturbation Stochastic Approximation (SPSA) (Spall 1992) is an opti-
mization algorithm that uses only objective function measurements in the search of 
solutions. Applications of SPSA include model-free predictive control (Dong and Chen 
2012a, b; Ko et al. 2008), signal timing for vehicle timing control (Spall and Chin 1997), 
air traffic network (Kleinman et al. 1997), and marine vessel traffic management (Bur-
nett 2004). More applications are mentioned in the introductory article by Spall (1998b). 
SPSA has been used successfully in many optimization problems that have high-dimen-
sional input parameter space and the objective value is not deterministic (SPSA 2001).

In this optimization method, the initial design parameter vector θ of D-dimensions 
is perturbed simultaneously in every dimension, i.e. by adding and subtracting a per-
turbation vector � of D-dimensions, thus obtaining an estimate of the gradient vector 
g. Unlike the traditional finite differencing approach, it only takes two function evalu-
ations to obtain the estimate of the gradient. Yet, the number of iteration needed for 
convergence to the optimum is said to be more or less the same with Finite-Difference 
Stochastic Approximation (FDSA) (Kiefer and Wolfowitz 1952), which in essence is 
an approximate steepest-descent method that uses finite-differencing to approximate 
the partial derivatives along each of the D parameters. Thus, the number of function 
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evaluations of SPSA is D-fold smaller compared to FDSA (Spall 1998b). An extension to 
this method exists to include second-order (Hessian) effects to accelerate convergence 
(Spall 2000, 2009; Zhu and Spall 2002). However, we will not treat this enhancement 
here.

The problem solved by SPSA in this paper can be formulated as following.

where f (θ) is the objective function and θ is a D-dimensional vector of parameters. 
We assume that each element in the vector θ is a real number and has upper and lower 
bounds that defines the Cartesian product domain Θ. The SPSA and FDSA procedures 
are in the general recursive form:

where ĝk(θ̂k) is the estimate of the gradient vector g(θ̂) at iteration k based on the meas-
urements of the objective function. The ak is the step size at iteration k. Equation  (2) 
is analogous to the gradient descent algorithm in nonlinear programming, in which 
gk is the gradient of the objective function ∇f (θ̂k). The difference is that in Eq.  (2), ĝk 
represent gradients stochastically and the effect of the noise or deviation from the true 
gradient is expected to cancel out as the iteration count k increases. The step sizes ak 
are normally prescribed in SPSA and FDSA as a function of k just like the Simulated-
Annealing’s (Kirkpatrick et  al. 1983) cooling schedule. This is because these methods 
do not assume deterministic responses in the measurements of the objective function 
values. Thus, unlike the nonlinear programming counterparts, adaptation of step sizes 
based on gradients and amount of descent achieved (such as in the line search) is usually 
not done in the stochastic approximation optimization methods. The rationale of the 
Eq. (2) is intuitively depicted in Fig. 1 for one variable case.

Under appropriate conditions, the iteration in Eq. (2) will converge to the optimum θ∗ 
in some stochastic sense. The hat symbol indicates an “estimate”. Thus, θ̂k denotes the 
estimate of the optimum θ∗ at iteration k. Let y(·) denote a measurement of the objective 

(1)min
θ∈Θ

f (θ),

(2)θ̂k+1 = θ̂k − ak ĝk(θ̂k),

Fig. 1  Objective value minimization using gradient descent (one variable): if gradient g is positive at θk then 
move to θk+1 < θk, if gradient g is negative then move to θk+1 > θk
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function f (·) at parameter value denoted by “·” and ck be some small positive number. 
The measurements are assumed to contain some noise, i.e. y(·) = f (·)+ noise. In SPSA, 
the ith component ĝki(θ̂k) of the gradient vector ĝk(θ̂k) is formed from a ratio involving 
the individual components in the perturbation vector and the difference in the two cor-
responding measurements. For two-sided simultaneous perturbations, we have

where the D-dimensional random perturbation vector

follows a specific statistical distribution criterion. Here, i is the parameter index. A sim-
ple choice for each component of �k is to use Bernoulli ±1 distribution, which is essen-
tially a random switching between +1 and −1. The Bernoulli distribution is proven to be 
an optimal distribution for the simultaneous perturbation (Sadegh and Spall 1997). Note 
also that in the Eq.  (3), we do not evaluate y(θ̂k). The recursive equation (2) proceeds 
with only the responses from the two perturbed inputs y(θ̂k + ck�k) and y(θ̂k − ck�k).

