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Background
Integral equations have several applications in Physics and Engineering. However, these 
occur nonlinearly. In particular, nonlinear integral equations arise in fluid mechanics, 
biological models, solid state physics, kinetics in chemistry etc. In most cases, it is dif-
ficult to solve them, especially analytically.

In the past several years, the nonlinear integral equations have been solved numeri-
cally by several workers, utilizing various approximate methods (see Atkinson and Potra 
1988; Atkinson and Flores 1993; Babolian and Shahsavaran 2009; Lepik and Tamme 
2007; Saberi-Nadjafi and Heidari 2010; Aziz and Islam 2013; Maleknejad and Nedaiasl 
2011).

In the present work, we have developed a novel approach to solve nonlinear Fred-
holm integral equations of the second. This algorithm is obtained by integral mean value 
theorem and Newton iteration. We consider the nonlinear Fredholm integral equations, 
given as follows:

where f(x) is a known continuous function defined on [a, b] and g(u(y)) is a nonlinear 
function defined on [a, b]. The nonlinear integral operator k is defined as follows:

(1)u(x) = f (x)+
∫ b

a
K (x, y)g(u(y))dy, x ∈ [a, b],

(2)(kg(u))(x) =
∫ b

a
K (x, y)g(u(y))dy, x ∈ [a, b],
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and k is compact on C[a, b] into C[a, b] with continuous kernel K(x, y). Then (1) is equiv-
alent to the operator form as follows:

This paper is organized as follows: In section “A novel numerical method”, based on the 
idea of the integral mean value theorem, a novel numerical method is given. In section 
“Convergence and error analysis”, we address the convergence and error analysis of the 
numerical solutions. In section “Description of Newton iteration and a novel algorithm”, 
Newton iteration is introduced and a novel algorithm is given. In section “Numerical 
results”, numerical examples are carried out.

A novel numerical method
In order to obtain a novel numerical method, we firstly introduce the integral mean 
value theorem, is given as follows:

Theorem 1  If s(x) is continuous on the closed interval [a, b], there is a number c ∈ [a, b] 
so that

Let h = (b− a)/n, n ∈ N  be the mesh with xk = a+ kh, k = 0, . . . , n. By (4), we can 
construct a sequence of quadrature formula as

where ck , (k = 0, . . . , n− 1) are constants.
We apply (5) to the integral operator K and get

where the unknown function ck(x), (k = 0, . . . , n− 1) are dependent on the variable 
x and 0 < ck(x) < 1. Especially, Let ck(x) = ck be constants. We can obtain Nyström 
approximation with a high accuracy, is given as follows:

Thus we obtain the numerical approximate form of (3)

Obviously, Eq. (8) is a nonlinear equations system. Once un is get, we obtain 
u(x), x ∈ [a, b] by (3).

(3)u− kg(u) = f .

(4)M(s) =
∫ b

a
s(x)dx = (b− a)s(c).

(5)M(s, ck) =
n−1
∑

k=0

∫ xk+1

xk

s(x)dx = h

n−1
∑

k=0

s(xk + hck), 0 < ck < 1,

(6)(kg(u))(x) = h

n−1
∑

k=0

K (x, xk + hck(x))g(u(xk + hck(x))), x ∈ [a, b],

(7)(kng(u))(x) = h

n−1
∑

k=0

K (x, xk + hck)g(u(xk + hck)), x ∈ [a, b], 0 < ck < 1.

