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Abstract

On the basis of run semantics and breadth-first algebraic semantics, the algebraic
characterizations for a classes of formal power series over complete strong bimonoids
are investigated in this paper. As recognizers, weighted pushdown automata with final
states (WPDAs for short) and empty stack (WPDAs∅) are shown to be equivalent based
on run semantics. Moreover, it is demonstrated that for every WPDA there is an
equivalent crisp-simple weighted pushdown automaton with final states by run
semantics if the underlying complete strong bimonoid satisfies multiplicatively local
finiteness condition. As another type of generators, weighted context-free grammars
over complete strong bimonoids are introduced, which are proven to be equivalent to
WPDAs∅ based on each one of both run semantics and breadth-first algebraic
semantics. Finally examples are presented to illuminate the proposed methods and
results.
Keywords: Formal power series, Equivalence, Weighted pushdown automata,
Weighted context-free grammars, Strong bimonoids

Background
Weighted automata (Droste et al. 2009) are classical automata in which the transitions
carry weights. These weights can be modeled as the cost involved when executing the
transition, the probability or reliability of its successful execution. The weight algebraic
structures are often described as semirings, thereforeweighted automata have a rich struc-
ture theory and also result in recent practical applications in digital image compression
(Culik and Kari 1993), natural language processing (Knight and May 2009; Mohri 1997)
and model checking (Albert and Kari 2009; Meinecke and Quaas 2014).
A semiring consists of a set with two operations addition and multiplication satisfying

certain natural axioms like associativity, commutativity and distributivity, just like the
natural numbers with their laws for sums and products. Bounded distributive lattices,
semiring-reducts of lattice-ordered monoids and of complete residuated lattices, and
Brouwerian lattices are semirings. A strong bimonoid is a more general structure that
can be viewed as a semiring where the distributivity assumption is dropped. All semirings
are also strong bimonoids, but there are many typical examples of strong bimonoids
which are not semirings such as bounded lattices, orthomodular lattices as a basis of

© 2016 Hua and Li. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://
creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided
you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate
if changes were made.

0123456789().,–: vol

http://crossmark.crossref.org/dialog/?doi=10.1186/s40064-016-1764-x&domain=pdf
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/


Jin and Li SpringerPlus (2016) 5:310 Page 2 of 18

quantum logic, and the interval [0,1] with t-norm and t-conorm from multi-valued logic.
Recently, it has aroused considerable interest to investigate weighted automata with truth
values in these strong bimonoids. For instance, fuzzy automata and fuzzy tree automata,
defined by a pair of a t-norm and a t-conorm on the real unit interval, were discussed by
Bozapalidis and Louscou-Bozapalidou (2006, 2008, 2010). Automata based on quantum
logics were investigated in detail by researchers respectively (Qiu 2004, 2007a, b; Qiu and
Ying 2004; Ying 2000a, b, 2005). Finite automata theorywithmembership values in lattices
were established by Li (2011), where the role of the distributive law for the underlying
lattice was analyzed. Droste et al. (2010) established weighted finite automata theory over
strong bimonoids based on run semantics, initial algebra semantics and the free monoid
semantics, which generalized several results from the references (Ignjatović et al. 2008;
Li and Pedrycz 2005) derived for automata over lattice-ordered monoids or semiring-
reducts of residuated lattices. Ćirić et al. (2010) presented determinization of weighted
finite automata over strong bimonoids based on three different semantics including run
semantics, initial algebra semantics and transition semantics.
It is well known that pushdown automata are another kind of important computa-

tional models and have more power than classical finite automata (Hopcroft and Ullman
1979). Xing (2007) studied fuzzy pushdown automata and fuzzy context-free languages
based on lattice-ordered structures. Xing et al. (2009) introduced pushdown automata
theory based on complete residuated lattice-valued logic and showed that the class of
the languages accepted by pushdown automata with empty stack coincides with that
accepted by pushdown automata with final states over complete residuated lattice-valued
logic. Then pumping lemma in context-free grammar theory based on complete resid-
uated lattice-valued logic was also established (Xing and Qiu 2009). It is the goal of
this paper to investigate the algebraic characterizations for a power formal series over
complete strong bimonoids, which could be generated by some weighted pushdown
automaton or some weighted context-free grammars over complete strong bimonoids.
Furthermore, we want to know how about these machines’ behaviors based on the pro-
posed run semantics and breadth-first algebraic semantics. It may be very useful to know
whether much more general results than weighted automata over strong bimonoids are
obtained.
The remaining part of the paper is organized as follows. Based on run semantics and