The choice of ak and ck is critical to the performance of SPSA and suggested values can 
be found in Spall (1998a). At given iteration k:

where α = 0.602, γ = 0.101, c ≃ standard deviation of measurement noise , A ≤ 10%  
of maximum number of iterations , a = δθ̂0min

(A+1)α

|ĝ0i(θ̂0)|
, k = iteration index starting with 0, 

δθ̂0min = smallest initial change desired in a parameter.
The setting for α and γ above are not optimal in the asymptotic sense, but are adapted 

to finite iteration settings. In practice, one of the drawbacks of SPSA is that one has 
to find good values for a and c, as both affect the performance of the algorithm Spall 
(2003, pp. 165–166) (Altaf et al. 2011; Shen et al. 2012; Radac et al. 2011; Easterling et al. 
2014; Taflanidis and Beck 2008). However, for c, we have a tangible measure, which is the 
output measurement error (Spall 1998a), to select a proper value up front. If the function 
response is noiseless, c is usually not a critical parameter. On the other hand, a is more 
problematic, because no clear measure exists. It is possible to work with δθ̂0min instead of 
a, but a priori assignment of its value is still non-trivial if little is known about the func-
tion that we are trying to optimize.

A larger value of a generally produces better results compared to a smaller value of a. 
However, this also increases the chance that the optimization diverges to a worse solu-
tion than the starting point. Very often, the user of SPSA has to find as big a as possible 
that would not cause divergence.

To avoid divergence, an adaptation called “blocking” exists (Easterling et  al. 2014; 
Spall 1998a) in which the objective values at θ̂k is evaluated in addition to the two 

(3)ĝki(θ̂k) =
y(θ̂k + ck�k)− y(θ̂k − ck�k)

2ck∆ki
,

(4)�k =
(

∆k0,∆k1, . . . ,∆k(D−1)

)T
,

(5)ak = a

(A+ k + 1)α
,

(6)ck = c

(k + 1)γ
,
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perturbations. If the new objective function value is “significantly worse” than the cur-
rent objective function value, the updating of θ̂k does not happen. The extra function 
evaluation at each iteration increases the cost of iteration by 33 %. In addition, a problem 
dependent threshold parameter to block the θ̂k update needs to be set up by the user.

Another way to mitigate divergence is to modify the gradient approximation ĝk by 
“scaling” and “averaging” (Andradóttir 1996; Xu and Wu 2013). However, the methods 
proposed in the literature require set up of additional threshold parameters critical to 
their performance. Furthermore, their methods require additional gradient estimations 
per iteration.

Stochastic Gradient Descent (SGD) methods use noisy information of the gradient of 
the objective functions. On the other hand, Stochastic Approximation methods such as 
FDSA and SPSA only uses measurement of noisy objective values. Therefore, adaptive 
determination of step sizes based on (approximate) gradients and inverse Hessians in 
SGD literature (such as in Zeiler (2012), Bottou (2010)) may not be directly applicable to 
or feasible in SPSA. Convergence conditions also differ between the two. Although this 
does not exclude the possibility of successful import of ideas from SGD literature, in this 
paper, we will not delve into this direction.

This paper provides a solution to determine the appropriate values of a by introduc-
ing an adaptive scheme as discussed in “Adaptive initial step sizes” section. It does not 
require any additional objective function evaluations per iteration nor extra problem 
dependent parameters to set up.

Adaptive initial step sizes
To remedy the sensitivity to a, we propose an adaptive stepping algorithm. At the end of 
each iteration k, we perform the adjustment described in Algorithm 1.