(8)un − kng(un) = f .
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Convergence and error analysis
We give the convergence analysis of (8) and have a theorem as follows:

Theorem 2  If the function K(x,y) is continuous on [a, b] × [a, b] and g(x) is continuous 
on [a, b], they satisfy the following Lipschitz conditions

with the constants L1,2,3 > 0, the sequence (kng(u))(x) of quadrature formula is conver-
gent. That is, we have

Proof  By (6) and (7), we easily get

where 0 < ck < 1 and 0 < ck(x) < 1. We have �(kng(u))(x)− (kg(u))(x)�∞ → 0, n → ∞ , 
and the proof of the theorem is completed. � �

From Theorem 2, we can get a corollary as follows:

Corollary 1  Under the assumption of Theorem 2, the error of the approximate solutions 
in (8) can be estimated, is given as follows:

�K (x, y1)− K (x, y2)�∞ ≤ L1�y1 − y2�∞,

�g(x1)− g(x2)�∞ ≤ L2�x1 − x2�∞,

�u(x1)− u(x2)�∞ ≤ L3�x1 − x2�∞,

(kng(u))(x) → (kg(u))(x) =
∫ b

a
K (x, y)g(u(y))dy, n → ∞.

�(kng(u))(x)− (kg(u))(x)�∞

≤ h

n−1
∑

k=0

∥

∥K (x, xk + hck)g(u(xk + hck))− K (x, xk + hck(x))g(u(xk + hck(x)))
∥

∥

∞

= h

n−1
∑

k=0

�K (x, xk + hck)g(u(xk + hck))− K (x, xk + hck)g(u(xk + hck(x)))

+ K (x, xk + hck)g(u(xk + hck(x)))− K (x, xk + hck(x))g(u(xk + hck(x)))�∞

≤ h

n−1
∑

k=0

�K (x, xk + hck)g(u(xk + hck))− K (x, xk + hck)g(u(xk + hck(x)))�∞

+ h

n−1
∑

k=0

�K (x, xk + hck)g(u(xk + hck(x)))− K (x, xk + hck(x))g(u(xk + hck(x)))�∞

≤ h2
[

L2L3 max
a≤x,y≤b

|K (x, y)| + L1�g(u(x))�∞
] n−1
∑

k=0

�ck − ck(x)�∞

≤
(b− a)2

n

[

L2L3 max
a≤x,y≤b

|K (x, y)| + L1�g(u(x))�∞
]

,

(9)�un(x)− u(x)�∞ ≤
(b− a)2

n

[

L2L3 max
a≤x,y≤b

|K (x, y)| + L1�g(u(x))�∞
]

.
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Description of Newton iteration and a novel algorithm
We shall give Newton iteration to solve nonlinear equations. For convenience, we denote

where z = (z0, . . . , zn−1)
T = un, and

with Ki,j = K (xi + hci, xj + hcj). Then, (8) can be rewritten as

The Jaccobi matrix of �(z) is

So New iteration is constructed

Lemma 1  [Ostrowski see Ortege and Kheinboldt (1970)] Suppose there is a fixed point 
z∗ ∈ int(D) of the mapping: ω : D ⊂ Rn → Rn and the F-derivation of ω at point z∗ exists. 
If the spectral radius of ω′

(z∗) satisfies

Then, there is an open ball S = S(z∗, δ0) ⊂ D that for z0 ∈ S, the iterative sequence (14) is 
stable and convergent to z∗.

Lemma 2  [see Ortege and Kheinboldt (1970)] Suppose A,C ∈ L(Rn), �A−1� < β ,

�A− C� < α,αβ < 1, then C is invertible and �C−1� < β/(1− αβ).

Theorem  3  Suppose � : D ⊂ Rn → Rn is F-derivative, and z∗ satisfies equation 
�(z) = 0. A : S ⊂ D → L(Rn) is continuous and invertible at z∗, where S is the neighbor-
hood of z∗. Then, there is a close ball S̄ = S̄(z∗, δ) ⊂ S that � is F-derivative at z∗:

Proof  Let β = �(A(z∗))−1� > 0. Since A(z∗) is invertible, and A(z) is continuous at z∗ , 
for 0 < ε < (2β)−1, ∃δ > 0, when z ∈ S̄(z∗, δ), there is �A(z)− A(z∗)� < ε. According to 
Lemma 2, (A(z))−1 exists and �(A(z))−1� ≤ β/(1− εβ) for any z ∈ S̄. So we construct 
the function

Since �(z) is derivative at z∗, ∃δ > 0. When z ∈ S̄(z∗, δ), we obtain an inequality by the 
definition of the F-derivation:

(10)�(z) = (ϕ0(z), . . . ,ϕn−1(z)),

(11)ϕi(z) = zi − h

n−1
∑

j=0

Ki,jg(zj)− fi, i = 0, . . . , n− 1

(12)�(z) = 0.