breadth-first algebraic semantics, we investigate weighted pushdown automata over com-
plete strong bimonoids with final states and empty stack respectively and their recogniz-
able languages. Sufficient conditions are proposed under which thesemachines’ behaviors
coincide. Taking complete strong bimonoids as the structures of truth values, the notion
of weighted context-free grammars (WCFGs) is then introduced. It is demonstrated that,
based on each one of both run semantics and breadth-first algebraic semantics, WPDAs∅

and WCFGs are equivalent in the sense that they generate the same classes of formal
power series. Examples are also given to illustrate the proposed methods and results.
Finally conclusions and future work are presented.

Weighted pushdown automata over complete strong bimonoids
A bimonoid is a structure (A,+, ·, 0, 1) consisting of a set A, two binary operations + and
· on A and two constants 0, 1 ∈ A such that (A,+, 0) and (A, ·, 1) are monoids associated



Jin and Li SpringerPlus (2016) 5:310 Page 3 of 18

with the identity elements 0 and 1 respectively. Moreover, a bimonoid (A,+, ·, 0, 1) is
called a strong bimonoid if + is commutative and a · 0 = 0 · a = 0 for every a ∈ A.
Next the strong bimonoid (A,+, ·, 0, 1) is usually abbreviated as A if no confusion arises.
A strong bimonoid A is said to be right distributive if it satisfies (a + b) · c = a · c + b · c
for every a, b, c ∈ A. A strong bimonoid A is said to be left distributive if it satisfies
c · (a+ b) = c · a+ c · b for every a, b, c ∈ A. Then a semiring is a strong bimonoid which
is left and right distributive.
A monoid (A,+, 0) is complete if it has an infinite sum operation

∑
I : AI → A for any

index set A such that
∑

i∈∅ ai = 0,
∑

i∈{k} ai = ak ,
∑

i∈{j,k} ai = aj + ak for j �= k , and
∑

j∈J
(∑

i∈Ij ai
)

= ∑
i∈I ai if

⋃
j∈J Ij = I and Ij ∩ Ik = ∅ for j �= k . A monoid (A,+, 0)

is idempotent if a + a = a for any a ∈ A. A complete monoid (A,+, 0) is completely
idempotent if

∑
I a = a for any a ∈ A and any index set I. If a strong monoid (A,+, ·, 0, 1)

is complete, idempotent or completely idempotent, then (A,+, ·, 0, 1) is called a complete
strong bimonoid, an idempotent strong bimonoid or a completely idempotent strong
bimonoid respectively.
Let �∗ be a free monoid generated from a finite nonempty set � with the operator of

concatenation, where the empty string ε is identified with the identity of �∗. A formal
power series is a mapping f : �∗ → A. Im(f) denotes the image set of f, i.e., Im(f ) =
{f (ω)|ω ∈ �∗}. |�| denotes the cardinality of a set �.
Next we introduce weighted pushdown automata over strong bimonoids on the basis

of run semantics and breadth-first algebraic semantics. Then we investigate conditions
under which these behaviors coincide.

Definition 1 A weighted pushdown automaton with final states (WPDA for short) over
a complete strong bimonoid A is a seven tupleM = (Q,�,�, δ, I, Z0, F ), where

(i) Q is a finite nonempty set of states;
(ii) � is a finite nonempty set of input symbols;
(iii) � is a finite nonempty set of stack symbols;
(iv) δ is amapping fromQ×(�∪{ε})×�×Q×�∗ toA and the set {(q, τ , Z, p, γ )|δ(q, τ , Z,

p, γ ) ∈ A\{0}, (q, τ , Z, p, γ ) ∈ Q×(�∪{ε})×�×Q×�∗} is finite, where δ(q, τ , Z, p, γ )
expresses the truth value of the transition that inputting τ makes state q transfer to
state p, replace the stop symbol Z on the stack by string γ and advance the input
head one symbol;

(v) Z0 ∈ � is called the start stack symbol;
(vi) I and F are mappings from Q to A, which are called the weighted subsets of initial

and final states respectively.

