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Background
Throughout this paper, let V and W be real vector spaces, let X and Y be a real normed 
space and a real Banach space, respectively, and let N0 denote the set of all nonnegative 
integers. For any mapping f : V → W , let us define

for all x, y ∈ V . A mapping f : V → W  is called an additive mapping (or a quadratic 
mapping) if f satisfies the functional equation Af (x, y) = 0 (or Qf (x, y) = 0) for all 
x, y ∈ V . We notice that the mappings g , h : R → R given by g(x) = ax and h(x) = ax2 
are solutions of Ag(x, y) = 0 and Qh(x, y) = 0, respectively.

A mapping f : V → W  is called a quadratic-additive mapping if and only if f is rep-
resented by the sum of an additive mapping and a quadratic mapping. A functional 

fo(x) :=
f (x)− f (−x)

2
,

fe(x) :=
f (x)+ f (−x)

2
,

Af (x, y) := f (x + y)− f (x)− f (y),

Qf (x, y) := f (x + y)+ f (x − y)− 2f (x)− 2f (y)

Abstract 

We prove a general stability theorem of an n-dimensional quadratic-additive type 
functional equation 

by applying the direct method.
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Df (x1, x2, . . . , xn) =

m
∑

i=1

cif
(

ai1x1 + ai2x2 + · · · + ainxn

)

= 0
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equation is called a quadratic-additive type functional equation if and only if each of its 
solutions is a quadratic-additive mapping. For example, the mapping f (x) = ax2 + bx is 
a solution of the quadratic-additive type functional equation.

In the study of stability problems of quadratic-additive type functional equations, we 
follow out a routine and monotonous procedure for proving the stability of the quad-
ratic-additive type functional equations under various conditions. We can find in the 
books (Cho et al. 2013; Czerwik 2002; Hyers et al. 1998; Jung 2011) a lot of references 
concerning the Hyers-Ulam stability of functional equations (see also Alotaibi and 
Mohiuddine 2012;  Aoki 1950; Baker 2005; Brillouët-Belluot et  al. 2012; Găvruţa 1994; 
Hyers 1941; Mohiuddine 2009; Mohiuddine and Şevli 2011; Mursaleen and Mohiuddine 
2009; Rassias 1978; Ulam 1960).

In this paper, we prove a general stability theorem that can be easily applied to the 
(generalized) Hyers-Ulam stability of a large class of functional equations of the form 
Df (x1, x2, . . . , xn) = 0, which includes quadratic-additive type functional equations. In 
practice, given a mapping f : V → W , Df : Vn → W  is defined by

for all x1, x2, . . . , xn ∈ V , where m is a positive integer and ci, aij are real constants. 
Indeed, this stability theorem can save us much trouble of proving the stability of rel-
evant solutions repeatedly appearing in the stability problems for various functional 
equations including the quadratic functional equations (Jun and Lee 2001), the addi-
tive functional equations (Forti 2007; Lee and Jun 2000; Nakmahachalasint 2007a), and 
the quadratic-additive type functional equations (see Chang et al. 2003; Eskandani et al. 
2012; Jun and Kim 2004a, b, 2005, 2006; Jung 1998; Jung and Sahoo 2002; Lee 2013; Nak-
mahachalasint 2007b; Najati and Moghimi 2008; Piszczek and Szczawińska 2013; Tow-
anlong and Nakmahachalasint 2009).

It should be remarked that Bahyrycz and Olko (2015) applied the fixed point method 
to investigate the generalized Hyers-Ulam stability of the general linear equation

Moreover, there are numerous recent results concerning the Hyers-Ulam stability of 
some particular cases of the equation Df (x1, x2, . . . , xn) = 0. Some of them have been 
described in the survey paper (Brzdȩk and Ciepliński 2013).

Preliminaries
We now introduce a lemma from the paper [Lee and Jung (2015), Corollary 2].

Lemma 1  Let k > 1 be a real constant, let φ : V \{0} → [0,∞) be a function satisfying 
either

(1)Df (x1, x2, . . . , xn) :=

m
∑

i=1

cif
(

ai1x1 + ai2x2 + · · · + ainxn
)

m
∑

i=1

Ai

(

n
∑

i=1

aijxj

)

+ A = 0.

(2)
�(x) :=

∞
∑

i=0

1

ki
φ(kix) < ∞
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for all x ∈ V \{0} or

for all x ∈ V \{0}, and let f : V → Y  be an arbitrarily given mapping. If there exists a 
mapping F : V → Y  satisfying

for all x ∈ V \{0} and

for all x ∈ V , then F is a unique mapping satisfying (4) and (5).

We introduce a lemma that is the same as [Lee and Jung (2015), Corollary 3].

