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Background and Main results
The N-dimensional isentropic compressible Euler equations with a damping term are 
written as

where ρ(t, x) : [0,∞)× R
N → [0,∞) and u(t, x) : [0,∞)× R

N → R
N represent the 

density and the velocity of the fluid respectively. p represents the pressure function, 
which is given by

(1)

{

ρt +∇ · (ρu) = 0,

ρ[ut + (u · ∇)u]+ ∇p+ αρu = 0,

(2)p = Kργ , K > 0, γ ≥ 1,
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by the adiabatic γ-law. The constant α ≥ 0 is the damping coefficient.
System (1) is one of the most fundamental equations in fluid dynamics. Many inter-

esting fluid dynamic phenomena can be described by system (1) (Lions , 1998a; Lions , 
1998b). The Euler equations (α = 0) are also the special case of the noted Navier–Stokes 
equations, whose problem of whether there is a formation of singularity is still open and 
long-standing. Thus, the singularity formation in fluid mechanics has been attracting 
the attention of a number of researchers (Sideris 1985; Xin 1998; Suzuki 2013; Lei et al. 
2013; Li and Wang 2006; Li et al. 2013).

Among others, we mention that in 2003, Sideris–Thomases–Wang (Sideris et al. 2003) 
obtained results for the three dimensional compressible Euler equations with a linear 
damping term with assumption γ > 1, that is, system (1) with N = 3 and γ > 1. They 
discovered that damping prevents the formation of singularities in small amplitude 
flows, but large solutions may still break down. They formulated the Euler system as a 
symmetric hyperbolic system, established the finite speed of propagation of the solution, 
and some energy estimates to obtain local existence as well as global existence of the 
solution. For larger solution, they showed that the solution will blow up in a finite time 
by establishing certain differential inequalities.

In this article, we consider the one dimensional case of system (1):

More precisely, we apply the perturbational method to obtain the following main results.

Theorem 1 For system (3) with γ > 1 and α > 0, one has the following family of exact 
solutions with parameters ξ , ρ(0, 0) > 0, a0 > 0 and a1:

where ργ−1(t, 0) is given by

a(t) and b(t) satisfy the following ordinary differential equations:

(3)

{

ρt + ρxu+ ρux = 0,

ρ(ut + uux)+ px + αρu = 0.

(4)







ρ(t, x) =
�

max

�

ργ−1(t, 0)−
γ−1

Kγ

��

ä

a
+ α ȧ

a

�

x2

2
+

�

ḃ+ b
ȧ

a
+ αb

�

x

�

, 0

��
1

γ−1
,

u(t, x) = ȧ

a
x + b,

(5)

ργ−1(t, 0) = ργ−1(0, 0)e−
∫ t
0 (γ−1) ȧa ds +

∫ t

0

γ − 1

Kγ
b

(

ḃ+ b
ȧ

a
+ αb

)

e
∫ s
0 (γ−1) ȧa drds.

(6)







ä+ αȧ = ξ/aγ , ξ ∈ R,
a(0) = a0gt; 0,
ȧ(0) = a1 ∈ R,

(7)











b̈+ f (t)ḃ+ g(t)b = 0,

f (t) := (γ + 1) ȧa + α,

g(t) := 2 ä
a + (γ − 1) ȧ

2

a2
+ (γ + 1)α ȧ

a .
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Remark 2 The ordinary differential equation (O.D.E.) (6) will be analyzed in section 2 and 
it is well-known by the theory of ordinary differential equations that the solutions of sys-
tem (7) exist and is C2 as long as f and g, which are functions of ä, ȧ and a, are continuous.

Theorem 3 For the family of exact solutions in Theorem 1, we have the following five 
cases.

(i)  If ξ > 0 and a1 ≥ 0, then the solution (4) is a global solution.
(ii)  If ξ > 0, a1 < 0 and a0 > −a1/α, then the solution (4) is a global solution.
(iii)  If ξ < 0, then the solution (4) blows up on a finite time.
(iv)  If ξ = 0 and a1 > 0, then the solution (4) blows up on the finite time 

T = 1
α
ln a1

a1+a0α
> 0.

