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Multiplicative noise appears in many image processing applications, such as synthetic 
aperture radar (SAR), ultrasound imaging, single particle emission-computed tomog-
raphy, and positron emission tomography. It reduces the image quality seriously and 
affected the subsequent processing, The traditional Gauss-based distribution denoising 
models (Rudin et al. 1992; Wu and Tai 2010) are not suitable for removing this sort of 
noise. Hence the construction of multiplicative noise model and the corresponding effi-
cient algorithm become an important research topic recently.

Gamma distribution is commonly used to simulate multiplicative noise. Based on this 
assumption many models have been established. Aubert and Aujol (2008) put forward 
AA model using maximum a posteriori probability (MAP). Based on the logarithm 
transform, Shi and Osher (2008) proposed SO model. Huang et  al. (2009) presented 
linearized alternating direction methods HNW, and Chen and Zhou (2014) proposed a 
linearized alternating direction method using discrepancy function constraint (Huang 
et al. 2013). In order to better protect the edge of the denoised image, Wang et al. (2012) 
suggested an iteratively reweighted total variation model (IR-TV). In this model the 
expectation maximum (EM) and the total variation (TV) with the classical iteratively 
reweighted algorithm are used. In order to avoid zero denominator in the iterative pro-
cess, an artificial parameter is needed. It is well known that the parameter has impor-
tant influence on numerical results and has to be chosen carefully. In this paper, an 
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improvement of the iteratively reweighted algorithm is introduced without the artificial 
parameter,

The rest of the paper is organized as follows: “Iteratively reweighted model with TV” 
section briefly introduces the IR-TV model as well as the classical iteratively reweighted 
algorithm. “Solution to the model” section presents the new algorithm of IR-TV model, 
which is based on the primal–dual optimization and without the artificial parameter. In 
“Numerical experiment” section the effectiveness of the proposed algorithm is verified 
through numerical experiments. Finally we conclude in “Conclusion” section.

Iteratively reweighted model with TV
Suppose the degraded image f (x) = u(x)v(x), x ∈ �, where the original image u(x) is a 
real piecewise smooth function defined on a bounded domain � ⊂ R2, and the multipli-
cative noise v(x) is assumed to obey Gamma distribution with mean 1

In Eq. (1), Γ (·) is a Gamma function with variance 1/L.
Iteratively reweighted l1 regularization minimization problem attempts to find a local 

minimum of concave penalty functions that more closely resembles the l0 regularization 
problem (Simon and Lai 2009; Candes et  al. 2008). In our previous work Wang et  al. 
(2012), we put forward an iteratively reweighted model

where z(x) = log u(x) and φ(z) = |∇z| ,regularizer parameter μ is a constant connected 
with the intensity of noise, g(x) is a nonnegative weight function which controls the 
strength of smoothing. According to the classical iteratively reweighted algorithm, we 
choose

where n is the number of outer iteration. It is obvious that the larger |∇z|, the weaker 
smoothing strength is, thus the noise is removed while the edges are preserved.

The classical algorithm to Eq. (2) attempts to find a local minimum of a concave func-
tion, whereas in each iteration the algorithm simply requires to solve a convex optimiza-
tion problem, In order to prevent the zero denominator, Eq. (3) usually be revised to

The parameter ε(n) provides the stability for iterations. The choice of ε(n) has a signifi-
cant effect on the result of the denoising. Therefore it needs to carefully adjusted. It will 
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lead to poor denoising results with a inappropriate ε(n) (Wang et al. 2012; Simon and Lai 
2009).

In next section, we propose a novel algorithm to solve Eq.  (2). First the splitting 
method is used to transform the original equation into two corresponding equations. 
Then the primal–dual algorithm and the Euler–Lagrange method are applied to solve 
these two subproblems respectively.

Solution to the model
As Huang et al. (2009) has mentioned, let us consider the splitting form of Eq. (2)

where w is an auxiliary function, The parameter γ measures the amount of regularization 
to a denoising image, which is large enough to make w be close to z. In our experiment, 
γ = 19 is chosen. The main advantage of the proposed method is that the TV norm can 
be used in the noise removal process in an efficient manner. And Eq. (5) can be splitted 
into two equations

This is an alternating minimization algorithm. The first step of the method is to apply 
a weighted TV denoising scheme to the image generated by the previous multiplicative 
noise removal step. The second step of the method is to solve a part of the optimization 
problem.