Lemma 2  Let k > 1 be a real number, let φ,ψ : V \{0} → [0,∞) be functions satisfying 
each of the following conditions

for all x ∈ V \{0}, and let f : V → Y  be an arbitrarily given mapping. If there exists a 
mapping F : V → Y  satisfying the inequality

for all x ∈ V \{0} and the conditions in (5) for all x ∈ V , then F is a unique mapping satis-
fying (5) and (6).

Main results
In this section, let a be a real constant such that a �∈ {−1, 0, 1}.

Theorem 1  Let n be a fixed integer greater than 1, let µ, ν : V \{0} → [0,∞) be func-
tions satisfying the conditions

for all x ∈ V \{0}, and let ϕ : (V \{0})n → [0,∞) be a function satisfying the conditions

(3)�(x) :=

∞
∑

i=0

k2iφ

(

x

ki

)

< ∞

(4)�f (x)− F(x)� ≤ �(x)

(5)Fe(kx) = k2Fe(x), Fo(kx) = kFo(x)

∞
∑

i=0

kiψ

(

x

ki

)

< ∞,

∞
∑

i=0

1

k2i
φ(kix) < ∞,

�̃(x) :=

∞
∑

i=0

kiφ

(

x

ki

)

< ∞, �̃(x) :=

∞
∑

i=0

1

k2i
ψ(kix) < ∞

(6)�f (x)− F(x)� ≤ �̃(x)+ �̃(x)

(7)

∞
∑

i=0

µ(aix)

a2i
< ∞ and

∞
∑

i=0

ν(aix)

|a|i
< ∞
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for all x1, x2, . . . , xn ∈ V \{0}. If a mapping f : V → Y  satisfies f (0) = 0,

for all x ∈ V \{0}, and

for all x1, x2, . . . , xn ∈ V \{0}, then there exists a unique mapping F : V → Y  such that

for all x1, x2, . . . , xn ∈ V \{0},

for all x ∈ V , and

for all x ∈ V \{0}.

Proof  First, we define A := {f : V → Y | f (0) = 0} and a mapping Jm : A → A by

for x ∈ V  and m ∈ N ∪ {0}. It follows from (9) that

for all x ∈ V \{0}. In view of (7) and (14), the sequence {Jmf (x)} is a Cauchy sequence for 
all x ∈ V \{0}. Since Y is complete and f (0) = 0, the sequence {Jmf (x)} converges for all 
x ∈ V . Hence, we can define a mapping F : V → Y  by

(8)

∞
∑

i=0

ϕ(aix1, a
ix2, . . . , a

ixn)

a2i
< ∞ and

∞
∑

i=0

ϕ(aix1, a
ix2, . . . , a

ixn)

|a|i
< ∞

(9)�fe(ax)− a2fe(x)� ≤ µ(x) and �fo(ax)− afo(x)� ≤ ν(x)

(10)�Df (x1, x2, . . . , xn)� ≤ ϕ(x1, x2, . . . , xn)

(11)DF(x1, x2, . . . , xn) = 0

(12)Fe(ax) = a2Fe(x) and Fo(ax) = aFo(x)

(13)�f (x)− F(x)� ≤

∞
∑

i=0

(

µ(aix)

a2i+2
+

ν(aix)

|a|i+1

)

Jmf (x) =
fe(a

mx)

a2m
+

fo(a
mx)

am

(14)

�Jmf (x)− Jm+l f (x)� ≤

m+l−1
∑

i=m

�Jif (x)− Ji+1f (x)�

=

m+l−1
∑

i=m

∥

∥

∥

∥

fe(a
ix)

a2i
+

fo(a
ix)

ai
−

fe(a
i+1x)

a2i+2
−

fo(a
i+1x)

ai+1

∥

∥

∥

∥

=

m+l−1
∑

i=m

∥

∥

∥

∥

−
1

ai+1

(

fo(a · aix)− afo(a
ix)

)

−
1

a2i+2

(

fe(a · aix)− a2fe(a
ix)

)∥

∥

∥

∥

≤

m+l−1
∑

i=m

(

µ(aix)

a2i+2
+

ν(aix)

|a|i+1

)
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for all x ∈ V . We easily obtain from the definition of F and (10) that the equalities in (12) 
hold for all x ∈ V , and by (1) and (8), we get

for all x1, x2, . . . , xn ∈ V \{0}, i.e., DF(x1, x2, . . . , xn) = 0 for all x1, x2, . . . , xn ∈ V \{0}. 
Moreover, if we put m = 0 and let l → ∞ in (14), then we obtain the inequality (13).

Notice that the equalities

are true in view of (12).
When |a| > 1, in view of Lemma 1, there exists a unique mapping F : V → Y  satisfy-

ing the equalities in (12) and the inequality (13), since the inequality

holds for all x ∈ V , where k = a2 and φ(x) = µ(x)
a2

+
µ(ax)
a4

+ ν(x)
|a| + ν(ax)

a2
.

