
ψ‑Contraction and (φ,ϕ)‑contraction 
in Menger probabilistic metric space
Pengcheng Ma1, Jinyu Guan1, Yanxia Tang1, Yongchun Xu1 and Yongfu Su1,2* 

Introduction and preliminaries
Sometimes, it is found appropriate to assign the average of several measurements as a 
measure to ascertain the distance between two points. Inspired from this line of think-
ing, Menger (1942, 1951) introduced the notion of probabilistic metric spaces as a 
generalization of metric spaces. In fact, he replaced the distance function d(x, y) with 
a distribution function Fx,y : X × X → R wherein for any number t, the value Fx,y(t) 
describes the probability that the distance between x and y is less than t. In fact the study 
of such spaces received an impetus with the pioneering work of Schweizer and Sklar 
(1983). The theory of probabilistic metric spaces is of paramount importance in random 
functional analysis especially due to its extensive applications in random differential as 
well as random integral equations (Chang et al. 1994). Sehgal and Bharucha-Reid (1972; 
Sehgal 1966) established fixed point theorems in probabilistic metric spaces (for short, 
PM-spaces). Indeed, by using the notion of probabilistic qcontraction, they proved a 
unique fixed point result, which is an extension of the celebrated Banach contraction 
principle (Banach 1922). For the interested reader, a comprehensive study of fixed point 
theory in the probabilistic metric setting can be found in the book of Hadǐić and Pap 
(2001), see also Van An et al. (2014) for further discussion on generalizations of metric 
fixed point theory. Recently, Choudhury and Das (2008) gave a generalized unique fixed 
point theorem by using an altering distance function, which was originally introduced 
by Khan et al. (1984). For other results in this direction, we refer to Chauhan et al. (2013, 
2014a, b, c, d), Choudhury et al. (2008), Choudhury and Das (2009), Ćirić (1975), Gajić 
and Rakoćević (2007), Mihet (2009), Dutta et  al. (2009), Hadzi and Pap (2001), Kutbi 
et al. (2015). In particular, Dutta et al. (2009) defined nonlinear generalized contractive 
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type mappings involving altering distances (say, ψ-contractive mappings) in Menger PM-
spaces and proved their theorem for such kind of mappings in the setting of G-complete 
Menger PM-spaces. On contributing to this study, In 2015, Marwan Amin Kutbi et al. 
weakened the notion of ψ-contractive mapping and establish some fixed point theorems 
in G-complete and M-complete Menger PM-spaces, besides discussing some related 
results and illustrative examples.

Next we shall recall some well-known definitions and results in the theory of proba-
bilistic metric spaces which are used later on in this paper. For more details, we refer the 
reader to Chauhan et al. (2014a, b), Kutbi et al. (2015), Xu et al. (2015a, b), Chauhan and 
Pant (2014), Su and Zhang (2014), Su et al. (2015).

Definition 1 A triangular norm (shorter T-norm) is a binary operation T on [0,  1] 
which satisfies the following conditions:

(a)  T is associative and commutative;
(b) T is continuous;
(c)  T (a, 1) = a for all a ∈ [0, 1];

(d)  T (a, b) ≤ T (c, d) whenever a ≤ c and b ≤ d for each a, b, c, d ∈ [0, 1].

The following are the four basic T-norms:

It is easy to check, the above four T-norms have the following relations:

for any a, b ∈ [0, 1].

Definition 2 A function F(t) : (−∞,+∞) → [0, 1] is called a distance distribu-
tion function if it is non-decreasing and left-continuous with limt→−∞ F(t) = 0,

limt→+∞ F(t) = 1. and F(0) = 0. The set of all distance distribution functions is denoted 
by D+. A special distance distribution function is given by

Definition 3 A Menger probabilistic metric space is a triple (E, F, T) where E is a non-
empty set, T is a continuous t-norm and F is a mapping from E × E into D+ such that, if 
Fx,y denotes the value of F at the pair (x, y), the following conditions hold:

T1(a, b) = max(a+ b− 1, 0);

T2(a, b) = a · b;

T3(a, b) =







ab

a+b−ab
, ab �= 0

0, ab = 0;

T4(a, b) = min(a, b).