Algorithm 1 Adaptive Initial Step

1: if min{y(θ̂k + ck∆k), y(θ̂k − ck∆k)} − y(θ̂0) ≥ 0 then
2: θ̂k+1 = θ̂b, where θ̂b gives the best y so far
3: a ← 0.5a
4: end if

The condition requires that at least one of the two parameter perturbations produce 
a better (smaller) measurement of the objective function than that of initial guess of 
parameters θ̂0 to proceed without modifying a. Therefore, at each iteration k, the smaller 
of the two measurements of the objective function values of perturbed parameters is 
compared to that of the initial value at iteration k = 0. If the measurements of the objec-
tive values of the perturbed parameters are larger, θ̂k is reset to θb, which is the point 
that gave the minimum in the history of iteration and a is reduced to half of its previous 
value. A pseudocode of the proposed SPSA with the adaptive initial step is shown in 
Algorithm 2. The difference between the standard SPSA and our SPSA is in line 10.
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Algorithm 2 Pseudocode of the Proposed Algorithm

1: Initialize a and c (or set δθ̂0min

min (upper bound− lower bound), and c
std of response noise). Set maximum number of it-
erations maxiter.

2: Obtain initial measurement y(θ̂0), and let θb = θ̂0.
3: for k = 0 to maxiter do
4: Compute ∆k and ck.
5: Evaluate y(θ̂k + ck∆k) and y(θ̂k − ck∆k).
6: Record the input parameter vector as θ̂b if better min-

imum in y is obtained.
7: Compute ĝki(θ̂k).
8: Compute ak.
9: θ̂k+1 = θ̂k − akĝk(θ̂k).
10: Perform Algorithm 1.
11: end for

Comments on convergence
Currently available theories of stochastic algorithms are almost all based on asymp-
totic properties with k → ∞, and SPSA is no exception. For given conditions Spall 
(2003,  p.  183), SPSA is proven to converge to a local optima almost surely. However, 
under limited function evaluation budget, we frequently encounter situations in which 
SPSA returns worse solution than the initial i.e. divergence. The method we propose is 
a practical remedy conceived in a finite k setting. We will show, in the next section, its 
effectiveness empirically via numerical experiments with k in the order of 103.

For θ̂k to converge to the optimal solution θ∗ in infinite steps, the following condi-
tions are required for ak and ck (Spall 1992): ak , ck > 0 for all k; ak , ck → 0 as k → ∞; 
∑∞

k=0 ak = ∞, and 
∑∞

k=0

(

ak
ck

)2
< ∞. With Algorithm 1, 

∑∞
k=0 ak = ∞ is not guaran-

teed. For example, if the reduction of a happens in every iteration k, the sum is conver-
gent. In practice, the numbers of function evaluations are finite, and reductions of a are 
expected to happen only a limited number of times. Therefore, this violation is expected 
to pose little problem.

The intention of the proposed method is not to modify the asymptotic convergence rate 
of the original SPSA algorithm Spall (2003, pp. 186–188). The adaptive step takes place 
only if it is suspected that the objective value has become larger than at the starting point 
θ̂0. The probability of Algorithm 1 taking place is expected to go to zero under reason-
able signal-to-noise ratio as f (θ̂k) decreases. The worst situation that can happen is that 
the every perturbation ck�k produces worsening moves and no improvement is obtained 
compared to the starting point θ0. In “Computational results” section, we will confirm 
empirically what we have described about the convergence in finite k settings (k ∼ 103).

Another reason to take the objective value at the starting point as the threshold value 
to judge divergence is that if we update this value with y(θ̂k), where k > 0, we may risk 
picking a point that is too low due to the noise incurred in the measurement y. This in 
turn inhibits further improvement of θ̂k for lower objective values.

In the following section, the smallest output of mathematical functions will be sought 
using the standard SPSA and our adaptive initial stepping SPSA. This will show the sen-
sitivity of the function value in the final iteration to the initial step size δθ̂0min and so the 
sensitivity to a, and how the adaptive initial stepping substantially mitigates the difficulty 
to find the proper initial perturbation magnitude.
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Computational results
In this section, we will compare the original SPSA and our modified SPSA as described 
in Algorithm 2 using 10 analytical test functions and a parameter estimation example of 
a nonlinear dynamic system.