When |a| < 1, in view of Lemma 1, there exists a unique mapping F : V → Y  satisfy-
ing the equalities in (12) and the inequality (13), since the inequality

F(x) := lim
m→∞

Jmf (x) = lim
m→∞

(

fe(a
mx)

a2m
+

fo(a
mx)

am

)

�DF(x1, x2, . . . , xn)�

= lim
m→∞

∥

∥

∥

∥

Dfe
(

amx1, a
mx2, . . . , a

mxn
)

a2m
+

Dfo
(

amx1, a
mx2, . . . , a

mxn
)

am

∥

∥

∥

∥

≤ lim
m→∞

(

ϕ
(

amx1, a
mx2, . . . , a

mxn
)

+ ϕ
(

− amx1,−amx2, . . . ,−amxn
)

2a2m

+
ϕ
(

amx1, a
mx2, . . . , a

mxn
)

+ ϕ
(

− amx1,−amx2, . . . ,−amxn
)

2|a|m

)

= 0

Fe(|a|x) = |a|2Fe(x), Fe

(

x

|a|

)

=
Fe(x)

|a|2
,

Fo(|a|x) = |a|Fo(x), Fo

(

x

|a|

)

=
Fo(x)

|a|

�f (x)− F(x)� ≤

∞
∑

i=0

(

µ(aix)

a2i+2
+

ν(aix)

|a|i+1

)

=

∞
∑

i=0

(

µ(a2iax)

a4i+4
+

µ(a2ix)

a4i+2
+

ν(a2iax)

a2i+2
+

ν(a2ix)

|a|2i+1

)

≤

∞
∑

i=0

φ(a2ix)

a2i

=

∞
∑

i=0

φ(kix)

ki
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holds for all x ∈ V , where k = 1

a2
 and φ(x) = µ(x)

a2
+

µ(ax)
a4

+ ν(x)
|a| + ν(ax)

a2
.�  �

Theorem 2  Let n be a fixed integer greater than 1, let µ, ν : V \{0} → [0,∞) be func-
tions satisfying the conditions

for all x ∈ V \{0}, and let ϕ : (V \{0})n → [0,∞) be a function satisfying the conditions

for all x1, x2, . . . , xn ∈ V \{0}. If a mapping f : V → Y  satisfies f (0) = 0, (9) for all 
x ∈ V \{0}, as well as (10) for all x1, x2, . . . , xn ∈ V \{0}, then there exists a unique map-
ping F : V → Y  satisfying (11) for all x1, x2, . . . , xn ∈ V \{0}, and (12) for all x ∈ V , and 
such that

for all x ∈ V \{0}.

Proof  First, we define A := {f : V → Y | f (0) = 0} and a mapping Jm : A → A by

for x ∈ V  and m ∈ N0. It follows from (9) that

�f (x)− F(x)� ≤

∞
∑

i=0

(

µ(aix)

a2i+2
+

ν(aix)

|a|i+1

)

=

∞
∑

i=0

(

µ(a2ix)

a4i+2
+

µ(a2iax)

a4i+4
+

ν(a2ix)

|a|2i+1
+

ν(a2iax)

a2i+2

)

≤

∞
∑

i=0

φ(a2ix)

a4i

=

∞
∑

i=0

k2iφ

(

x

ki

)

(15)

∞
∑

i=0

|a|iν

(

x

ai

)

< ∞ and

∞
∑

i=0

a2iµ

(

x

ai

)

< ∞

(16)

∞
∑

i=0

|a|iϕ

(

x1

ai
,
x2

ai
, . . . ,

xn

ai

)

< ∞ and

∞
∑

i=0

a2iϕ

(

x1

ai
,
x2

ai
, . . . ,

xn

ai

)

< ∞

(17)�f (x)− F(x)� ≤

∞
∑

i=0

(

a2iµ

(

x

ai+1

)

+ |a|iν

(

x

ai+1

))

Jmf (x) = a2mfe

(

x

am

)

+ amfo

(

x

am

)
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for all x ∈ V \{0}. On account of (15) and (18), the sequence {Jmf (x)} is a Cauchy 
sequence for all x ∈ V \{0}. Since Y is complete and f (0) = 0, the sequence {Jmf (x)} con-
verges for all x ∈ V . Hence, we can define a mapping F : V → Y  by

for all x ∈ V . Moreover, if we put m = 0 and let l → ∞ in (18), we obtain the inequality 
(17).