T1(a, b) ≤ T2(a, b) ≤ T3(a, b) ≤ T4(a, b),

H(t) =

{

0, t ≤ 0,

1, t > 0.
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(MPM-1) Fx,y(t) = H(t) if and only if x = y;
(MPM-2) Fx,y(t) = Fy,x(t) for all x, y ∈ E and t ∈ (−∞,+∞);

(MPM-3) Fx,y(t + s) ≥ T (Fx,z(t), Fz,y(s)) for all x, y, z ∈ E and t > 0, s > 0.

Definition 4 (Kutbi et al. 2015) Let (E, F, T) be a Menger probabilistic metric space.

(1)   A sequence {xn} in E is said to converge to x ∈ E if for any given ε > 0 and � > 0 , 
there exists a positive integer N = N (ε, �) such that Fxn,x(ε) > 1− � whenever 
n > N .

(2)    A sequence {xn} in E is called a Cauchy sequence if for any ε > 0 and � > 0, 
there exists a positive integer N = N (ε, �) such that Fxn,xm(ε) > 1− �, whenever 
n,m > N  .

(3)   (E,  F,  T) is said to be M-complete if each Cauchy sequence in E converges to 
some point in E.

(4)   A sequence {xn} in E is called a G-Cauchy sequence if limn→∞ Fxn,xn+m(t) = 0 for 
any given positive integer m and t > 0.

(5)    (E, F, T) is said to be G-complete if each G-Cauchy sequence is convergent in E.

Example Let xn =
∑n

i=1
1
i , n = 1, 2, 3, . . .. It is easy to show, for any given m, that

as n → ∞. Hence {xn} is a G-Cauchy sequence. But it is not a Cauchy sequence, since xn 
does not converge.

Definition 5 (Kutbi et al. 2015) A function φ : R+ → R+ is said to be a φ-function if it 
satisfies the following conditions:

(i)  φ(t) = 0 if and only if t = 0;
(ii)  φ(t) is strictly increasing and φ(t) → ∞ as t → ∞;
(iii) φ(t) is left continuous in (0,+∞);
(iv) φ(t) is continuous at 0.

In the sequel, the class of all φ-functions will be denoted by �. We denote by � the 
class of all continuous non-decreasing functions ψ : R+ → R+ such that ψ(0) = 0 and 
ψn(an) → 0, whenever an → 0, as n → ∞.

Kutbi et al. (2015) proved the two generalized contraction mapping principles for the 
following so-called ψ-contractive mapping T from a Menger probabilistic metric space 
(E, F, T) into it-self:

where c ∈ (0, 1) and ψ(t),φ(t) are two functions with the suitable conditions. In so-
called M-complete Menger probabilistic spaces, they have proved a generalized ψ-con-
traction mapping principle provided that F is triangular:

|xn − xn+m| =

n+m
∑

i=n+1

1

i
≤

m

n+ 1
→ 0

1

Ffx,fy(φ(ct))
− 1 ≤ ψ

(

1

Fx,y(φ(t))
− 1

)

, ∀t > 0, ∀x, y ∈ E
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for every x, y, z ∈ E and each t > 0.
The purpose of this paper is to present the definition of (φ,ϕ)-contractive mapping and 

to discuss the relation of ψ-contractive mappings and (φ,ϕ)-contractive mappings. Fur-
thermore, the generalized (φ,ϕ)-contraction mapping principle has been proved without 
the uniqueness condition. Meanwhile, the generalized ψ-contraction mapping principle 
has been obtained by using an ingenious method.

The equivalence of (φ,ϕ)‑contractive and (φ,ψ)‑contractive
We denote by �1 the class of all continuous non-decreasing functions ϕ : (0, 1] → (0, 1] 
such that limt→0 ϕ(t) = 0 and ϕ(1) = 1. We denote by �2 the class of all continu-
ous non-decreasing functions ψ : [0,+∞) → [0,+∞) such that ψ(0) = 0 and 
limt→+∞ ϕ(t) = +∞. Further we give the following definition.

Definition 6 Let (E, F, T) be a Menger probabilistic space and f : E → E be a mapping 
satisfying the following inequality

where c ∈ (0, 1), φ ∈ �, ϕ ∈ �1. The mapping f satisfying condition (1) is called  
(φ,ϕ)-contractive mapping.