(v)  If ξ = 0, and a1 < 0 and a0 < −a1/α, then the solution (4) blows up on the finite 
time T = 1

α
ln a1

a1+a0α
> 0.

Moreover, we show that the singularity formations in the cases iii), iv) and v) above 
are of essential type in the sense that the singularities cannot be smoothed by redefining 
values at the odd points. This is an improvement of the corresponding results in Yuen 
(2011).

For γ = 1, we obtain the following theorem.

Theorem 4 For system (3) with γ = 1 and α > 0, one has the following family of exact 
solutions with parameters ξ , ρ(0, 0) > 0, a0 > 0 and a1.

where

a(t) and b(t) satisfy the following ordinary differential equations:

Theorem 5 For the family of exact solutions in Theorem 4, we have the following five 
cases.

(8)







ρ(t, x) = ρ(0, 0)eh(t,x),

u(t, x) =
ȧ

a
x + b,

(9)

h(t, x) :=

∫

t

0

[

b

K

(

ḃ+ α
ȧ

a
b+ b

)

−
ȧ

a

]

ds −
1

K

[

1

2

(

ä

a
+ α

)

x
2 +

(

ḃ+
ȧ

a
b+ αb

)

x

]

.

(10)







ä+ αȧ = ξ/a, ξ ∈ R,
a(0) = a0 > 0,
ȧ(0) = a1 ∈ R,

(11)







b̈+ f1(t)ḃ+ g1(t)b = 0,

f1(t) := 2 ȧ
a + α,

g1(t) := 2 ä
a + 2α ȧ

a .
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(i)  If ξ > 0 and a1 ≥ 0, then the solution (8) is a global solution.
(ii)  If ξ > 0, a1 < 0 and a0 > −a1/α, then the solution (8) is a global solution.
(iii)  If ξ < 0, then the solution (8) blows up on a finite time.
(iv)  If ξ = 0 and a1 > 0, then the solution (8) blows up on the finite time 

T = 1
α
ln a1

a1+a0α
> 0.

(v)  If ξ = 0, and a1 < 0 and a0 < −a1/α, then the solution (8) blows up on the finite 
time T = 1

α
ln a1

a1+a0α
> 0.

Analysis of an O.D.E.
Consider the following initial value problem.

where γ ≥ 1, α > 0 and ξ ∈ R are constants. We set

Lemma 6 For system (12), if T ∗ is finite, then the one-sided limit

Proof Note that we always have

Suppose lim
t→T∗

a(t) > 0. Then we can extend the solution of (12) to [0,T ∗ + ε) by solving 
the following system.

This contradicts the definition of T ∗. Thus, the lemma is established. �

Lemma 7 For system (12), we have the following three cases.

Case 1. If ξ > 0 and a1 ≥ 0, then T ∗ = +∞ .
Case 2. If ξ > 0, a1 < 0 and a0 > −a1/α, then T ∗ = +∞ .
Case 3. If ξ < 0, then T ∗ < +∞.

Proof Suppose ξ > 0 and T ∗ < +∞. Then, for all t ∈ [0,T ∗), we have

(12)







ä+ αȧ = ξ/aγ ,

a(0) = a0 > 0,

ȧ(0) = a1 ∈ R,

(13)T ∗ := sup{T > 0 : a(t) > 0 on [0,T )} > 0.

(14)lim
t→T∗

a(t) = 0.

(15)lim
t→T∗

a(t) ≥ 0.

(16)











ä+ αȧ = ξ/aγ ,
a(T ∗) = lim

t→T∗
a(t) > 0,

ȧ(T∗) = lim
t→T∗

ȧ(t) ∈ R.

(17)ä+ αȧ ≥ 0,
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It follows that if a1 ≥ 0, then lim
t→T∗

a(t) > 0, and if a1 < 0 and a0 > −a1/α, then 
lim
t→T∗

a(t) > 0. This is impossible by Lemma 6. Thus, Case 1. and Case 2. of the lemma 
are established.