In view of the definition of F and (10), we get the inequalities in (12) for all x ∈ V  and

for all x1, x2, . . . , xn ∈ V \{0}, i.e., DF(x1, x2, . . . , xn) = 0 for all x1, x2, . . . , xn ∈ V \{0}. We 
notice that the equalities

hold in view of (12).
When |a| > 1, according to Lemma 1, there exists a unique mapping F : V → Y  satis-

fying the equalities in (12) and the inequality (17), since the inequality

(18)

�Jmf (x)−Jm+l f (x)�

≤

m+l−1
∑

i=m

∥

∥

∥

∥

a2ife

(

x

ai

)

+ aifo

(

x

ai

)

− a2i+2fe

(

x

ai+1

)

− ai+1fo

(

x

ai+1

)∥

∥

∥

∥

=

m+l−1
∑

i=m

∥

∥

∥

∥

a2i
(

fe

(

a ·
x

ai+1

)

− a2fe

(

x

ai+1

))

+ ai
(

fo

(

a ·
x

ai+1

)

− afo

(

x

ai+1

))∥

∥

∥

∥

≤

m+l−1
∑

i=m

(

a2iµ

(

x

ai+1

)

+ |a|iν

(

x

ai+1

))

F(x) := lim
m→∞

[

a2mfe

(

x

am

)

+ amfo

(

x

am

)]

�DF(x1, x2, . . . , xn)�

= lim
m→∞

∥

∥

∥

∥

a2mDfe

(

x1

am
,
x2

am
, . . . ,

xn

am

)

+ amDfo

(

x1

am
,
x2

am
, . . . ,

xn

am

)∥

∥

∥

∥

≤ lim
m→∞

[

a2m

2

(

ϕ

(

x1

am
,
x2

am
, . . . ,

xn

am

)

+ ϕ

(

−x1

am
,
−x2

am
, . . . ,

−xn

am

))

+
|a|m

2

(

ϕ

(

x1

am
,
x2

am
, . . . ,

xn

am

)

+ ϕ

(

−x1

am
,
−x2

am
, . . . ,

−xn

am

))]

= 0

Fe(|a|x) =|a|2Fe(x), Fe

(

x

|a|

)

=
Fe(x)

|a|2
,

Fo(|a|x) =|a|Fo(x), Fo

(

x

|a|

)

=
Fo(x)

|a|
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holds for all x ∈ V , where k = a2 and φ(x) = µ
(

x
a

)

+ a2µ
(

x
a2

)

+ ν
(

x
a

)

+ |a|ν
(

x
a2

)

.
When |a| < 1, according to Lemma 1, there exists a unique mapping F : V → Y  satis-

fying the equalities in (12) and the inequality (17), since the inequality

holds for all x ∈ V , where k = 1

a2
 and φ(x) = µ

(

x
a

)

+ a2µ
(

x
a2

)

+ ν
(

x
a

)

+ |a|ν
(

x
a2

)

. � �

Theorem 3  Let n be a fixed integer greater than 1, let µ, ν : V \{0} → [0,∞) be func-
tions such that

for all x ∈ V \{0}, and let ϕ : (V \{0})n → [0,∞) be a function satisfying the conditions

�f (x)− F(x)�

≤

∞
∑

i=0

(

a2iµ

(

x

ai+1

)

+ |a|iν

(

x

ai+1

))

=

∞
∑

i=0

(

a4iµ

(

x

a2i+1

)

+ a4i+2µ

(

x

a2i+2

)

+ a2iν

(

x

a2i+1

)

+ |a|2i+1ν

(

x

a2i+2

))

≤

∞
∑

i=0

a4iφ

(

x

a2i

)

=

∞
∑

i=0

k2iφ

(

x

ki

)

�f (x)− F(x)�

≤

∞
∑

i=0

(

a2iµ

(

x

ai+1

)

+ |a|iν

(

x

ai+1

))

=

∞
∑

i=0

(

a4iµ

(

x

a2i+1

)

+ a4i+2µ

(

x

a2i+2

)

+ a2iν

(

x

a2i+1

)

+ |a|2i+1ν

(

x

a2i+2

))

≤

∞
∑

i=0

a2iφ

(

x

a2i

)

=

∞
∑

i=0

φ(kix)

ki

(19)























∞
�

i=0

µ(aix)

a2i
< ∞,

∞
�

i=0

ν(aix)

a2i
< ∞,

∞
�

i=0

|a|iµ

�

x

ai

�

< ∞,

∞
�

i=0

|a|iν

�

x

ai

�

< ∞

when |a| > 1,























∞
�

i=0

a2iµ

�

x

ai

�

< ∞,

∞
�

i=0

a2iν

�

x

ai

�

< ∞,

∞
�

i=0

µ(aix)

|a|i
< ∞,

∞
�

i=0

ν(aix)

|a|i
< ∞

when |a| < 1
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for all x1, x2, . . . , xn ∈ V \{0}. If a mapping f : V → Y  satisfies f (0) = 0 and the equality 
(9) for all x1, x2, . . . , xn ∈ V \{0}, then there exists a unique mapping F : V → Y  satisfy-
ing the equality (11) for all x1, x2, . . . , xn ∈ V \{0}, the equalities in (12) for all x ∈ V , and

for all x ∈ V \{0}.

Proof  We will divide the proof of this theorem into two cases, one is for |a| > 1 and the 
other is for |a| < 1.

