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Background
The generalized regularized long wave (GRLW) equation, which discussed here, is based 
upon the regularized long wave (RLW) equation. The RLW equation was firstly derived 
from long waves propagating in the positive x-direction as a model for small-amplitude 
long waves on the surface of water in a channel by Peregrine (1966, 1967). Benjamin 
et al. (1972) introduced the RLW equation as a reasonable alternative model to the more 
common Korteweg-de Vries (KdV) equation. The KdV equation describes the long 
waves with assumption of small wave amplitude and large wave length in non-linear dis-
persive and many other physical systems. Later, the equal width (EW) wave equation 
was used by Morrison et al. (1984) as an alternative model to the RLW equation. So, the 
GRLW equation is related to the generalized equal width (GEW) wave equation and the 
generalized Korteweg-de Vries (GKdV) equation. These general equations are nonlinear 
wave equations with (p+ 1)th nonlinearity and have solitary wave solutions, which are 
pulse-like.

The GKdV equation is given by

(1)Ut + εUpUx + µUxxx = 0,

Abstract 

In this work, we construct the lumped Galerkin approach based on cubic B-splines 
to obtain the numerical solution of the generalized regularized long wave equation. 
Applying the von Neumann approximation, it is shown that the linearized algorithm is 
unconditionally stable. The presented method is implemented to three test problems 
including single solitary wave, interaction of two solitary waves and development of 
an undular bore. To prove the performance of the numerical scheme, the error norms 
L2 and L∞ and the conservative quantities I1, I2 and I3 are computed and the compu-
tational data are compared with the earlier works. In addition, the motion of solitary 
waves is described at different time levels.

Keywords:  GRLW equation, Lumped Galerkin method, Cubic B-spline, Solitary waves, 
Undular bore

Mathematics Subject Classification:  41A15, 65N30, 76B25

Open Access

© 2016 Zeybek and Karakoç. This article is distributed under the terms of the Creative Commons Attribution 4.0 International 
License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any 
medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons 
license, and indicate if changes were made.

RESEARCH

Zeybek and Karakoç ﻿SpringerPlus  (2016) 5:199 
DOI 10.1186/s40064-016-1773-9

*Correspondence:   
halil.zeybek@agu.edu.tr 
1 Department of Applied 
Mathematics, Faculty 
of Computer Science, 
Abdullah Gul University, 
38080 Kayseri, Turkey
Full list of author information 
is available at the end of the 
article

http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s40064-016-1773-9&domain=pdf


Page 2 of 17Zeybek and Karakoç ﻿SpringerPlus  (2016) 5:199 

the GEW equation is written as

and the GRLW equation has the following form:

in which physical boundary conditions U → 0 as x → ±∞, the subscripts t and x repre-
sent time and spatial differentiation, ε and p is a positive integer, µ is positive constant. 
The boundary and initial conditions are taken

where f(x) is a localized disturbance inside the interval [a, b] and it will be considered 
later. In the fluid problems, U implies the vertical displacement of the water surface or 
similar physical quantity. In the plasma applications, U is denoted as negative of the 
electrostatic potential. That’s why, the solitary wave solution of Eqs. (1), (2) and (3) helps 
us to understand the many physical phenomena with weak nonlinearity and dispersion 
waves such as nonlinear transverse waves in shallow water, ion-acoustic and magnetohy-
drodynamic waves in plasma and phonon packets in nonlinear crystals.

The RLW equation is obtained by taking p = 1 in GRLW equation (3). Up to now, 
many numerical including finite elements and analytical solution techniques have been 
presented on the RLW equation. The RLW equation was investigated with the growth of 
an undular bore by Peregrine (1966). Morrison et al. (1984) proposed the approximate 
analytical technique for the scattering of solitary waves of the RLW equation. Galerkin 
approach with linear, quadratic and quintic B-spline was used by Doğan (2002), Gardner 
et al. (1995) and Dağ et al. (2006). Collocation method was set up by Raslan (2001) and 
Saka et  al. (2011) with quadratic and both sextic and septic B-splines functions. Esen 
and Kutluay (2006) obtained the numerical solution of the RLW equation with lumped 
Galerkin method using quadratic B-spline. Galerkin method with extrapolation tech-
niques has been implemented to the RLW equation by Mei and Chen (2012). Later on, 
the RLW equation has been solved numerically by using von Neumann technique based 
on parametric quintic splines (Lin 2014).

If p = 2 in Eq.  (3), the obtained equation is called as the modified regularized long 
wave (MRLW) equation. Finite element methods based on quintic, cubic and septic 
collocation were used for obtaining the numerical solution of the MRLW equation by 
Gardner et al. (1997), Khalifa et al. (2008) and Karakoç et al. (2014). Collocation method 
based on quintic B-spline functions with Rubin and Graves linearization technique was 
investigated for solving the MRLW equation by Karakoç et al. (2013). The MRLW equa-
tion was solved numerically by Ali (2009) using mesh free collocation method. Galer-
kin approach with cubic B-spline has been applied to MRLW equation by Karakoç et al. 
(2015).