Test functions

To see the effect of the new adaptive stepping algorithm in SPSA, the minimum points 
of ten different mathematical test functions were sought. Except for Griewank function, 
the following conditions were applied. The functions’ responses were minimized from 
arbitrary starting points θ̂0 ∈ [−2, 2]D (D-dimensional product space with lower bound 
-2 and upper bound 2). If θ̂k = [θ̂k0, θ̂k1, · · · , θ̂ki, · · · , θ̂k(D−1)]T exceeded [−10, 10] in any 
of its D dimensions, that parameter was replaced by -10 if it was less than -10 or was 
replaced by 10 if it was larger than 10. For Griewank function, it was randomly started 
from θ̂0 ∈ [−120, 120]D. If θ̂k exceeded [−600, 600] in any of its D dimensions, that 
parameter was replaced by −600 if it was less than −600 or was replaced by 600 if it was 
larger than 600. For all ten functions, the iteration was stopped when 2000 evaluations of 
the objective function were reached. For convenience, we will label our proposed algo-
rithm as “A_SPSA” and the standard SPSA as “SPSA”.

The optimizations for each of the ten objective functions were started from 20 differ-
ent starting points. After the 2000 iterations, the distributions of objective values were 
plotted with respect to δθ̂0min. Eleven different values of δθ̂0min between 1.0× 10−4 and 
1.0× 101 (up to 1.0× 102 for Griewank) were used to make the plot. The dimensions of 
the functions were set to be 20, i.e. D = 20.

The definitions of the ten functions are given in the following. The Rosenbrock func-
tion is described as

The Sphere function is described as

The Schwefel function is described as

(7)

f (θ) =
D−2
∑

i=0

(

100(θi+1 − θ2i )
2 + (θi − 1)2

)

,

i = 0, 1, . . . ,D − 1, D > 1,

f (θ∗) = 0, θ∗i = 1.

(8)

f (θ) =
D−1
∑

i=0

θ2i ,

i = 0, 1, . . . ,D − 1,

f (θ∗) = 0, θ∗i = 0.

(9)

f (θ) =
D−1
�

j=0





j
�

i=0

θi





2

,

i = 0, 1, . . . ,D − 1,

f (θ∗) = 0, θ∗i = 0.
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The Rastrigin function is described as

The Skewed Quartic function Spall (2003, ex. 6.6) is described as

where the matrix B in the Skewed Quartic function is a square matrix with upper tri-
angular elements set to 1 and the lower triangular elements set to zero. The Griewank 
function is described as

The Ackley function is described as

The Manevich function is described as

The Ellipsoid function is described as

(10)

f (θ) =
D−1
∑

i=0

(

θ2i − 10 cos(2πθi)+ 10
)

,

i = 0, 1, . . . ,D − 1,

f (θ∗) = 0, θ∗i = 0.

(11)

f (θ) = (Bθ)TBθ + 0.1

D−1
∑

i=0

(Bθ)3i + 0.01

D−1
∑

i=0

(Bθ)4i ,

i = 0, 1, . . . ,D − 1,

f (θ∗) = 0, θ∗i = 0.

(12)

f (θ) = 1+
D−1
∑

i=0

θ2i

4000
−

D−1
∏

i=0

cos(
θi√
i
),

i = 0, 1, . . . ,D − 1,

f (θ∗) = 0, θ∗i = 0.

(13)

f (θ) = −20 exp



−0.2

�

�

�

�

1

D

D−1
�

i=0

θ2i





− exp

�

1

D

D−1
�

i=0

cos(2πθi)

�

+ 20− exp(1),

i = 0, 1, . . . ,D − 1,

f (θ∗) = 0, θ∗i = 0.

(14)

f (θ) =
D−1
∑

i=0

[

(1− θi)
2/2j

]

,

i = 0, 1, . . . ,D − 1,

f (θ∗) = 0, θ∗i = 1.

(15)

f (θ) =
D−1
∑

i=0

iθ2i ,

i = 0, 1, . . . ,D − 1,

f (θ∗) = 0, θ∗i = 0.
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The Rotated Ellipsoid function is described as

Each of Figs. 2, 3, 4, 5, 6, 7, 8, 9, 10 and 11 show three different cases of noisy measure-
ments of the outputs. The subfigures (a) have no noise added, subfigures (b) and (c) have 
Gaussian noise added to the true output with standard deviation σ of 0.1 and 1.0 respec-
tively. In all the three noise levels of the ten functions, c = 0.2 was used.