Case 1 Assume that |a| > 1. We define a set A := {f : V → Y | f (0) = 0} and a map-
ping Jm : A → A by

for all x ∈ V  and m ∈ N0. It follows from (9) that

for all x ∈ V \{0}. In view of (19) and (22), the sequence {Jmf (x)} is a Cauchy sequence for 
all x ∈ V \{0}. Since Y is complete and f (0) = 0, the sequence {Jmf (x)} converges for all 
x ∈ V \{0}. Hence, we can define a mapping F : V → Y  by

(20)























∞
�

i=0

ϕ(aix1, a
ix2, . . . , a

ixn)

a2i
< ∞,

∞
�

i=0

|a|iϕ

�

x1

ai
,
x2

ai
, . . . ,

xn

ai

�

< ∞

when |a| > 1,























∞
�

i=0

ϕ(aix1, a
ix2, . . . , a

ixn)

|a|i
< ∞,

∞
�

i=0

a2iϕ

�

x1

ai
,
x2

ai
, . . . ,

xn

ai

�

< ∞

when |a| < 1

(21)�f (x)− F(x)� ≤























∞
�

i=0

�

µ(aix)

a2i+2
+ |a|iν

�

x

ai+1

��

when |a| > 1,

∞
�

i=0

�

a2iµ

�

x

ai+1

�

+
ν(aix)

|a|i+1

�

when |a| < 1

Jmf (x) :=
fe(a

mx)

a2m
+ amfo

(

x

am

)

(22)

�Jmf (x)−Jn+mf (x)�

≤

m+l−1
∑

i=m

∥

∥

∥

∥

fe(a
ix)

a2i
+ aifo

(

x

ai

)

−
fe(a

i+1x)

a2i+2
− ai+1fo

(

x

ai+1

)∥

∥

∥

∥

=

m+l−1
∑

i=m

∥

∥

∥

∥

−
fe(a · aix)− a2fe(a

ix)

a2i+2
+ ai

(

fo

(

a ·
x

ai+1

)

− afo

(

x

ai+1

))∥

∥

∥

∥

≤

m+l−1
∑

i=m

(

µ(aix)

a2i+2
+ |a|iν

(

x

ai+1

))

F(x) := lim
m→∞

[

fe(a
mx)

a2m
+ amfo

(

x

am

)]
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for all x ∈ V . Moreover, if we put m = 0 and let l → ∞ in (22), we obtain the first ine-
quality of (21). Using the definition of F, (10), and (20), we get the equalities in (12) for all 
x ∈ V  and

for all x1, x2, . . . , xn ∈ V \{0}, i.e., DF(x1, x2, . . . , xn) = 0 for all x1, x2, . . . , xn ∈ V \{0}. 
Notice that the equalities

are true in view of (12). Using Lemma 2, we conclude that there exists a unique map-
ping F : V → Y  satisfying the equalities in (12) and the first inequality in (21), since the 
inequality

holds for all x ∈ V , where k = a2, ψ(x) = a2µ(x)+µ(ax)
a4

, and φ(x) = ν
(

x
a

)

+ |a|ν
(

x
a2

)

.
Case 2 We now consider the case of |a| < 1 and define a mapping Jm : A → A by

for all x ∈ V  and n ∈ N0. It follows from (9) that

for all x ∈ V \{0}. On account of (19) and (23), the sequence {Jmf (x)} is a Cauchy 
sequence for all x ∈ V \{0}. Since Y is complete and f (0) = 0, the sequence {Jmf (x)} con-
verges for all x ∈ V . Hence, we can define a mapping F : V → Y  by

�DF(x1, x2, . . . , xn)� = lim
m→∞

∥

∥

∥

∥

Dfe
(

amx1, . . . , a
mxn

)

a2m
+ amDfo

(

x1

am
, . . . ,

xn

am

)
∥

∥

∥

∥

≤ lim
m→∞

[

ϕ
(

amx1, . . . , a
mxn

)

+ ϕ
(

− amx1, . . . ,−amxn
)

2a2m

+
|a|m

2

(

ϕ

(

x1

am
, . . . ,

xn

am

)

+ ϕ

(

−x1

am
, . . . ,

−xn

am

))]

= 0

Fe(|a|x) = |a|2Fe(x), Fo(|a|x) = |a|Fo(x)

�f (x)− F(x)� ≤

∞
∑

i=0

(

µ(aix)

a2i+2
+ |a|iν

(

x

ai+1

))

=

∞
∑

i=0

(

a2µ(a2ix)+ µ(a2iax)

a4i+4
+ a2iν

(

x

a2i+1

)

+ |a|2i+1ν

(

x

a2i+2

))

≤

∞
∑

i=0

(

ψ(kix)

k2i
+ kiφ

(

x

ki

))

Jmf (x) := a2mfe

(

x

am

)

+
fo(a

mx)

am

(23)

�Jmf (x)−Jm+l f (x)�

≤

m+l−1
∑

i=m

∥

∥

∥

∥

a2ife

(

x

ai

)