(13)A(z) = �
′
(z) = (∂jϕi(z))n×n.

(14)zl+1 = ω(zl),ω(z) = z − (A(z))−1�(z), l = 0, 1, 2, . . .

(15)ρ(ω
′
(z∗)) = δ < 1.

(16)ω
′(
z∗
)

= I −
(

A(z∗)
)−1

�
′(
z∗
)

.

ω(z) = z − (A(z))−1�(z), z ∈ S̄.
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Consider the derivation of ω(z)

where c = 2β(β�� ′
(z∗)� + 1). According to the definition of the F-derivation, we obtain 

the the F-derivation of ω at z∗

Using the definition of the matrix A in (13), we have ρ(ω′
(z∗)) = 0 < 1. According to 

Lemma 1, the iterative sequence is stable and convergent to z∗.
In what follows, in order to give the numerical solutions with more stability, we pro-

vide a novel algorithm (see Zhong 2013).

Step 1 Take n and Let xk = a+ hk , (k = 0, . . . , n− 1) with h = (b− a)/n.

Step 2 �Let ck = c, (k = 0, . . . , n− 1) and randomly choose a series of σi so that 
0 < c = σi < 1, (i = 0, 1, . . . ,m).

Step 3 Solve the nonlinear system by Newton iteration 

Step 4 Get the approximate solutions 

Step 5 Let the mean value of un(x, σi) be the last approximate solution 

� �

Numerical results
In this section, the theoretical results of the previous section are used for some numeri-
cal examples.

(17)
∥

∥

∥
�(z)−�

(

z∗
)

−�
′(
z∗
)(

z − z∗
)

∥

∥

∥
≤ ε

∥

∥z − z∗
∥

∥.

∥

∥

∥
ω(z)− ω(z∗)−

[

I − (A(z∗))−1�
′
(z∗)

]

(z − z∗)
∥

∥

∥

=
∥

∥

∥
−(A(z))−1�(z)− (A(z∗))−1�

′
(z∗)(z − z∗)

∥

∥

∥

≤
∥

∥

∥
(A(z))−1(A(z∗)− A(z))(A(z∗))−1�

′
(z∗)(z − z∗)

∥

∥

∥

+
∥

∥

∥
(A(z))−1(�(z)−�(z∗)−�

′
(z∗)(z − z∗))

∥

∥

∥

≤
(

2β2ε

∥

∥

∥
�

′
(z∗)

∥

∥

∥
+ 2βε

)

≤ cε�z − z∗�,

ω
′
(z∗) = I − (A(z∗))−1�

′
(z∗).

u
j
n − h

n−1
∑

k=0

K (xj + hσi, xk + hσi)g
(

ukn

)

= f (xj + hσi).

un(x, σi) = f (x)+ h

n−1
∑

k=0

K (x, xk + hσi)g
(

ukn

)

.

un(x) =
m
∑

i=0

un(x, σi)

m+ 1
.
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Example 1  The following nonlinear integral equation is considered

with 0 < x < 1 and the exact solution u(x) = 2− x2.

For the sake of simplicity, we choose σi = i/10, (i = 0, 1, . . . , 10). Table  1 shows the 
three kinds results by using the methods in Lepik and Tamme (2007), Aziz and Islam 
(2013), and the present method, respectively. Figure 1 shows the comparison of approxi-
mate and exact solutions with n = 128 and Fig. 2 presents the error curve on [0, 1] with 
n = 128.