When we consider the GRLW equation discussed here, there are some exact and 
numerical solution techniques on its. Hamdi et  al. (2004) presented the exact solu-
tion technique. Numerical methods based on decomposition scheme, finite difference 

(2)Ut + εUpUx − µUxxt = 0,

(3)Ut + Ux + p(p+ 1)UpUx − µUxxt = 0,

(4)
U(a, t) = 0, U(b, t) = 0,

Ux(a, t) = 0, Ux(b, t) = 0,

U(x, 0) = f (x), a ≤ x ≤ b,
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scheme and element free kp-Ritz were introduced for GRLW equation by Kaya (2004), 
EL-Danaf et al. (2014) and Guo et al. (2014). An approximate quasilinearization scheme 
was used to solve the GRLW equation with initial condition on the formation of undular 
bore by Ramos (2007). Roshan (2012) and Mohammadi (2015) have got the numerical 
results of the GRLW equation using finite element method based on Petrov Galerkin and 
exponential B-spline collocation. Also, Galerkin and lumped Galerkin method used here 
have been implemented to the EW, KdVB, Coupled KdV and MEW equations by Doğan 
(2005), Saka and Dağ (2009), Kutluay and Uçar (2013) and Esen (2006).

Inspired by the results of the applied numerical methods to similar type equations, 
we can say that lumped Galerkin approach is an accurate and efficient numerical tech-
nique. So, in this work, we have constructed the lumped Galerkin approach with cubic 
B-splines to get the numerical results of the GRLW equation.

A lumped Galerkin method
Firstly, the solution domain limited to a finite interval [a,  b] is divided into N 
equal subinterval by the points xm such that a = x0 < x1 . . . < xN = b and length 
h = b−a

N = (xm+1 − xm). Prenter (1975) described the cubic B-spline functions φm(x), ( 
m= −1(1) N + 1), at the nodes xm which form a basis over the interval [a, b] by

Each cubic B-spline φm covers four finite intervals, hence each finite interval [xm, xm+1] 
is covered by four splines. The approximate solution UN (x, t) is denoted in terms of the 
cubic B-splines by

in which the unknown time-dependent quantities δj(t) will be computed by using the 
boundary and weighted residual conditions. Using the equality hη = x − xm such that 
0 ≤ η ≤ 1, the finite interval [xm, xm+1] is converted to more easily workable interval 
[0, 1]. So, the cubic B-splines (5) depending on variable η over the gap [0, 1] are reorgan-
ized with

Here we should mention that except for φm−1(x),φm(x),φm+1(x) and φm+2(x), all cubic 
B-spline functions are null over the finite element [0, 1]. Thus, approximation function 

(5)φm(x) = 1

h3











































(x − xm−2)
3, x ∈ [xm−2, xm−1],

h3 + 3h2(x − xm−1)+ 3h(x − xm−1)
2 − 3(x − xm−1)

3, x ∈ [xm−1, xm],

h3 + 3h2(xm+1 − x)+ 3h(xm+1 − x)2 − 3(xm+1 − x)3, x ∈ [xm, xm+1],

(xm+2 − x)3, x ∈ [xm+1, xm+2],

0 otherwise.

(6)UN (x, t) =
N+1
∑

j=−1

φj(x)δj(t),

(7)

φm−1 = (1− η)3,

φm = 1+ 3(1− η)+ 3(1− η)2 − 3(1− η)3,

φm+1 = 1+ 3η + 3η2 − 3η3,

φm+2 = η3.
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(6) in terms of element parameters δm−1, δm, δm+1, δm+2 and B-spline element shape 
functions φm−1,φm,φm+1,φm+2 can be expressed over the interval [0, 1] by

The nodal values of U ,U ′,U ′′ with respect to the time parameters δm are derived from 
B-splines (7) and trial function (8) as follows:

where the superscript ′  and ′′ symbolize first and second derivative to η, respectively. 
When applying the Galerkin’s approach with weight function W(x) to Eq. (3), the weak 
form of Eq. (3) is obtained as

Implementing the change of variable x → η to integral (10), which yields

where Ů  is considered to be a constant over an element to simplify the integral. Applying 
partial integration once to (11), this leads to the following equality:

in which � = p(p+ 1)Ůp and β = µ

h2
. Substituting cubic B-splines (7) instead of the 

weight function W(x) and trial function (8) into integral equation (12) forms

where δe = (δm−1, δm, δm+1, δm+2)
T and the dot states differentiation to t, which can be 

written in matrix form by

(8)UN (η, t) =
m+2
∑

j=m−1

δjφj .

(9)

Um = U(xm) = δm−1 + 4δm + δm+1,

U ′
m = U ′(xm) = 3(−δm−1 + δm+1),

U ′′
m = U ′′(xm) = 6(δm−1 − 2δm + δm+1),

(10)
∫ b

a
W (Ut +Ux + p(p+ 1)UpUx − µUxxt)dx = 0.