A general trend observed from the figures is that when the initial step size is large, 
the original SPSA tends to diverge to big objective values. The SPSA with the proposed 
initial step size reduction, on the other hand, effectively mitigates this divergence prob-
lem producing smaller objective values in general as the (a priori) initial step size is 
increased. This is because if the two function evaluations in the iteration are not smaller 
than the starting point value f (θ̂0), the algorithm will reduce the step size (by halving a) 
and restart at θ̂b, which is the point that gave the smallest output in the history of itera-
tions. However, note that the iteration index k in ak and ck is not reinitialized. For the ten 
functions tested, A_SPSA achieved its best performance when δθ̂0min was close to 10 or 
100 for Griewank function. This indicates that one can simply set the minimum pertur-
bation δθ̂0min close to the magnitude of the difference between upper and lower bound 

(16)

f (θ) =
D−1
�

i=0





i
�

j=0

θ2j





2

,

i = 0, 1, . . . ,D − 1,

f (θ∗) = 0, θ∗i = 0.

a b

c
Fig. 2  Initial parameter change δθ̂0min

 and distribution of responses after 2000 function evaluations for 
“Rosenbrock”. a No noise, b σ = 0.10, c σ = 1.0
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of the parameter in consideration. This may not be a guarantee for the best results but 
doing so does not cause the optimization to diverge to large responses and the results 
achieved are not substantially worse than the cases with best settings for a.

a b

c
Fig. 3  Initial parameter change δθ̂0min

 and distribution of responses after 2000 function evaluations for 
“Sphere”. a No noise, b σ = 0.10, c σ = 1.0

a b

c
Fig. 4  Initial parameter change δθ̂0min

 and distribution of responses after 2000 function evaluations for 
“Schwefel”. a No noise, b σ = 0.10, c σ = 1.0
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As mentioned earlier, the value for c is important when the measurements of y con-
tain noise. Figure 12 shows how the choice of c affects the outcome of optimizations. 
The figure shows the case of the 20 dimensional Sphere Function with Gaussian noise 

a b

c
Fig. 5  Initial parameter change δθ̂0min

 and distribution of responses after 2000 function evaluations for “Rastri-
gin”. a No noise, b σ = 0.10, c σ = 1.0

a b

c
Fig. 6  Initial parameter change δθ̂0min

 and distribution of responses after 2000 function evaluations for 
“Skewed Quartic”. a No noise, b σ = 0.10, c σ = 1.0
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having standard deviation σ = 0.1. Among the three values of c, namely 0.01, 0.1 and 
1.0, c = σ = 0.1 gave the best results for A_SPSA. At c = 1.0, however, A_SPSA showed 
little improvement in the objective value regardless of δθ̂0min magnitude. This is caused 

a b

c
Fig. 7  Initial parameter change δθ̂0min

 and distribution of responses after 2000 function evaluations for “Grie-
wank”. a No noise, b σ = 0.10, c σ = 1.0

a b

c
Fig. 8  Initial parameter change δθ̂0min

 and distribution of responses after 2000 function evaluations for “Ack-
ley”. a No noise, b σ = 0.10, c σ = 1.0
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by a becoming prematurely too small in the divergent early iterations. On the other 
hand, the standard SPSA showed a good reduction at log10(δθ̂0min) = −2.0, and −1.5. 
at both c = 0.1 and 1.0. This implies that for A_SPSA, a range of values of good c can be 

a b

c
Fig. 9  Initial parameter change δθ̂0min

 and distribution of responses after 2000 function evaluations for 
“Manevich”. a No noise, b σ = 0.10, c σ = 1.0

a b

c
Fig. 10  Initial parameter change δθ̂0min

 and distribution of responses after 2000 function evaluations for 
“Ellipsoid”. a No noise, b σ = 0.10, c σ = 1.0
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a b

c
Fig. 11  Initial parameter change δθ̂0min

 and distribution of responses after 2000 function evaluations for 
“Rotated Ellipsoid”. a No noise, b σ = 0.10, c σ = 1.0

a b

c
Fig. 12  Effect of choice of c to the final response of “Sphere” with Gaussian noise of σ = 0.1 after 2000 func-
tion evaluations. a c = 0.01, b c = 0.10, c c = 1.00
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narrower than that of the standard SPSA. On the other hand, the choice of δθ̂0min (and 
therefore a) is much easier for A_SPSA. We can, for example, let δθ̂0min ≃ min(U − L), 
where min(U − L) is the minimum difference between upper and lower bounds of the 
domain of parameter vector θ. In practice, it is better to scale all the input dimensions to 
fall in similar or equal intervals.