Example 2  The following nonlinear integral equation is considered

with 0 < x < 1 and the exact solution u(x) = sin(πx)+ 1
3
(20−

√
391) cos(πx).

u(x) = x

∫ 1

0

y
√

u(y)dy+ 2−
1

3
(2
√
2− 1)x − x2,

u(x) =
1

5

∫ 1

0

cos(πx) sin(πy)[u(y)]3dy+ sin(πx),

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
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1.8
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2

exact solution

approximate solution

Fig. 1  Comparison of solutions for Example 1

Table 1  Absolute errors for Example 1

x n = 8 n = 16 n = 32 n = 64 n = 128

0.2 1.63e−3 4.09e−4 9.94e−5 2.48e−6 6.21e−7

0.4 3.27e−3 8.18e−4 1.99e−4 4.97e−6 1.24e−6

0.6 4.90e−3 1.23e−3 2.98e−4 7.45e−6 1.86e−6

0.8 6.54e−3 1.64e−3 3.97e−4 9.94e−6 2.48e−6

Results in Aziz and Islam (2013) 1.0e−3 2.6e−4 6.6e−5 1.7e−5 4.2e−6

Results in Lepik and Tamme (2007) 2.7e−3 1.1e−3 3.7e−4 1.1e−4 3.1e−5
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Fig. 2  The error curve for Example 1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−0.2

0
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0.6

0.8

1

1.2

exact solution

approximate solution

Fig. 3  Comparison of solutions for Example 2

Table 2  Absolute errors for Example 2

x Results in Saberi-Nadjafi 
and Heidari (2010)

s-results in Maleknejad 
and Nedaiasl (2011)

d-results in Maleknejad 
and Nedaiasl (2011)

Present 
method

0 4.98e−2 4.15e−7 1.40e−10 3.19e−16

0.3 2.92e−2 6.22e−6 1.25e−8 3.33e−16

0.6 1.54e−2 5.85e−6 9.54e−9 1.11e−16

0.9 4.73e−2 1.66e−5 1.61e−8 3.89e−16
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We take n = 25 along with h = 1/25 and get xk = k/25, (k = 0, 1, . . . , 24). For the sake 
of simplicity, σi is given as i/10, (i = 0, 1, . . . , 10). Table 2 shows the four kinds results by 
using Newton–Kantorovich-quadrature method in Saberi-Nadjafi and Heidari (2010), 
the SE-Sinc method in Maleknejad and Nedaiasl (2011), the DE-Sinc method in Male-
knejad and Nedaiasl (2011), and the present method, respectively. Figure  3 shows the 
comparison of approximate and exact solutions with n = 25 and Fig. 4 presents the error 
curve on [0, 1] with n = 25.

Example 3  The following nonlinear integral equation is considered

with 0 < x < 1 and the exact solution u(x) = x.

In Table 3, we choose σi = i/10, (i = 0, 1, . . . , 10). In Table 4, we choose σi = 0, 1/2, 1, 
and ri, (i = 0, 1, . . . , 10), respectively. ri, (i = 0, 1, . . . , 10) are randomly selected. Table 3 
shows the numerical results by using the present method, and Table 4 shows the choice 
of σi has a great influence on the accuracy of numerical solutions.

u(x)+
∫ 1

0

xeu(y)dy = xe1,

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5
x 10

−16

error curve wtih n=25

Fig. 4  The error curve for Example 2

Table 3  Absolute errors for Example 3

x n = 4 n = 8 n = 16 n = 32 n = 64

0.2 1.21e−3 3.02e−4 7.53e−5 1.88e−5 4.70e−6

0.4 2.43e−3 6.03e−4 1.51e−4 3.76e−5 9.41e−6

0.6 3.64e−3 9.05e−4 2.26e−4 5.65e−5 1.41e−5

0.8 4.86e−3 1.21e−3 3.01e−4 7.52e−5 1.88e−5
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Conclusions
Based on the idea of the integral mean value theorem and Newton iteration, a novel 
algorithm is constructed to solve the nonlinear Fredholm integral equations of the sec-
ond kind. The convergence and the error of numerical results have been analyzed. By the 
obtained numerical results, we know the algorithm is feasible and valuable.
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