+
fo(a

ix)

ai
− a2i+2fe

(

x

ai+1

)

−
fo(a

i+1x)

ai+1

∥

∥

∥

∥

=

m+l−1
∑

i=m

∥

∥

∥

∥

a2i
(

fe

(

a ·
x

ai+1

)

− a2fe

(

x

ai+1

))

−
fo(a · aix)− afo(a

ix)

ai+1

∥

∥

∥

∥

≤

m+l−1
∑

i=m

(

a2iµ

(

x

ai+1

)

+
ν(aix)

|a|i+1

)
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for all x ∈ V . Moreover, if we put m = 0 and let l → ∞ in (23), we obtain the second 
inequality in (21). From the definition of F, (10), and (20), we get the inequalities in (12) 
for all x ∈ V  and

for all x1, x2, . . . , xn ∈ V \{0}, i.e., DF(x1, x2, . . . , xn) = 0 for all x1, x2, . . . , xn ∈ V \{0}. 
Notice that the equalities

hold by considering (12).
Using Lemma 2, we conclude that there exists a unique mapping F : V → Y  satisfying 

the equalities in (12) and the second inequality in (21), since the inequality

holds for x ∈ V , where k = 1

a2
, ψ(x) = µ

(

x
a

)

+ a2µ
(

x
a2

)

, and φ(x) = ν(ax)
a2

+ ν(x)
|a| . � �

We can replace V \{0} with V in Theorems 1, 2, and 3.

Corollary 4  Let X be a normed space and let p, θ, δ, and ε be real constants such that 
p �∈ {1, 2}, a �∈ {−1, 0, 1}, and θ , δ, ε > 0. If a mapping f : X → Y  satisfies f (0) = 0,

for all x ∈ X\{0}, and the inequality

for all x1, x2, . . . , xn ∈ X\{0}, then there exists a unique mapping F : X → Y  such that 
(11) holds for all x1, x2, . . . , xn ∈ X\{0} and the equalities in (12) hold for all x ∈ X, as 
well as

F(x) := lim
m→∞

[

a2mfe

(

x

am

)

+
fo(a

mx)

am

]

�DF(x1, x2, . . . , xn)�

= lim
m→∞

∥

∥

∥

∥

a2mDfe

(

x1

am
,
x2

am
, . . . ,

xn

am

)

+
Dfo

(

amx1, a
mx2, . . . , a

mxn
)

am

∥

∥

∥

∥

≤ lim
m→∞

(

a2m

2

(

ϕ

(

x1

am
,
x2

am
, . . . ,

xn

am

)

+ ϕ

(

−x1

am
,
−x2

am
, . . . ,

−xn

am

))

+
ϕ
(

amx1, a
mx2, . . . , a

mxn
)

+ ϕ
(

− amx1,−amx2, . . . ,−amxn
)

2|a|m

)

= 0

Fe

(

x

|a|

)

=
Fe(x)

|a|2
and Fo

(

x

|a|

)

=
Fo(x)

|a|

�f (x)− F(x)� ≤

∞
∑

i=0

(

a2iµ

(

x

ai+1

)

+
ν(aix)

|a|i+1

)

=

∞
∑

i=0

(

a4iµ

(

x

a2i+1

)

+ a4i+2µ

(

x

a2i+2

)

+
ν(a2iax)

a2i+2
+

ν(a2ix)

|a|2i+1

)

≤

∞
∑

i=0

(

ψ(kix)

k2i
+ kiφ

(

x

ki

))

(24)
∥

∥fe(ax)− a2fe(x)
∥

∥ ≤ δ�x�p and
∥

∥fo(ax)− afo(x)
∥

∥ ≤ ε�x�p

(25)�Df (x1, x2, . . . , xn)� ≤ θ
(

�x1�
p + �x2�

p + · · · + �xn�
p
)
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holds for all x ∈ X\{0}.

Proof  If we put

for all x1, x2, . . . , xn ∈ X\{0}, then ϕ satisfies (8) when either |a| > 1 and p < 1 or |a| < 1 
and p > 2, and ϕ satisfies (12) when either |a| > 1 and p > 2 or |a| < 1 and p < 1. More-
over, ϕ satisfies (15) when 1 < p < 2. Therefore, by Theorems 1, 2, and 3, there exists a 
unique mapping F : X → Y  such that (11) holds for all x1, x2, . . . , xn ∈ X\{0}, and (12) 
holds for all x ∈ X, and such that (26) holds for all x ∈ X\{0}. 	 �

Applications
In this section, let a �∈ {−1, 0, 1} be a rational constant, let Df (x1, x2, . . . , xn) = 0 be a 
quadratic-additive type functional equation, let Af (x1, x2, . . . , xn) = 0 be a Cauchy 
additive functional equation, and let Qf (x1, x2, . . . , xn) = 0 be a quadratic functional 
equation.