Definition 7 Let (E, F, T) be a Menger probabilistic space and f : E → E be a mapping 
satisfying the following inequality

where c ∈ (0, 1),φ ∈ �, ψ ∈ �2. The mapping f satisfying condition (2) is called  
(φ,ψ)-contractive mapping.

Theorem 8 Let T be a (φ,ψ)-contractive mapping, then T is also a (φ,ϕ)-contractive 
mapping, where

Proof We rewrite the (2) to the following form

which can be rewritten to

1

Fx,y(t)
− 1 ≤

1

Fx,z(t)
− 1+

1

Fz,y(t)
− 1,

(1)Ffx,fy(φ(ct)) ≥ ϕ(Fx,y(φ(t))) ∀x, y ∈ E, ∀t > 0,

(2)
1

Ffx,fy(φ(ct))
− 1 ≤ ψ

(

1

Fx,y(φ(t))
− 1

)

, ∀x, y ∈ E, ∀t > 0,

ϕ(t) =
1

ψ

(

1
t − 1

)

+ 1

, 0 < t ≤ 1.

1

Ffx,fy(φ(ct))
≤ ψ

(

1

Fx,y(φ(t))
− 1

)

+ 1, ∀x, y ∈ E, ∀t > 0,

Ffx,fy(φ(ct)) ≥
1

ψ

(

1
Fx,y(φ(t))

− 1

)

+ 1

, ∀x, y ∈ E, ∀t > 0.
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That is

This completes the proof. 

Theorem 9 Let T be a (φ,ϕ)-contractive mapping, then T is also a (φ,ψ)-contractive 
mapping, where

Proof From the (3), we have

We rewrite the (1) to the following form

which can be rewritten to

That is,

This completes the proof. 
In this paper, we prove the following contraction mapping principle for the (φ,ϕ)-con-

tractive mappings in a G-complete Menger probabilistic space. Meanwhile, we do not 
need to add the uniqueness condition of fixed point (see Kutbi et al. 2015).

Theorem 10 Let (E, F, T) be a G-complete Menger probabilistic space and f : E → E 
be a (φ,ϕ)-contractive mapping. Assume that liman→1 ϕ

n(an) = 1. Then f has a unique 
fixed point.

Proof For any x0 ∈ E, we define a sequence {xn} by xn+1 = Txn for all n ≥ 0. From (1) 
and the properties of φ and ϕ we know, for all t > 0, that

Ffx,fy(φ(ct)) ≥ ϕ(Fx,y(φ(t))) ∀x, y ∈ E, ∀t > 0.

�

(3)ψ(t) =
1

ϕ

(

1
t+1

) − 1, 0 ≤ t < +∞.

ϕ(t) =
1

ψ

(

1
t − 1

)

+ 1

, 0 < t ≤ 1.

Ffx,fy(φ(ct)) ≥
1

ψ

(

1
Fx,y(φ(t))

− 1

)

+ 1

, ∀x, y ∈ E, ∀t > 0,

1

Ffx,fy(φ(ct))
≤ ψ

(

1

Fx,y(φ(t))
− 1

)

+ 1, ∀x, y ∈ E, ∀t > 0.

1

Ffx,fy(φ(ct))
− 1 ≤ ψ

(

1

Fx,y(φ(t))
− 1

)

, ∀x, y ∈ E, ∀t > 0.

�

(4)

Fxn+1,xn(φ(t)) ≥ ϕ

(

Fxn,xn−1

(

φ

(

t

c

)))

≥ ϕ

(

ϕ

(

Fxn−1,xn−2

(

φ

(

t

c2

))))

≥ ϕ3

(

Fxn−2,xn−3

(

φ

(

t

c3

)))

≥ · · · ≥ ϕn

(

Fx1,x0

(

φ

(

t

cn

)))

→ 1
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as n → ∞. Let ε > 0 be given, then by using the properties (i) and (iv) of a function φ we 
can find t > 0 such that ε > φ(t). It follows from (4) that