(11)

∫ 1

0

W

(

Ut +
1

h
Uη +

p(p+ 1)

h
ŮpUη −

µ

h2
Uηηt

)

dη = 0,

(12)

∫ 1

0

[

W (Ut +
(1+ �)

h
Uη)+ βWηUηt

]

dη = βWUηt |10,

(13)

m+2
∑

j=m−1

[(

∫ 1

0

φiφj + βφ′
iφ

′
j

)

dη − βφiφ
′
j |10

]

δ̇ej +
m+2
∑

j=m−1

(

(1+ �)

h

∫ 1

0

φiφ
′
jdη

)

δej = 0,

(14)
[

Ae + β(Be − Ce)
]

δ̇e +
(1+ �)

h
Deδe = 0.
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The element matrices are

with the subscript i, j = m− 1,m,m+ 1,m+ 2. A lumped form of � calculated from 
(

Um+Um+1

2

)p
 is

By considering together contributions from all elements, the matrix equation (14) takes 
the form

where δ = (δ−1, δ0, ..., δN , δN+1)
T is a nodal parameters. The A, B, C and �D are septa-

diagonal matrices and their line of m is

where

Implementing the forward finite difference δ̇ = δn+1−δn

�t  and Crank–Nicolson approach 
δ = 1

2
(δn + δn+1) to Eq.  (15), we obtain the matrix system

Ae
ij =

� 1

0

φiφjdη =
1

140







20 129 60 1

129 1188 933 60

60 933 1188 129

1 60 129 20







Be
ij =

� 1

0

φ′
iφ

′
jdη =

1

10







18 21 − 36 − 3

21 102 − 87 − 36

−36 − 87 102 21

−3 − 36 21 18







Ce
ij = φiφ

′
j |10 = 3







1 0 − 1 0

4 − 1 − 4 1

1 − 4 − 1 4

0 − 1 0 1







De
ij =

� 1

0

φiφ
′
jdη =

1

20







−10 − 9 18 1

−71 − 150 183 38

−38 − 183 150 71

−1 − 18 9 10







� =
p(p+ 1)

2p
(δm−1 + 5δm + 5δm+1 + δm+2)

p.

(15)[A+ β(B− C)]δ̇ +
(1+ �)

h
Dδ = 0,

A = 1
140

(1, 120, 1191, 2416, 1191, 120, 1), B = 1
10
(−3,−72,−45, 240,−45,−72,−3),

C = (0, 0, 0, 0, 0, 0, 0), D = 1
20
(−1,−56,−245, 0, 245, 56, 1),

�D = 1
20

(

−�1,−18�1 − 38�2, 9�1 − 183�2 − 71�3, 10�1 + 150�2 − 150�3 − 10�4,

71�2 + 183�3 − 9�4, 38�3 + 18�4, �4

)

�1 = p(p+1)
2p

(δm−2 + 5δm−1 + 5δm + δm+1)
p, �2 = p(p+1)

2p
(δm−1 + 5δm + 5δm+1 + δm+2)

p,

�3 = p(p+1)
2p

(δm + 5δm+1 + 5δm+2 + δm+3)
p, �4 = p(p+1)

2p
(δm+1 + 5δm+2 + 5δm+3 + δm+4)

p.

(16)

[

A+ β(B− C)+
(1+ �)�t

2h
D

]

δn+1 =
[

A+ β(B− C)−
(1+ �)�t

2h
D

]

δn.
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Using the boundary conditions given by Eq.  (4), the (N + 3)× (N + 3) system (16) is 
reduced to (N + 1)× (N + 1) matrix system. Since the row m of A, B, C and D has seven 
elements, the system (16) comprises of the diagonal matrix with seven columns element 
(known as septa-diagonal matrix). The septa-diagonal matrix system can be solved by 
using Thomas algorithm (see subsection ). In this solution procedure, we need to two or 
three inner iterations δn∗ = δn + 1

2

(

δn − δn−1
)

 at each time step to minimize the non-
linearity. After all of these processes, we can easily achieve the recurrence relationship 
between two time steps n and n+ 1 which is an ordinary member of the matrix system 
(16)

where

To initiate the iteration, the initial vector δ0 must be calculated by using the initial 
and boundary conditions. Also, using the relations at the knots UN (xm, 0) = U(xm, 0),

m = 0, 1, . . . ,N  and derivative condition U ′
N (x0, 0) = U ′(xN , 0) = 0 together with a vari-

ant of the Thomas algorithm, the initial vector δ0 can be easily computed from the fol-
lowing matrix form

The solution of septa‑diagonal matrix system with Thomas algorithm

As used in Fortran program and given by Zaki (2000), the solution method of septa-
diagonal matrix system with Thomas algorithm is expressed as follows: The septa-diago-
nal system can be written by

and a0 = b0 = c0 = a1 = b1 = a2 = gN−2 = gN−1 = fN−1 = gN = fN = eN = 0. In the 
first step, the parameters are organized with