Now, suppose ξ < 0. If T ∗ = +∞, then for all t > 0, we have

Reversing the inequalities from (17) to (21), we have

Thus,

Thus,

As A/α < 0, we have a(t) < 0 for all sufficiently large t. This is impossible as T ∗ = +∞. 
Thus, Case 3. is established.  �

Remark 8 The case for ξ = 0 will be analyzed in the proof of Theorem 3.

Proofs of the Theorems

Proof of Theorem 1 We divide the proof into steps.

(18)
d

dt

(

eαt ȧ
)

≥ 0,

(19)eαt ȧ ≥ a1,

(20)ȧ ≥ a1e
−αt ,

(21)a ≥ a0 +
a1

α

(

1−
1

eαt

)

.

(22)ä+ αȧ ≤ 0.

(23)a ≤ a0 +
a1

α

(

1−
1

eαt

)

,

(24)≤ a0 +
|a1|

α
.

(25)ä+ αȧ =
ξ

aγ
≤

ξ

(a0 + |a1|/α)
γ =: A < 0.

(26)ä+ αȧ ≤ A,

(27)a ≤ a0 +

(

a1

α
−

A

α2

)(

1−
1

eαt

)

+
A

α
t,

(28)a ≤ a0 +

∣

∣

∣

∣

a1

α
−

A

α2

∣

∣

∣

∣

+
A

α
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Step 1. In the first step, we show a lemma.

Lemma 9 For the 1-dimensional Euler equations with damping (3) with γ > 1 and 
ρ(0, 0) > 0, we have the following relation.

Proof of Lemma 9 It is well known that ρ is always positive if ρ(0, 0) is set to be positive. 
From (3)2, we have, for ρ(0, 0) > 0,

Thus, we have

Taking integration with respect to x, we obtain

On the other hand, multiplying ργ−2 on both sides of (3)1, we get

From (33), we have

and

Substituting (36), (32) and (35) into (34), one obtains the relation claimed in the lemma. 
 �

Step 2. We set

(29)

∂

∂t

(

ργ−1(t, 0)

γ − 1

)

+ uxρ
γ−1(t, 0)−

1

Kγ
(ut + uux + αu)u

−
γ − 1

Kγ
ux

∫ x

0

(ut + uux + αu)(t, y)dy

−
1

Kγ

∫ x

0

(utt + uuxt + uxut + αut)(t, y)dy = 0.

(30)ut + uux +
1

ρ

∂

∂x

(

Kργ
)

+ αu = 0,

(31)ut + uux +
Kγ

γ − 1

∂

∂x
ργ−1 + αu = 0.

(32)
∂

∂x

ργ−1

γ − 1
= −

1

Kγ
(ut + uux + αu).

(33)
ργ−1(t, x)

γ − 1
=

ργ−1(t, 0)

γ − 1
−

1

Kγ

∫ x

0

(ut + uux + αu)(t, y)dy.

(34)
∂

∂t

ργ−1(t, x)

γ − 1
+ u

∂

∂x

ργ−1(t, x)

γ − 1
+ ργ−1ux = 0.

(35)ργ−1 = ργ−1(t, 0)−
γ − 1

Kγ

∫ x

0

(ut + uux + αu)(t, y)dy,

(36)
∂

∂t

ργ−1(t, x)

γ − 1
=

∂

∂t

ργ−1(t, 0)

γ − 1
−

1

Kγ

∫ x

0

(utt + utux + uuxt + αut)(t, y)dy.