In this paper, a primal–dual algorithm (Bertsekas et al. 2006; Bertsekas 2011) is applied 
to iteratively reweighted model 6a. Convex close set K is defined by,

where {·} denotes convex close set of {·}.
Let X ,Y  be two finite dimention real vector spaces, the corresponding norm defined 

as �·� = �·, ·�1/2, where �·, ·� is the inner product. Gradient operator ∇ : X → Y  is con-
tinuous linear operator, the corresponding norm defined as

We introduce a divergence operator div : X → Y , the adjoint of divergence operator is 
defined by ∇∗ = −div. Then we introduce dual variable p = (p1, p2), which divergence 
is divp = ∂p1

/
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/
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The regularizator of 6a is

and 6a can be transformed into

for every w ∈ X and � > 0, J (�w) = �J (w) holds, so J is one-homogeneous. By the Leg-
endre–Fenchel transform, we can obtain

with J∗(v) is the “characteristic function” of a closed convex set K:

Since J∗∗ = J , we recover

The Euler equation for (7) is

where ∂J  is the “sub-differential” of J. Writing this as

we get that q = 2γ
(

z(n−1) − w
)

/µ is the minimizer of 
∥

∥q − 2γ z(n−1)/µ
∥

∥

2
+

2γ
µ
J∗(q). 

Since J∗ is given by (3), the solution of problem (6) is simply given by

Therefore the problem to compute w(n) become a problem to compute the nonlinear 
projection q = πµK/ 2γ
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Following the standard arguments in convex analysis (Chambolle 2004; Chambolle 
and Pock 2011), the Karush–Kuhn–Tucker conditions yield the existence of a Lagrange 
multiplier αi,j(x) ≥ 0, such that constraint problem (9) become to,
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Notice constraint problem |p| ≤ g in Eq.  (10). For any x, α(x) ≥ 0, if |p|2 < g2 ,then 
α(x) = 0; If |p|2 = g2, we see that in any case

Then

Substituting (11) into (10) gives,

We thus propose the following semi-implicit gradient descent (or fixed point) algo-
rithm. We choose τ > 0, let p0 = 0 and for any n ≥ 0,

Combining Eq. (3) g(x) = 1
|∇z(n−1)|

, we calculate pm+1(m ≥ 1) by

The denominator of Eq. (13) is greater than zero, which avoids the appearance of the 
rectified parameters, and of course does not need to be adjusted. The method can be 
seen a new method to solve nonconvex problem. We need to calculate the boundary of 
the norm 
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Similar to Papers (Chambolle 2004; Chambolle and Pock 2011; Bresson et al. 2007), 
we now can show the following result about dual algorithm to iteratively reweighted TV 
model.
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Then we have

Now, consider the following equation

where 
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and repeating the previous calculations we see

It holds η̄i,j =
(

p̄′i,j − p̄i,j

)/

δt = 0, for any i, j,i.e., p̄′
= p̄

So we can deduce
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deduce that all the sequence µ/2γdivpn converges to πµK/ 2γ
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 as κ2 ≤ 8.
6b is equivalence to solve the nonlinear system

Numerical experiment
We compare our algorithm on eliminating staircase effect and preserving the detail 
to SO model, HNW model and classic iteratively reweighted total variation (CWTV). 
Signal to Noise Ratio (SNR) of the denoising image to the corresponding true image is 
defined as

where X̄ is the denoised image and X is the true image. We stop algorithm while attain-
ing maximum SNR. The test images are, “Shape1”, “Shape2”, “Barbara”, “Lena256”, “Cam-
eraman”, “Phantom”. The multiplicative noise with standard variance (NSV) of 1/30 and 
1/10 are considered in our experiments. Table 1 shows the effect of artificial parameter 
εn to denoising results of classic iteratively reweighted isotropous total variation method. 
Table 2 is the comparison of denoising results on SNR. From Table 1, we can explicitly 
see that suitable artificial parameter εn can obtain better denoising results than some 
other models (such as SO model, HNW model), while unsuitable artificial parameter εn 
obtain lower SNR than other models. New algorithm can obtain the highest SNR than 
SO model, HNW model and classic iteratively reweighted method. Moreover the new 
algorithm is not affected by this parameter.
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Experiment 1: Comparison on eliminating staircase effect

“Shape1” is used as a test image in this experiment, the multiplicative noise intensity 
is standard variance 1/10. In our algorithm, µ = 0.013 and the number of inner itera-
tion is set 30, the denoising SNR result can achieve 12.3856 dB. Figure 1 is the denoising 
results. Comparing Fig. 1c–f, we can see, staircase effect is restrained in the alternative 
splitting minimizating algorithm (HNW model and our algorithm), and the transition of 
smooth region in the new model has a good visual effect. Moreover, we can clearly find 
new model can preserve edge and detail better than SO model, HNW model. The edge 
and details of the restored images are preserved because of the action of the weighted 
function. In Fig. 1 short widthways lines in our methods can be restored more number 
than SO model and HNW model.