(17)

γ1δ
n+1
m−3

+ γ2δ
n+1
m−2

+ γ3δ
n+1
m−1

+ γ4δ
n+1
m + γ5δ

n+1
m+1

+ γ6δ
n+1
m+2

+ γ7δ
n+1
m+3

= γ7δ
n
m−3

+ γ6δ
n
m−2

+ γ5δ
n
m−1

+ γ4δ
n
m + γ3δ

n
m+1

+ γ2δ
n
m+2

+ γ1δ
n
m+3

,

γ1 = 1

140
− 3β

10
− (1+�)�t

40h
, γ2 = 120

140
− 72β

10
− 56(1+�)�t

40h
,

γ3 = 1191
140

− 45β
10

− 245(1+�)�t

40h
, γ4 = 2416

140
+ 240β

10
,

γ5 = 1191

140
− 45β

10
+ 245(1+�)�t

40h
, γ6 = 120

140
− 72β

10
+ 56(1+�)�t

40h
,

γ7 = 1
140

− 3β
10

+ (1+�)�t

40h
.













−3 0 3

1 4 1

. . .

1 4 1

− 3 0 3



























δ0−1

δ00
...

δ0N
δ0N+1















=













U ′(x0, 0)
U(x0, 0)

...

U(xN , 0)
U ′(xN , 0)













.

aiδi−3 + biδi−2 + ciδi−1 + diδi + eiδi+1 + fiδi+2 + giδi+3 = hi, i = 0, 1, . . . ,N ,
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and

As a second step, we calculate the following parameters

Now we obtain the solution

Stability analysis

In order to determine the linear stability analysis of the numerical algorithm, we use the Fou-
rier method and assume that the quantity Up in the non-linear term UpUx of GRLW equation 
is locally constant. Substituting the Fourier mode δnm = gneimkh where k is mode number, h is 
the element size and i =

√
−1, into the scheme (17), which produces the following equality

Now, if Euler’s formula [eikh = cos (kh)+ i sin (kh)] is used in Eq. (18) and this equation is 
simplified, we have the growth factor

where

The modulus of |g| is 1, so the linearized scheme is unconditionally stable.

α0 = b0, β0 = c0, µ0 = d0, ζ0 = e0
µ0
, �0 = f0

µ0
, η0 = g0

µ0
, γ0 = h0

µ0
,

α1 = b1, β1 = c1, µ1 = d1 − β1ζ0, ζ1 = e1−β1�0
µ1

, �1 = f1−β1γ0
µ1

,

η1 = g1
µ1
, γ1 = h1−β1γ0

µ1
,

α2 = b2, β2 = c2 − α2ζ0, µ2 = d2 − �0α2 − β2ζ1, ζ2 = e2−η0α2−β2�1
µ2

,

�2 = f2−β2η1
µ2

, η2 = g2
µ2
, γ2 = h2−α2γ0−β2γ1

µ2
.

αi = bi − aiζi−3, βi = ci − ai�i−3 − αiζi−2, µi = di − aiηi−3 − �i−2αi − βiζi−1,

ζi =
ei − ηi−2αi − βi�i−1

µi
, �i =

fi − βiηi−1

µi
, ηi =

gi

µi
,

γi =
hi − βiγi−1 − αiγi−2 − aiγi−3

µi
, for i = 3, 4, . . . ,N .

δi = γi − ζiδi+1 − �iδi+2 − ηiδi+3, i = 0, 1, . . . ,N − 4,N − 3,

δN−2 = γN−2 − �N−2δN − ηN−2δN−1, δN−1 = γN−1 − ηN−1δN , δN = γN .

(18)

γ1g
n+1ei(m−3)kh + γ2g

n+1ei(m−2)kh + γ3g
n+1ei(m−1)kh + γ4g

n+1eimkh

+ γ5g
n+1ei(m+1)kh + γ6g

n+1ei(m+2)kh + γ7g
n+1ei(m+3)kh

= γ7g
nei(m−3)kh + γ6g

nei(m−2)kh + γ5g
nei(m−1)kh + γ4g

neimkh

+ γ3g
nei(m+1)kh + γ2g

nei(m+2)kh + γ1g
nei(m+3)kh.