(37)u = cx + b,
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where c := c(t) and b := b(t) are functions of t. Then, (29) is transformed to

where we arrange the terms according to the coefficients of x.
Step 3. We use the Hubble transformation:

and set the coefficient of (38) to be zero. Thus,

Note that we have the novel identity

Multiplying the both sides of (40) by aγ+1, it becomes

for some constant ξ.
Step 4. With (39), we set the coefficient of x in (38) to be zero. Thus, b satisfies

where

Last Step. With (39) and setting the coefficient of 1 in (38) to be zero, we are required 
to solve

where

(38)

−
1

2Kγ

{

d

dt

(

ċ + c
2
)

+ α(ċ + c
2)+ (γ + 1)c(ċ + c

2)+ γαc2
}

x
2

−
1

Kγ

{

b̈+ [(γ + 1)c + α]ḃ+
[

2ċ + (γ + 1)c2 + (γ + 1)αc

]

b

}

x

+
1

γ − 1

{

∂

∂t
ργ−1(t, 0)+ (γ − 1)cργ−1(t, 0)−

γ − 1

Kγ
b

(

ḃ+ bc + αb

)

}

= 0,

(39)c =
ȧ

a
,

(40)
...
a

a
+ α

ä

a
+ γ

ȧä

a2
+ γα

ȧ2

a2
= 0.

(41)ċ + c2 =
ä

a
.

(42)
d

dt
[aγ (ä+ αȧ)] = 0,

(43)aγ (ä+ αȧ) = ξ ,

(44)b̈+ f (t)ḃ+ g(t)b = 0,

(45)f (t) := (γ + 1)
ȧ

a
+ α,

(46)g(t) := 2
ä

a
+ (γ − 1)

ȧ2

a2
+ (γ + 1)α

ȧ

a
.

(47)F ′(t)+ G(t)F(t) = H(t),

(48)F(t) := ργ−1(t, 0),
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Solving the O.D.E (47) by the method of integral factor, one arrives at the solutions. The 
proof of Theorem 1 is complete.  �

Next, we prove Theorem 3 as follows.

Proof of Theorem 3 For ξ > 0, case i) and case ii) of Theorem 3 follow from Case 1. and 
Case 2. of Lemma 7.

For ξ < 0, by Case 3. of Lemmas 6 and7, there exists a finite T ∗ > 0 such that the one-
sided limit of a(t) is zero as t approaches to T ∗. It remains to show T ∗ is not a removable 
singularity of ȧ/a. To this end, suppose one has

Then,

Thus, the singularity is of essential type and case iii) of Theorem 3 is proved.
For ξ = 0, (6)1 becomes

which can be solved by using integral factor. The solution is

Thus, a(T ) = 0 if a1 > 0. Also, a(T ) = 0 if a1 < 0 and a0 < −a1/α, where 
T := 1

α
ln a1

a1+a0α
> 0. As

(T, x) is an essential singularity of u(t, x) for any x. Thus, cases iv) and v) of Theorem 3 
are established. The proof is complete.  �

Proof of Theorems 4 and 5 The corresponding relation of Lemma 9 for γ = 1 is

With similar steps, one can obtain the family of exact solutions in Theorem 4.

(49)G(t) := (γ − 1)
ȧ

a
,

(50)H(t) :=
γ − 1

Kγ
b

(

ḃ+ b
ȧ

a
+ αb

)

.

(51)lim
t→T∗

ȧ(t) = 0.

(52)lim
t→T∗

ȧ

a
= lim

t→T∗

ä

ȧ
= lim

t→T∗

ξ/aγ − αȧ

ȧ
= −∞.

(53)ä+ αȧ = 0,

(54)a(t) = a0 +
a1

α

(

1−
1

eαt

)

.

(55)ȧ(T ) = a1 + αa0 �= 0,

(56)

d

dt
ln ρ(t, 0)+ ux −

1

K
[ut + uux + αu]u−

1

K

∫ x

0

[utt + uuxt + utux + αut ](t, y)dy = 0.
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Note that (10) is a special case of (12) and the arguments in the proof of Theorem 3 
hold for γ = 1. Thus, the results for Theorem 5 follows.  �

Conclusion
The complicated Euler equations with a damping term (1) do not have a general solu-
tion in a closed form for arbitrary well-posed initial value problems. Thus, numerical 
methods and algorithms such as the finite difference method, the finite element method 
and the finite volume method are applied by scientists to simulate the fluids for applica-
tions in real world. Thus, our exact solutions in this article provide concrete examples 
for researchers to test their numerical methods and algorithms.
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