Figure  13 shows the results of optimizing the Rosenbrock and Rastrigin functions 
using three different values of multiplication factor of a: 0.1, 0.5, and 0.9. The difference 
in multiplication factor does not change the general trend that larger δθ̂0min produces 
better results and that divergence does not occur. One could tune the value of the mul-
tiplication factor, but the default value of 0.5 that we showed in the Algorithm 1 gen-
erally produces satisfactory results compared to other values of multiplication factors 
between 0 and 1. The Fig.  13 (b) also shows that δθ̂0min ≃ min(U − L) may not be an 
optimal setting since smaller value δθ̂0min ≃ 10−1.5 is shown to produce better optimiza-
tion results when the reduction rate is slow at 0.9. This implies that in a bumpy (highly 
multimodal) function like Rastrigin, the slow decrease in a can adversely affect the mini-
mization of the objective value by a large number of resets to θb. The opposite is true 
with Rosenbrock function in (a), in which the slow reduction factor 0.9 gave the best 
result at δθ̂0min ≃ 101.

For all the mathematical functions tested in this paper, optimization using SPSA 
diverges almost surely if the δθ̂0min is large. However, A_SPSA and SPSA give closely 
matching results when the initial step sizes are relatively small (i.e., the left hand side of 
the plots in Figs. 2, 3, 4, 5, 6, 7, 8, 9, 10 and 11). This is because, in cases that divergence 
does not happen, the adaptation of a does not take place in A_SPSA and therefore SPSA 
and A_SPSA have identical behavior. This is a confirmation that Algorithm 1 does not 
alter, in any significant way, the finite sample convergence characteristics of the original 
SPSA when the divergence does not manifest.

Nonlinear dynamics example

We consider a parameter estimation problem with Lorenz attractor. Its nonlinear 
dynamics is described as

(17)
dx1

dt
= s(x2 − x1),

a b
Fig. 13  Effect of choice of the reduction factor of a to the responses after 2000 function evaluations. a 
Rosenbrock (no noise), b Rastrigin (no noise)
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We seek to identify the system parameters θ = [s, r, b] by minimizing the one-time-step-
ahead prediction error Lk of the state xk+1 given the current state xk = [xk1, xk2, xk3]T. 
We use fourth-order Runge–Kutta method to obtain xk+1.

Let us denote x̂k+1 as one-time-step-ahead prediction given by the estimated system 
with parameters θ̂k. Then, we can define the prediction error as

Thus, the optimization to be solved is

The index k above is the same as the index k in the SPSA algorithms. So the SPSA itera-
tion proceeds along with the time steps of the dynamic system to compute Lk.

We set the true parameters to be θ = [10, 28, 8/3] and pretend to not to know them. 
We set the time increment to be ∆t = 0.005 and simulate from t = 0 to 20, obtaining 
target state xk with k = 0, 1, 2, . . . , 4000. We let δθ̂0min ∈ {0.001, 0.01, 1, 10, 100, 1000} and 
at each value of δθ̂0min we run both A_SPSA and SPSA 20 times.

For this problem, we set the parameter space as three-dimensional product space 
� = [0, 500]3. The initial state is x0 = [2, 3, 4]T . The initial guess (starting point) of the 
parameter set θ̂0 is a random pick from �.

Figure 14 show the box plots of final Lk when started from different values of δθ̂0min . 
The smallest median of final Lk is obtained at δθ̂0min = 10 for SPSA and δθ̂0min = 100 and 
1000 for A_SPSA. The best medians of final Lk obtained for A_SPSA (5.62× 10−15) is 

(18)
dx2

dt
= x1(r − x3)− x2,

(19)
dx3

dt
= x1x2 − bx1.

(20)Lk(xk , θ̂k) = [xk+1 − x̂k+1]T · [xk+1 − x̂k+1].

(21)min
θ∈Θ

Lk(xk , θ).

Fig. 14  Initial parameter change δθ̂0min
 and distribution of L4000 (after 8000 function evaluations)
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smaller compared to that of SPSA (3.10× 10−13). However, both SPSA and A_SPSA had 
some runs that did not converge to the above mentioned near-zero Lk values even at 
these δθ̂0min.