(19)g =
a− ib

a+ ib
,

(20)
a = (γ7 + γ1) cos (3kh)+ (γ6 + γ2) cos (2kh)+ (γ5 + γ3) cos (kh)+ γ4,

b = (γ7 − γ1) sin (3kh)+ (γ6 − γ2) sin (2kh)+ (γ5 − γ3) sin (kh).
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Numerical examples and results
In this section, we have applied the lumped Galerkin method to three test problems 
including single solitary wave, interaction of two solitary waves and development of an 
undular bore. These three examples are formed by using different values of initial condi-
tion. To demonstrate the efficiency and accuracy of the presented numerical scheme, the 
L2 and L∞ error norms are calculated by using the solitary wave solution in Eq. (22) and 
the following equalities:

Furthermore, so as to indicate that the numerical approach keeps the properties related 
to mass, momentum and energy, we observe the changes of the invariants

The exact solution of GRLW equation given in Gardner et al. (1997) and Roshan (2012) 
has the form

L2 =
∥

∥Uexact − UN

∥

∥

2
≃

√

h
∑N

J=0

∣

∣

∣

Uexact
j − (UN )j

∣

∣

∣

2

,

L∞ =
∥

∥Uexact −UN

∥

∥

∞ ≃ max
j

∣

∣

∣

Uexact
j − (UN )j

∣

∣

∣

.

(21)I1 =
∫ b

a
Udx, I2 =

∫ b

a

[

U2 + µ(Ux)
2
]

dx, I3 =
∫ b

a

[

U4 − µ(Ux)
2
]

dx.

(22)U(x, t) = p

√

c(p+ 2)

2p
sec h2

[

p

2

√

c

µ(c + 1)
(x − (c + 1)t − x0)

]

Table 1  Invariants and  errors for  single solitary wave with  p = 2, c = 1,h = 0.2,

�t = 0.025,µ = 1, x ∈ [0, 100]

Time I1 I2 I3 L2 × 10
3

L∞ × 10
3

0 4.4428661 3.2998133 1.4142140 0.00000000 0.00000000

2 4.4429408 3.2999387 1.4143308 1.95082039 1.19160336

4 4.4430058 3.3000340 1.4144250 2.36484347 1.22370847

6 4.4430683 3.3001243 1.4145151 2.45181423 1.20000405

8 4.4431302 3.3002134 1.4146042 2.45030808 1.15204959

10 4.4431919 3.3003022 1.4146930 2.41750291 1.08099621

Table 2  Invariants and  errors for  single solitary wave with  p = 2, c = 0.3,h = 0.1,

�t = 0.01,µ = 1, x ∈ [0, 100]

Time I1 I2 I3 L2 × 10
4

L∞ × 10
4

0 3.5820205 1.3450941 0.1537283 0.00000000 0.00000000

4 3.5820206 1.3450942 0.1537284 0.87664666 0.42835220

8 3.5820207 1.3450943 0.1537284 1.09331524 0.42259060

12 3.5820207 1.3450943 0.1537284 1.16711699 0.42542846

16 3.5820207 1.3450944 0.1537284 1.20368923 0.43881496

20 3.5820206 1.3450944 0.1537284 1.22736382 0.44722941
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where p
√

c(p+2)
2p  is amplitude, c + 1 is the speed of the wave traveling in the positive direc-

tion of the x-axis, x0 is arbitrary constant.

Table 3  Invariants and  errors for  single solitary wave with  p = 3, c = 1.2,h = 0.1,

�t = 0.025,µ = 1, x ∈ [0, 100]

Time I1 I2 I3 L2 × 10
3

L∞ × 10
3

0 3.7971850 2.8812503 0.9729681 0.00000000 0.00000000

2 3.7980891 2.8826274 0.9747778 6.37523435 4.16206480

4 3.7989816 2.8839827 0.9760069 10.53160077 6.58017074

6 3.7998750 2.8853393 0.9771207 13.02367954 8.10106559

8 3.8007710 2.8867002 0.9782095 13.93740889 8.73017950

10 3.8016702 2.8880662 0.9792942 13.29108053 8.47810737

Table 4  Invariants and  errors for  single solitary wave with  p = 3, c = 0.3,h = 0.1,

�t = 0.01,µ = 1, x ∈ [0, 100]

Time I1 I2 I3 L2 × 10
4

L∞ × 10
4

0 3.6776069 1.5657603 0.2268463 0.00000000 0.00000000

2 3.6776071 1.5657606 0.2268544 1.18720589 0.73102952

4 3.6776072 1.5657607 0.2268573 1.60659681 0.88913800

6 3.6776072 1.5657607 0.2268575 1.76861454 0.81537826

8 3.6776072 1.5657607 0.2268575 1.85663605 0.75460192

10 3.6776072 1.5657608 0.2268574 1.91332225 0.77992648

Table 5  Invariants and  errors for  single solitary wave with  p = 4, c = 4/3,h = 0.1,

�t = 0.01,µ = 1, x ∈ [0, 100]

Time I1 I2 I3 L2 × 10
3

L∞ × 10
3

0 3.4687090 2.6716914 0.7292045 0.00000000 0.00000000

2 3.4690660 2.6722659 0.7305244 2.71272493 1.97322350

4 3.4694090 2.6728105 0.7309610 3.80159123 2.65902173

6 3.4697519 2.6733547 0.7313161 3.84205549 2.71392029

8 3.4700954 2.6738997 0.7316538 2.88903866 2.11361885

10 3.4704395 2.6744459 0.7319875 1.51139451 0.85758574

Table 6  Invariants and  errors for  single solitary wave with  p = 4, c = 0.3,h = 0.1,