By using the triangle inequality (MPM-3), we obtain

Thus, letting n → ∞ and making use of (5), for any integer p, we get

Hence {xn} is a G-Cauchy sequence. Since (E, F, T) is G-complete, there exists a point 
u ∈ E such that xn → u as n → ∞. For any ε > 0, choose φ(t) < ε

2
, we have

as n → ∞, which in turn yields that fu = u. Next we show the uniqueness of the fixed 
point. If there exists v such that fv = v, by using (3) we hvae

as n → ∞. It is easy to see u = v. The proof is completed. 
Kutbi et al. (2015) proved the following fixed point theorem for the (φ,ψ)-contractive 

mappings in a G-complete Menger probabilistic space. Meanwhile, they need to add the 
uniqueness condition of fixed point (see Xu et al. 2015). In order to clearly show the con-
tent of theorem, we use a clear form to write this theorem.

Theorem  11 (Kutbi et  al. 2015) Let (E,  F,  T) be a G-complete Menger probabilistic 
space and f : E → E be a (φ,ψ)-contractive mapping. Assume that liman→0 ψ

n(an) = 0 . 
Then f has a fixed point.

In order to get the uniqueness of fixed point, authors added the following condition:

where F(f) denotes the set of all fixed points of a mapping f.

Theorem 12 (Kutbi et al. 2015) Adding condition (∗) to the hypotheses of Theorem 11, 
we obtain uniqueness of the fixed point.

(5)lim
n→∞

Fxn+1,xn(ε) = 1.

Fxn,xn+p(ε) ≥ T

(

Fxn,xn+1

(

ε

p

)

,T

(

Fxn+1,xn+1

(

ε

p

)

, . . . ,

(

Fxn+p−1,xn+p

(

ε

p

))

· · ·

))

.

lim
n→∞

Fxn+p ,xn(ε) = 1, ∀ε > 0.

Ffu,u(ε) ≥ T
(

Ffu,xn+1

(ε

2

)

, Fxn+1,u

(ε

2

))

,

≥ T
(

Ffu,xn+1
(φ(t)), Fxn+1,u

(ε

2

))

,

≥ T

(

Fu,xn

(

φ

(

t

c

))

, Fxn+1,u

(ε

2

)

)

→ 1,

Fu,v(φ(t)) = Ffu,fv(φ(t)) ≥ ϕ

(

Fu,v

(

φ

(

t

c

)))

≥ · · · ≥ ϕn

(

Fu,v

(

φ

(

t

cn

)))

→ 1

�

Fu,v(0) = 0, ∀u, v ∈ F(f ), (∗)
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By using Theorem 10, we can get the following contraction mapping principle for the 
(φ,ψ)-contractive mappings in a G-complete Menger probabilistic space.

Theorem 13 Let (E, F, T) be a G-complete Menger probabilistic space and f : E → E 
be a (φ,ψ)-contractive mapping. Assume that liman→1 ϕ

n(an) = 1. Then f has a unique 
fixed point, where

Proof From Theorem 8, we know that, T is also a (φ,ϕ)-contractive mapping, where

Since liman→1 ϕ
n(an) = 1, by using Theorem  8, we obtain the conclusion. This com-

pletes the proof. 

Open question 14 Is the following property right?

where

If the property (6) is right, then we can obtain the following result.

Theorem 15 Let (E, F, T) be a G-complete Menger probabilistic space and f : E → E 
be a (φ,ψ)-contractive mapping. Assume that liman→0 ψ

n(an) = 0. Then f has a unique 
fixed point.

Conclusion 16 The property (6) is right. Therefore Theorem 15 holds.

Proof It is not hard to show that, the property (6) is equivalent to the following 
proposition

where an = 1
bn

− 1 and

Next, we prove (7). Let

ϕ(t) =
1

ψ( 1t − 1)+ 1
, 0 < t ≤ 1.

ϕ(t) =
1

ψ( 1t − 1)+ 1
, 0 < t ≤ 1.

�

(6)lim
bn→1

ϕn(bn) = 1 ⇔ lim
an→0

ψn(an) = 0,

ϕ(t) =
1

ψ( 1t − 1)+ 1
, 0 < t ≤ 1.