Again, for A_SPSA, the best setting were obtained when δθ̂0min was set to large val-
ues near the order of magnitude of the distance between upper and lower bound of the 
domain, while for SPSA, the best δθ̂0min was at an interior value between 10−3 and 103.

Figure 15 shows the trajectory of the reference Lorenz attractor and the simulation of 
the Lorenz attractor whose system parameters s, r, and b were successfully identified by 
A_SPSA. The time t is run from 0 to 20 starting from the same initial condition used in 
the identification. The figure shows excellent match.

Figure 16 shows the box plots of parameters estimated by A_SPSA and SPSA starting 
at their best δθ̂0min settings. The corresponding statistics are shown in Tables 1 and 2. The 

boxes appear collapsed as single horizontal lines at medians since the spaces between 

Fig. 15  State evolution of the target and identified Lorenz attractor, t = 0 to 20

a b
Fig. 16  Distribution of the parameters identified by A_SPSA and SPSA. a A_SPSA with δθ̂0min

= 100, b SPSA 
with δθ̂0min

= 10
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first quartiles and third quartiles are very narrow. Some non-converging cases are visible 
as dots on the figure. The figure and the tables show that the parameter estimates are 
more consistent from run to run in A_SPSA than that of SPSA as A_SPSA has narrower 
first and third quartile differences.

Conclusion
With the adaptive initial step algorithm, one can avoid divergence in SPSA iterations. 
Moreover, with a large initial step size, the SPSA algorithm with the adaptive initial step 
algorithm was able to find equal or better solutions compared to the original SPSA for all 
the ten mathematical function minimization problems that we have tested. In the non-
linear dynamics example, the new algorithm was able to find system parameters more 
precisely. The proposed method may not eliminate the need of tuning the parameters of 
SPSA algorithms, but it facilitates the process by eliminating the risk of solution diver-
gence and reducing the trial-and-error effort. Further testing of the algorithm with dif-
ferent test functions, noise distributions, and industrial use-cases would be beneficial. 
The improvement proposed in this paper is expected to be valuable when the objective 
functions are costly to evaluate or if the algorithm is employed inside another algorithm 
such as machine learning or target tracking, for manual tuning of the parameters would 
be cumbersome in such cases. As a future work, it would be beneficial to investigate 
under what conditions the probability of the proposed adaptation (i.e. going into if-
branch in Algorithm 1) happening tends to zero as iteration k tends to infinity.
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Table 1  Statistics of identified Lorenz Attractor parameters by 20 SPSA runs at δθ̂0min
= 10

Method s r b Pred. Err. L4000

1 A_SPSA: 0 Min.: 0.00 Min.: 8.017 Min.: 0.000 Min.: 0.0000

2 SPSA: 20 1st Qu.: 10.00 1st Qu.: 28.000 1st Qu.: 2.642 1st Qu.: 0.0000

3 Median: 10.00 Median: 28.000 Median: 2.667 Median: 0.0000

4 Mean: 55.94 Mean: 45.534 Mean: 2.311 Mean: 1.3645

5 3rd Qu.: 11.11 3rd Qu.: 36.817 3rd Qu.: 2.667 3rd Qu.: 0.1017

6 Max.: 477.04 Max.: 328.504 Max.: 3.261 Max.: 19.6773

Table 2  Statistics of  identified Lorenz attractor parameters by  20 A_SPSA runs 
at δθ̂0min

= 100

Method s r b Pred. Err. L4000

1 A_SPSA: 20 Min.: 0.000 Min.: 0.000 Min.: 0.0000 Min.: 0.0000

2 SPSA: 0 1st Qu.: 10.000 1st Qu.: 28.000 1st Qu.: 2.6667 1st Qu.: 0.0000

3 Median: 10.000 Median: 28.000 Median: 2.6667 Median: 0.0000

4 Mean: 68.069 Mean: 31.816 Mean: 24.8487 Mean: 1.2328

5 3rd Qu.: 10.000 3rd Qu.: 28.000 3rd Qu.: 2.6667 3rd Qu.: 0.0000

6 Max.: 500.000 Max.: 156.811 Max.: 438.8246 Max.: 15.6654
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