�t = 0.01,µ = 1, x ∈ [0, 100]

Time I1 I2 I3 L2 × 10
4

L∞ × 10
4

0 3.7592865 1.7300236 0.2894191 0.00000000 0.00000000

2 3.7592871 1.7300246 0.2894498 1.91721709 1.20079691

4 3.7592873 1.7300248 0.2894559 2.45184081 1.44560973

6 3.7592874 1.7300249 0.2894566 2.70531310 1.21535724

8 3.7592874 1.7300250 0.2894569 2.90077790 1.31685490

10 3.7592875 1.7300251 0.2894570 3.08940237 1.44471990
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The motion of single solitary wave

For this problem, we use the initial condition obtained by taking t = 0 in Eq.  (22). To 
coincide with papers Dağ et  al. (2006), Gardner et  al. (1997), Khalifa et  al. (2008), Ali 
(2009), Karakoç et al. (2013), Roshan (2012) and Mohammadi (2015), the same values of 
µ = 1, x0 = 40, x ∈[0, 100] and different values of p, c, h, �t are considered. The numeri-
cal computations are run from the time t = 0 to time t = 10 or t = 20.

Firstly, we choose the quantities p = 2, c = 1, h = 0.2, �t = 0.025 and p = 2, c = 0.3,  
h = 0.1, �t = 0.01. These values yield the amplitude = 1 and amplitude = 0.54772. The 
obtained results are given in Tables 1 and 2. It is observed from Table 1 that the changes 
of the invariants are less than 0.04, 0.05 and 0.05  %, respectively. In Table  2, three 

Table 7  Errors for single solitary wave with h = 0.1,�t = 0.01,µ = 1, x ∈ [0, 100]

p = 2 p = 3 p = 4 p = 6 p = 8 p = 10

c 0.03 0.1 0.03 0.1 0.03 0.1 0.03 0.1 0.03 0.1 0.03 0.1

amp 0.17 0.31 0.29 0.43 0.38 0.52 0.52 0.63 0.60 0.70 0.66 0.75

Time

L2 × 10
4

 5 4.36 0.16 5.84 0.37 6.89 0.65 8.26 1.44 9.12 2.76 9.71 5.09

 10 5.15 0.27 6.91 0.52 8.15 0.88 9.78 2.24 10.80 5.61 11.53 13.26

 15 5.28 0.36 7.08 0.63 8.35 1.08 10.02 3.25 11.08 9.92 11.91 27.67

 20 5.54 0.44 7.43 0.74 8.77 1.29 10.53 4.51 11.67 15.92 12.66 51.36

L∞ × 10
4

 5 2.21 0.09 2.96 0.21 3.49 0.36 4.18 0.82 4.61 1.68 4.90 3.20

 10 2.11 0.13 2.83 0.25 3.33 0.43 4.00 1.18 4.41 3.09 4.68 7.34

 15 2.01 0.16 2.69 0.29 3.18 0.51 3.81 1.66 4.20 5.12 4.46 14.39

 20 4.16 0.19 5.57 0.34 6.58 0.61 7.88 2.22 8.69 7.88 9.23 25.82

a b c

d fe

Fig. 1  Single solitary wave with c = 0.1, x0 = 40, x ∈ [0, 100]; a p = 2, b p = 3, c p = 4, d p = 6, e p = 8, f 
p = 10
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invariants are nearly unchanged as the time processes. Moreover, The values of the error 
norms L2 and L∞ are adequately small.

In the second case, we take the parameters p = 3, c = 1.2, h = 0.1, �t = 0.025 
and p = 3, c = 0.3, h = 0.1, �t = 0.01. These produce the amplitude = 1 and 
amplitude = 0.6. The calculated quantities are presented in Tables 3 and 4. As can be 
seen in Table 3, the changes of the invariants are less than 0.5, 0.7 and 0.7% . Table 4 
shows that three invariants are almost constant as the time increases. Also, we observe 
that the quantities of the error norms L2 and L∞ are reasonably small, as expected.

Thirdly, if p = 4, c = 4/3, h = 0.1, �t = 0.01 and p = 4, c = 0.3, h = 0.1, �t = 0.01, the 
solitary wave has amplitude = 1 and 0.6. The obtained results are reported in Tables 5 
and 6. Table 5 denotes that the changes of the invariants are less than 0.2, 0.3 and 0.3% . 
On the other hand, this change is too little in Table 6. As in the parameters of p = 2, 3, 
the quantities of the error norms L2 and L∞ are sensibly small.

Finally, we study the parameters p = 2, 3, 4, 6, 8, 10 with c = 0.03 and c = 0.1, h = 0.1, 
�t = 0.01. The calculated values are listed in Table 7 which clearly shows that the error 
norms are sufficiently small and remain less than 5.2× 10−3 with increasing time, p and 
c. In addition, the motion of single solitary wave is displayed at different times and the 
values of p in Fig.  1. From this figure, we can see that the solitary wave moves to the 
right at constant velocity and remains its shape and amplitude. When the values of p are 
increased, the peak position of single solitary wave rises.