(7)lim
bn→1

ϕn(bn) = 1 ⇔ lim
an→0

ψn(an) = 0,

ϕ(t) =
1

ψ( 1t − 1)+ 1
, 0 < t ≤ 1.

B(t) =
1

1+ t
, A(t) =

1

t
− 1, 0 < t ≤ 1,
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then we have

Now we prove

Observe

Because limn→∞ ϕn(bn) = 1 and limt→1 A(t) = 0, we have liman→0 ψ
n(an) = 0.

Now we prove

Observe

Because limn→∞ ψn(an) = 0 and limt→0 B(t) = 1, we have limbn→1 ϕ
n(bn) = 1.

This completes the proof. 

Examples

Theorem 17 Let (X, d) be a metric space, f : X → X be a mapping satisfying the fol-
lowing condition:

B−1 = A, A−1 = B,

an =
1

bn
− 1 = A(bn), bn =

1

an + 1
= B(an),

ϕ(t) =
1

ψ( 1t − 1)+ 1
=

1

ψ(A(t))+ 1
= BψA(t), 0 < t ≤ 1.

ψ(t) = AϕB(t), 0 ≤ t < +∞.

lim
bn→1

ϕn(bn) = 1 ⇒ lim
an→0

ψn(an) = 0.

ψn(an) = ψn−1ψ(an)

= ψn−1AϕB(an)

= ψn−2AϕBAϕB(an)

= . . .

= (AϕB)n(an)

= (AϕB)nA(bn)

= Aϕn(bn).

lim
bn→1

ϕn(bn) = 1 ⇐ lim
an→0

ψn(an) = 0.

ϕn(bn) = ϕn−1ϕ(bn)

= ϕn−1BψA(bn)

= ϕn−2(BψA)2(bn)

= . . .

= (BϕA)n(bn)

= (BϕA)nB(an)

= Bψn(an)

�

(8)d(f (x), f (y)) ≤ 2c2d(x, y), ∀x, y ∈ X ,
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where c ∈ (0, 1) is a constant. Let

Then

(1)  (X , F ,T4) is a Menger probabilistic metric space;
(2)  T is a (φ,ϕ)-contractive mapping, where φ(t) = ϕ(t) = t2;
(3)  T is also a (φ,ψ)-contractive mapping, where φ(t) = t2,ψ(t) = t2 + 2t.

Proof (1) We prove (X , F ,T4) is a Menger probabilistic metric space. The conditions 
(MPM-1) and (MPM-2) obviously hold. We prove the condition (MPM-3). For any 
x, y, z ∈ X and t > 0, s > 0, we claim that

If not, we have

which is equivalent to

Adding the above two inequalities, we get

which implies

This is a contradiction which implies the condition (MPM-3) holds.
(2) From (8) we have

Fx,y(t) =

{

t
t+d(x,y)

, t > 0,

0, t ≤ 0,
∀x, y ∈ X .

t + s

(t + s)+ d(x, y)
≥ min

{

t

t + d(x, z)
,

s

s + d(z, y)

}

.

t + s

(t + s)+ d(x, y)
<

t

t + d(x, z)
,

t + s

(t + s)+ d(x, y)
<

s

s + d(z, y)

(t + s)(t + d(x, z)) < t((t + s)+ d(x, y)),

(t + s)(s + d(z, y)) < s((t + s)+ d(x, y)).

(t + s)(d(x, z)+ d(z, y)) < (t + s)d(x, y)

d(x, z)+ d(z, y) < d(x, y).

d(f (x), f (y)) ≤ (2c2 +
c2

t2
d(x, y))d(x, y), ∀x, y ∈ X , t > 0,
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and hence

We rewrite inequality (9) to the following form

That is,

where φ(t) = t2,ϕ(t) = t2.

(3) By using Theorem 9, we know that, T is also a (φ,ψ)-contractive mapping with

That is ψ(t) = 1

( 1
t+1

)2
− 1 = t2 + t. This completes the proof. 

Theorem 18 Let (X, d) be a metric space, f : X → X be a nonexpansive mapping. Let

Then

(1)  (X , F ,T4) is a Menger probabilistic metric space;
(2)  T is a (φ,ϕ)-contractive mapping, where φ(t) = t2,ϕ(t) = (1+t)t

2
;

(3)  T is also a (φ,ψ)-contractive mapping, where φ(t) = t2, ψ(t) = 2t2+3t
2+t .