Table 1  The effect of artificial parameter εn to denoising results (dB)

Test images NSV εn =
1

n+2
εn =

1

(n+2)2
εn =

1

2n+1
εn =

1

2
εn = 0.1 New algorithm

Shape1 1/30 13.1487 13.2599 13.1100 12.0367 12.5180 15.6686

1/10 12.3661 11.6466 10.6260 12.2160 12.1057 12.3856

Shape2 1/30 19.4796 18.7226 18.8344 19.2633 18.7180 19.9760

1/10 15.8457 14.9985 15.6592 15.1059 15.5034 16.0540

Barbara 1/30 12.5857 12.2622 12.0967 12.0016 12.1491 13.0724

1/10 10.3475 9.4710 9.5138 9.4252 10.0087 10.3138

Lena256 1/30 13.5712 13.2305 13.2450 13.1860 13.0905 14.0905

1/10 10.5605 10.1580 10.1726 10.1229 10.0934 10.9022

Cameraman 1/30 16.4723 15.1124 16.0535 15.7450 16.1120 16.3157

1/10 13.1132 11.2307 11.9135 11.8059 13.0282 13.5304

Phantom 1/30 18.7465 17.4713 18.2407 18.0309 18.7136 20.3229

1/10 15.6020 14.5858 15.0706 15.0785 15.2035 15.6289

Average 14.3199 13.5125 13.7113 13.6682 13.9370 14.9384

Table 2  Comparison of denoising results on SNR (dB)

Test images NSV SO HNW CWTV New algorithm

Shape1 1/30 10.6622 11.4753 13.2599 15.6686

1/10 7.9142 9.2177 12.3661 12.3856

Shape2 1/30 16.9584 19.2644 19.4796 19.9760

1/10 12.9863 15.5438 15.8457 16.0540

Barbara 1/30 11.1623 12.5344 12.5857 13.0724

1/10 8.5457 10.3088 10.3475 10.3138

Lena256 1/30 12.4623 13.1826 13.5712 14.0905

1/10 9.6806 10.5069 10.5605 10.9022

Cameraman 1/30 14.8305 15.9641 16.4723 16.3157

1/10 11.7141 13.5090 13.1132 13.5304

Phantom 1/30 18.5579 19.7853 18.7465 20.3229

1/10 14.6484 14.7103 15.6020 15.6289

Average 12.5102 13.8336 14.3292 14.9384
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Experiment 2: Detail preserving

“Shape 2” and “Lena256” images are contaminated by multiplicative noise with stand-
ard variance 1/10. Figures 2 and 3 are the denoising results. In our algorithm to “Shape 
2”, µ = 0.015 and the number of inner iteration is set 30, the denoising SNR result can 
achieve 16.0540 dB. We can see the denoising results is better than the SO model and 
HNW model. In our algorithm to “Lena256”, µ = 0.0025 and the number of inner itera-
tion is same as the experiment 1, and the denoising SNR result can achieve 13.9022 dB. 
The preserved detail of our algorithm is better than the SO model and HNW model, 
especially the feather on the cap.

On the edge of the image, the derivative of image edges is bigger, then weight function 
value becomes little and the degree of polishing is weakened to the edges. thus the edges 

Fig. 1  Experimental results on Shape1 image (multiplicative noise with standard variance 1/10). a 
Original image; b noisy image; c denoised image by SO (SNR = 7.9142 dB); d denoised image by HNW 
(SNR = 9.2177 dB); e denoised image by classic iteratively reweighted algorithm (SNR = 12.3661 dB); f 
denoised image by our algorithm (SNR = 12.3856 dB)

Fig. 2  Experimental results on Shape2 image (multiplicative noise with standard variance 1/10). a Origi-
nal image; b noisy image; c denoised image by SO (SNR = 12.9863 dB); d denoised image by HNW 
(SNR = 15.5438 dB); e denoised image by classic iteratively reweighted algorithm (SNR = 15.8457 dB); f 
denoised image by our algorithm (SNR = 16.0540 dB)
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are preserved; On the other hand, The derivative of the smooth regions is much small, 
weighted function is large, which strengthen the smoothing to relatively smooth regions, 
thus the noise is removed. Compare to Figs. 2 and 3c–f, it is obvious that the denoising 
results of proposed algorithm can keep details better.

Conclusion
We study a new algorithm on iteratively reweighted to remove multiplicative noise 
model. An alternating minimization method is employed to solve the proposed model. 
And a Chambolle projection algorithm to iteratively reweighted model is proposed. Our 
experimental results have shown that the quality of images restored by the proposed 
method is quite good, especially on preserving the detail and restraining the staircase 
effect. Moreover the proposed algorithm provides an approach to solve the non-convex 
problem.
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Fig. 3  Experimental results on Lena256 image (multiplicative noise with standard variance 1/10). a 
Original image; b noisy image; c denoised image by SO (SNR = 9.6806 dB); d denoised image by HNW 
(SNR = 10.5069 dB); e denoised image by classic iteratively reweighted algorithm (SNR = 10.5605 dB); f 
denoised image by our algorithm (SNR = 13.9022 dB)
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