Table 8  Comprasions of result for the single solitary wave with µ = 1, x ∈ [0, 100]

Methods L2 × 10
3

L∞ × 10
3 I1 I2 I3

p = 2 CBSC-CN (Gardner et al. 1995) 16.3900 9.2400 4.4420 3.2990 1.4130

c = 1 CBSC+PA-CN (Gardner et al. 1995) 20.3000 11.2000 4.4400 3.2960 1.4110

h = 0.2 CBSC (Khalifa et al. 2008) 9.3019 5.4371 4.4428 3.2998 1.4142

�t = 0.025 MFC (Ali 2009) 3.9140 2.0190 4.4428 3.2997 1.4141

t = 10 QBSPG (Roshan 2012) 3.0053 1.6874 4.4428 3.2998 1.4141

QBSC (Karakoç et al. 2013) 2.4155 1.0797 4.4431 3.3003 1.4146

EBSC (Mohammadi 2015) 2.3909 1.0647 4.4428 3.2998 1.4142

Ours-CBSG 2.4175 1.0809 4.4431 3.3003 1.4146

QBSPG (Roshan 2012)

p = 3  t = 1 0.0101 0.0080 3.6775 1.5657 0.2268

c = 0.3  t = 5 0.0409 0.0238 3.6775 1.5657 0.2268

h = 0.1  t = 10 0.0719 0.0377 3.6775 1.5657 0.2268

Ours-CBSG

�t = 0.01  t = 1 0.0706 0.0514 3.6776 1.5657 0.2268

 t = 5 0.1702 0.0876 3.6776 1.5657 0.2268

 t = 10 0.1913 0.0779 3.6776 1.5657 0.2268

QBSPG (Roshan 2012)

p = 4  t = 1 0.0158 0.0138 3.7592 1.7299 0.2894

c = 0.3  t = 5 0.0542 0.0382 3.7592 1.7299 0.2894

h = 0.1  t = 10 0.1225 0.0662 3.7592 1.7299 0.2894

Ours-CBSG

�t = 0.01 t = 1 0.1222 0.0983 3.7592 1.7300 0.2894

 t = 5 0.2591 0.1357 3.7592 1.7300 0.2894

 t = 10 0.3089 0.1444 3.7592 1.7300 0.2894
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Table 9  Invariants for  interaction of  two solitary waves with  p = 2, c1 = 4, c2 = 1,

x1 = 25, x2 = 55,h = 0.2,�t = 0.025,µ = 1, x ∈ [0, 250]

Time I1 I2 I3

Ours-CBSG QBSPG (Roshan 
2012)

Ours-CBSG QBSPG (Roshan 
2012)

Ours-CBSG QBSPG (Roshan 
2012)

0 11.4676 11.4677 14.6290 14.6286 22.8804 22.8788

4 11.4674 11.4677 14.6287 14.6292 22.8783 22.8811

8 11.4685 11.4677 14.6360 14.6229 22.9020 22.8798

12 11.4663 11.4677 14.6257 14.6299 22.8717 22.8803

16 11.4664 11.4677 14.6260 14.6295 22.8686 22.8805

20 11.4662 11.4677 14.6253 14.6299 22.8650 22.8806

Table 10  Invariants for interaction of two solitary waves with p = 3 and 4

Time 0 1 2 3 4 5 6

p=3

 I1 9.6907 9.6907 9.6906 9.6917 9.6898 9.6898 9.6901

 I2 12.9443 12.9443 12.9440 12.9489 12.9418 12.9420 12.9426

 I3 17.0187 17.0311 17.0324 18.0050 16.9849 16.9222 16.9557

p = 4

 I1 8.8342 8.7559 8.7089 8.6774 8.6518 8.6322 8.6134

 I2 12.1707 11.9304 11.7871 11.6932 11.6179 11.5560 11.4992

 I3 14.0296 13.3472 12.9204 13.2047 12.1972 12.0924 11.9640

a b

c d

Fig. 2  Interaction of two solitary waves at p = 3; a t = 0, b t = 3, c t = 5, d p = 6
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In Table 8, we compare the quantity of invariants and error norms obtained by pre-
sented scheme with the ones given by earlier methods. From the table, we can conclude 
that three invariants are to be close to each other. The magnitude of our error norms is 
smaller than the ones given by Gardner et al. (1997), Khalifa et al. (2008), Ali (2009) and 
Roshan (2012) for p = 2 and it is almost same with the paper (Roshan 2012) for p = 3, 4.

The interaction of two solitary waves

In the second test problem, we have worked on

which provides two positive solitary waves having different amplitudes of magnitudes 2 
and 1 at the same direction, where ci and xi, i = 1, 2 are arbitrary constants.