Proof (1) It is a conclusion of Theorem 17. (2) Since T is nonexpansive, let c ∈ (0, 1) be 
a constant such that 3c2 ≥ 2, we have

(9)

d(f (x), f (y)) ≤
1

t2

(

2c2t2 + c2d(x, y)
)

d(x, y), ∀x, y ∈ X , t > 0,

t2d(f (x), f (y)) ≤ (2c2t2 + c2d(x, y))d(x, y), ∀x, y ∈ X , t > 0,

c2t4 + t2d(f (x), f (y)) ≤ c2t4 + (2c2t2 + c2d(x, y))d(x, y), ∀x, y ∈ X , t > 0,

t2(c2t2 + d(f (x), f (y)) ≤ c2(t4 + 2t2d(x, y)+ d2(x, y)), ∀x, y ∈ X , t > 0,

t2(c2t2 + d(f (x), f (y))) ≤ c2(t2 + d(x, y))2, ∀x, y ∈ X , t > 0,

t4

(t2 + d(x, y))2
≤

c2t2

c2t2 + d(f (x), f (y))
, ∀x, y ∈ X , t > 0,

(

t2

t2 + d(x, y)

)2

≤
c2t2

c2t2 + d(f (x), f (y))
, ∀x, y ∈ X , t > 0.

Ff (x),f (y)((ct)
2) ≥ (Fx,y(t

2))2, ∀x, y ∈ X , t > 0.

Ff (x),f (y)(φ(ct)) ≥ ϕ(Fx,y(φ(t)), ∀x, y ∈ X , t > 0,

ψ(t) =
1

ϕ( 1
t+1

)
− 1, 0 ≤ t < +∞.

�

Fx,y(t) =

{

t
t+d(x,y)

, t > 0,

0, t ≤ 0,
∀x, y ∈ X .

d(f (x), f (y)) ≤
3c2t2 + d(x, y)

2t2 + d(x, y)
d(x, y), ∀x, y ∈ X , t > 0,
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and hence

We rewrite inequality (10) to the following form

That is,

where φ(t) = t2, ϕ(t) = (1+t)t
2

. (3) By using Theorem  9, we know that, T is also a  
(φ,ψ)-contractive mapping with

That is,

This completes the proof. 
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(10)

(2t2 + d(x, y))d(f (x), f (y)) ≤ (3c2t2 + d(x, y))d(x, y), ∀x, y ∈ X , t > 0.

2c2t4 + 2t2d(f (x), f (y))+ c2t2d(x, y)+ d(f (x), f (y))d(x, y)

≤ 2c2t4 + 4c2t2d(x, y)+ (d(x, y))2, ∀x, y ∈ X , t > 0.

(c2t2 + d(f (x), f (y)))(2t2 + d(x, y))

≤ 2c2t4 + 4c2t2d(x, y)+ (d(x, y))2, ∀x, y ∈ X , t > 0.

2t2 + d(x, y)

(t2 + d(x, y))2
≤

2c2

c2t2 + d(f (x), f (y))
, ∀x, y ∈ X , t > 0.

(

1+
t2

t2 + d(x, y)

)

t2

t2 + d(x, y
≤

2c2t2

c2t2 + d(f (x), f (y))
, ∀x, y ∈ X , t > 0.

1

2

(

1+
t2

t2 + d(x, y)

)

t2

t2 + d(x, y)
≤

c2t2

c2t2 + d(f (x), f (y))
, ∀x, y ∈ X , t > 0.

Ff (x),f (y)((ct)
2) ≥

1+ Fx,y(t
2)

2
Fx,y(t

2), ∀x, y ∈ X , t > 0.

Ff (x),f (y)(φ(ct)) ≥ ϕ(Fx,y(φ(t)), ∀x, y ∈ X , t > 0.

ψ(t) =
1

ϕ( 1
t+1

)
− 1, 0 ≤ t < +∞.

ψ(t) =
2

(1+ 1
1+t )

1
1+t

− 1

=
2(1+ t)2

2+ t
− 1

=
2t2 + 3t

2+ t
.

�
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