Assume that the functional equation Df (x1, x2, . . . , xn) = 0 is a quadratic-addi-
tive type functional equation. Then F : V → Y  is a solution of the functional equa-
tion Df (x1, x2, . . . , xn) = 0 if and only if F : V → Y  is a quadratic-additive mapping. If 
F : V → Y  is a quadratic-additive mapping, then Fe(x) and Fo(x) are a quadratic map-
ping and an additive mapping, respectively. Hence Fe(ax) = a2Fe(x) and Fo(ax) = aFo(x) 
for all x ∈ V , i.e., F satisfies the equalities in (12).

Therefore, the following theorems follow from Theorems 1, 2, and 3.

Theorem  5  Let n be a fixed integer greater than 1, let µ : V → [0,∞) be a function 
satisfying the condition (7) for all x ∈ V , and let ϕ : Vn → [0,∞) be a function satisfying 
the condition (8) for all x1, x2, . . . , xn ∈ V . If a mapping f : V → Y  satisfies f (0) = 0, 
(9) for all x ∈ V , and (10) for all x1, x2, . . . , xn ∈ V , then there exists a unique quadratic-
additive mapping F : V → Y  such that the inequality (13) holds for all x ∈ V .

Theorem 6  Let n be a fixed integer greater than 1, let µ : V → [0,∞) be a function sat-
isfying the condition (15) for all x ∈ V , and let ϕ : Vn → [0,∞) be a function satisfying 
the condition (16) for all x1, x2, . . . , xn ∈ V . If a mapping f : V → Y  satisfies f (0) = 0, 
(9) for all x ∈ V , and (10) for all x1, x2, . . . , xn ∈ V , then there exists a unique quadratic-
additive mapping F : V → Y  such that the inequality (17) holds for all x ∈ V .

Theorem 7  Let n be a fixed integer greater than 1, let µ : V → [0,∞) be a function sat-
isfying the condition (19) for all x ∈ V , and let ϕ : Vn → [0,∞) be a function satisfying 
the conditions (20) for all x1, x2, . . . , xn ∈ V . If a mapping f : V → Y  satisfies f (0) = 0, 
(9) for all x ∈ V , and (10) for all x1, x2, . . . , xn ∈ V , then there exists a unique quadratic-
additive mapping F : V → Y  satisfying the inequality (21) for all x ∈ V .

(26)�f (x)− F(x)� ≤
δ�x�p

|a2 − |a|p|
+

ε�x�p

||a| − |a|p|

ϕ(x1, x2, . . . , xn) := θ
(

�x1�
p + · · · + �xn�

p
)
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Corollary 8  Let X be a normed space and let p, θ , ξ be real constants such that 
p �∈ {1, 2} , a �∈ {−1, 0, 1}, and p, ξ , θ > 0. If a mapping f : X → Y  satisfies (24) for all 
x ∈ X and the inequality (25) for all x1, x2, . . . , xn ∈ X, then there exists a unique quad-
ratic-additive mapping F : X → Y  satisfying the inequality (26) for all x ∈ X.

Assume that the functional equation Qf (x1, x2, . . . , xn) = 0 is a quadratic 
functional equation. Then F : V → Y  is a solution of the functional equation 
Qf (x1, x2, . . . , xn) = 0 if and only if F : V → Y  is a quadratic mapping. If F : V → Y  
is a quadratic mapping, then Fe(x) = F(x) and Fo(x) = 0 for all x ∈ V  . Hence, 
Fe(ax) = F(ax) = a2F(x) = a2Fe(x) and Fo(ax) = 0 = aFo(x) for all x ∈ V  , i.e., 
F satisfies the equalities in (12). On the other hand, let the functional equation 
Af (x1, x2, . . . , xn) = 0 be a Cauchy additive functional equation. Then F : V → Y  is a 
solution of the functional equation Af (x1, x2, . . . , xn) = 0 if and only if F : V → Y  is an 
additive mapping. If F : V → Y  is an additive mapping, then Fe(x) = 0 and Fo(x) = F(x) 
for all x ∈ V . Hence, Fe(ax) = 0 = a2Fe(x) and Fo(ax) = F(ax) = aF(x) = aFo(x) for all 
x ∈ V , i.e., F satisfies the equalities in (12). Therefore, the following theorems are conse-
quences of Theorems 5, 6, and 7.

Theorem  9  Let n be a fixed integer greater than 1, let µ : V → [0,∞) be a function 
satisfying the condition (7) for all x ∈ V , and let ϕ : Vn → [0,∞) be a function satisfying 
the condition (8) for all x1, x2, . . . , xn ∈ V . If a mapping f : V → Y  satisfies f (0) = 0, (9) 
for all x ∈ V , and

for all x1, x2, . . . , xn ∈ V , then there exists a unique quadratic mapping F : V → Y  such 
that the inequality (13) holds for all x ∈ V .