The parameters are chosen to be first values p = 2, c1 = 4, c2 = 1, x1 = 25, x2 = 55 , 
h = 0.2, �t = 0.025, µ = 1, x ∈ [0, 250]; second values p = 3, c1 = 48/5, c2 = 6/5 , 
x1 = 20, x2 = 50, h = 0.1, �t = 0.01, µ = 1, x ∈ [0, 120] and third values p = 4, 
c1 = 64/3, c2 = 4/3, x1 = 20, x2 = 80, h = 0.125, �t = 0.01, µ = 1, x ∈ [0, 200]. The 
numerical computations are given in Tables 9 and 10. The results in Tables show that 
the changes of the invariants from their initial state are as small as required and good 
agreement with those of Roshan (2012). The motion of two solitary waves is simulated 

(23)U(x, 0) =
2

∑

i=1

p

√

ci(p+ 2)

2p
sec h2

[

p

2

√

ci

µ(ci + 1)
(x − xi)

]

,

a b

c d

Fig. 3  Interaction of two solitary waves at p = 4; a t = 0, b t = 2, c t = 4, d t = 6
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Table 11  Invariants for development of an undular bore

Time I1 I2 I3

p = 2 p = 3 p = 4 p = 2 p = 3 p = 4 p = 2 p = 3 p = 4

Our results for U0 = 0.1, x0 = 0, d = 5,µ = 1/6, h = 0.1,�t = 0.1, x ∈ [−36, 300]

0 3.5949 3.5949 3.5949 0.3344 0.3344 0.3344 0.0031 0.0031 0.0031

50 3.6051 3.6050 3.6049 0.3348 0.3350 0.3350 0.0019 0.0016 0.0015

100 3.6051 3.6050 3.6050 0.3348 0.3350 0.3350 0.0018 0.0016 0.0015

150 3.6050 3.6050 3.6049 0.3350 0.3349 0.3350 0.0017 0.0016 0.0015

200 3.6050 3.6050 3.6049 0.3354 0.3349 0.3350 0.0012 0.0016 0.0015

Time I1 I2 I3

p = 2 p = 2 p = 2

QBSC[28] results for U0 = 0.1, d = 5,µ = 3/2, h = 0.2,�t = 0.1, x ∈ [0, 250]

0 4.0000 0.3759 0.0025

50 4.8507 0.4620 0.0034

100 5.7016 0.5480 0.0042

150 6.5531 0.6341 0.0051

200 7.4055 0.7204 0.0060

a b

Fig. 4  Solution profiles of the undular bore at p = 2; a t = 50, b t = 200

a b

Fig. 5  Solution profiles of the undular bore at p = 3; a t = 50, b t = 200
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at different time levels in Figs. 2 and 3. These figures show that the initial position of the 
wave with larger amplitude is on the left of the second wave with smaller amplitude. As 
the time processes, the large wave catches up with the smaller one and overlapping pro-
cess occurs. After a while, waves start to resume their original forms.

The development of an undular bore

As a last test problem, we have focused on the development of an undular bore given by

which indicates the elevation of the water above the equilibrium surface at time zero. 
The change in water level of magnitude Eq.  (24) is centered on x = xc. We study with 
the parameters U0 = 0.1,µ = 1/6, xc = 0, d = 5, h = 0.1,�t = 0.1, x ∈ [−36, 300] to be 
consistent with earlier works (Peregrine 1966; Esen and Kutluay 2006; Mei and Chen 
2012; Doğan 2005). The conservative quantities are recorded in Table 11. In this table, 
the changes of the invariants remain less than 1.1× 10−2, 1.0× 10−3 and 2.0× 10−3 , 
respectively. The undulation profiles are depicted at time t = 50 and t = 200 when 
p = 2, 3, 4 in Figs. 4, 5 and 6. It is understood that the magnitude of the waves increases 
with rising the value of x. Later, undulations take the peak position and disappear.

Conclusion
The solitary-wave solutions of the GRLW equation have been successfully obtained by 
using lumped Galerkin method based on cubic B-spline functions. Also, the linearized 
scheme has been found to be unconditonally stable. The error norms L2, L∞ and three 
conservative quantities I1, I2 and I3 have been computed for single solitary wave, inter-
action of two solitary waves and development of an undular bore. These computations 
demonstrate that our error norms are as small as required and they are smaller than the 
most of existing numerical calculations or too close to the best result in literature. The 
numerical algorithm conserves the properties related to mass, momentum and energy 
and the numerical values of them have been found to be in good agreement with earlier 

(24)U(x, 0) =
1

2
U0

[

1− tanh

(

x − xc

d

)]

,

a b

Fig. 6  Solution profiles of the undular bore at p = 4; a t = 50, b t = 200
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studies. In addition, the profiles of the solitary wave are similar to those of references. As 
a result, we can say that lumped Galerkin method is more practical, accurate and pro-
ductive numerical approximation technique for GRLW equation and it can be reliably 
used to solve the similar type non-linear problems.
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