Theorem 10  Let n be a fixed integer greater than 1, let µ : V → [0,∞) be a function 
satisfying the condition (15) for all x ∈ V , and let ϕ : Vn → [0,∞) be a function satisfying 
the condition (16) for all x1, x2, . . . , xn ∈ V . If a mapping f : V → Y  satisfies f (0) = 0 , 
(9) for all x ∈ V , and (27) for all x1, x2, . . . , xn ∈ V , then there exists a unique quadratic 
mapping F : V → Y  such that the inequality (17) holds for all x ∈ V .

Theorem 11  Let n be a fixed integer greater than 1, let µ : V → [0,∞) be a function 
satisfying the condition (19) for all x ∈ V , and let ϕ : Vn → [0,∞) be a function satis-
fying the conditions (20) for all x1, x2, . . . , xn ∈ V . If a mapping f : V → Y  satisfies 
f (0) = 0, (9) for all x ∈ V , and (27) for all x1, x2, . . . , xn ∈ V , then there exists a unique 
quadratic mapping F : V → Y  satisfying the inequality (21) for all x ∈ V .

Corollary 12   Let X be a normed space and let  p, θ , ξ be real constants such that 
p �∈ {1, 2}, a �∈ {−1, 0, 1}, and p, ξ , θ > 0. If a mapping f : X → Y  satisfies (24) for all 
x ∈ X and the inequality

(27)�Qf (x1, x2, . . . , xn)� ≤ ϕ(x1, x2, . . . , xn)

�Qf (x1, x2, . . . , xn)� ≤ θ
(

�x1�
p + �x2�

p + · · · + �xn�
p
)
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for all x1, x2, . . . , xn ∈ X, then there exists a unique quadratic mapping F : X → Y  satis-
fying the inequality (26) for all x ∈ X.

Theorem 13  Let n be a fixed integer greater than 1, let  µ : V → [0,∞) be a function 
satisfying the condition (7) for all x ∈ V , and let ϕ : Vn → [0,∞) be a function satisfying 
the condition (8) for all x1, x2, . . . , xn ∈ V . If a mapping f : V → Y  satisfies f (0) = 0, (9) 
for all x ∈ V , and

for all x1, x2, . . . , xn ∈ V , then there exists a unique additive mapping F : V → Y  such 
that the inequality (13) holds for all x ∈ V .

Theorem 14  Let n be a fixed integer greater than 1, let µ : V → [0,∞) be a function 
satisfying the condition (15) for all x ∈ V , and let ϕ : Vn → [0,∞) be a function sat-
isfying the condition (16) for all x1, x2, . . . , xn ∈ V . If a mapping f : V → Y  satisfies 
f (0) = 0, (9) for all x ∈ V , and (28) for all x1, x2, . . . , xn ∈ V , then there exists a unique 
additive mapping F : V → Y  such that the inequality (17) holds for all x ∈ V .

Theorem  15   Let n be a fixed integer greater than 1, let  µ : V → [0,∞) be a func-
tion satisfying the condition (19) for all x ∈ V , and let ϕ : Vn → [0,∞) be a function 
satisfying the conditions (20) for all x1, x2, . . . , xn ∈ V . If a mapping f : V → Y  satisfies 
f (0) = 0, (9) for all x ∈ V , and (28) for all x1, x2, . . . , xn ∈ V , then there exists a unique 
additive mapping F : V → Y  satisfying the inequality (21) for all x ∈ V .

Corollary 16  Let X be a normed space and let p, θ , ξ be real constants such that 
p �∈ {1, 2}, a �∈ {−1, 0, 1}, and p, ξ , θ > 0. If a mapping f : X → Y  satisfies (24) for all 
x ∈ X and the inequality

for all x1, x2, . . . , xn ∈ X, then there exists a unique additive mapping F : X → Y  satisfy-
ing the inequality (26) for all x ∈ X.

Conclusions
The conditions (8) and (10) are given in the most stability theorems, and we try to prove 
(11) and (13) for the generalized Hyers-Ulam stability. Unfortunately, their proofs are 
usually long and tedious.

However, if we confine ourselves to the stability problems of the quadratic-additive 
type functional equations, then the condition (12) is a direct consequence of (11). There-
fore, according to Theorem 1, it only needs to prove the conditions (7) and (9) by using 
(8) and (10) for the generalized Hyers-Ulam stability of these equations. In many practi-
cal applications, it is an easy thing to show that (7) and (9) are true provided the assump-
tions (8) and (10) are given.

In this way, we significantly simplify the proof for the stability of quadratic-additive 
type functional equations. Hence, Theorem 1 has the strong advantage of other stability 

(28)�Af (x1, x2, . . . , xn)� ≤ ϕ(x1, x2, . . . , xn)

�Af (x1, x2, . . . , xn)� ≤ θ
(

�x1�
p + �x2�

p + · · · + �xn�
p
)
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theorems. The same things are valid for the other main theorems of this paper, Theo-
rems 2 and 3.
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