Definition 2 A weighted pushdown automaton with empty stack (WPDA∅ for short)
over a complete strong bimonoid A is a seven tupleN = (Q,�,�, δ, I, Z0,∅), where Q, �,
�, δ, I and Z0 are the same as those in WPDAM, and ∅ represents an empty set.

Todescribe the behavior of aweightedpushdownautomaton, it is necessary to introduce
the concept of an instantaneous description. An instantaneous description is a three-
tuple (q,ω, γ ) ∈ Q × �∗ × �∗, which means that the automaton is in the state q and has
unexpended input ω and stack contents γ . An instantaneous description represents the
configuration of a WPDA at a given instant. Let D = Q × �∗ × �∗. To introduce the
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transition in aWPDA in terms of instantaneous descriptions, we define	M as a mapping
from D × D to A.

Definition 3 LetM = (Q,�,�, δ, I, Z0, F ) be aWPDA over a complete strong bimonoid
A. Define 	M as a mapping from D × D to A in the form of:

	M ((q,ω,β), (p, u,α)) =

⎧
⎪⎨

⎪⎩

b, if u = ω, tail(β) ≤ α

c, if u = tail(ω), tail(β) ≤ α

0, otherwise

for any (q,ω,β), (p, u,α) ∈ D, where

b = δ(q, ε, head(β), p,α\tail(β))
and

c = δ(q, head(ω), head(β), p,α\tail(β)).
For every nonempty string u = xu1 ∈ �∗, x ∈ �, head(u) = x and tail(u) = u1. If there
exists γ ∈ �∗ such that α = γ β , then β ≤ α and we denote γ = α\β .
For a WPDA M = (Q,�,�, δ, I, Z0, F ) over a complete strong bimonoid A, we define

two different semantics, called run semantics and breadth-first algebraic semantics. For
the run semantics, the weight of a string ω is computed by summing up the weights of all
successful runs ofM on ω where the weight of a run is the product of the weights of the
involved transitions.
Formally, the r-behavior ofM, denoted by 〈M〉r , is amapping from�∗ toA, defined for

every ω ∈ �∗ by letting 〈M〉r(ω) = ∑{I(q0)· 	M ((q0,ω, Z0), (q1, σ2 . . . σn, Z1γ1))· 	M
((q1, σ2 . . . σn, Z1γ1), (q2, σ3 . . . σn, Z2γ2)) . . . 	M ((qn−1, σn, Zn−1γn−1), (qn, ε, Znγn)) ·
F (qn)|ω = σ1 . . . σn, σi ∈ � ∪ {ε}, i = 1, . . . , n, (q0, q1, . . . , qn) ∈ Qn+1, Z1, . . . , Zn−1 ∈ �,
γ1, . . . , γn ∈ �∗, Zn ∈ �∗}.
To determine the breadth-first algebra behavior of M for ω ∈ �∗, we start with the

initial weighted states I, execute ω, and apply the final weighted states F at the end.
The b-behavior of M, denoted by 〈M〉b, is a mapping from �∗ to A, defined for every

ω ∈ �∗ by letting 〈M〉b(ω) = ∑{I(q0) · (∑{	M ((q0,ω, Z0), (q1, σ2 . . . σn, Z1γ1))· 	M
((q1, σ2 . . . σn, Z1γ1), (q2, σ3 . . . σn, Z2γ2)) . . . 	M ((qn−1, σn, Zn−1γn−1), (qn, ε, Znγn))|ω =
σ1 . . . σn, σi ∈ � ∪ {ε}, i = 1, . . . , n, (q1, . . . , qn−1) ∈ Qn−1, Z1, . . . , Zn−1 ∈ �, γ1, . . . , γn ∈
�∗, Zn ∈ �∗}) · F (qn)| q0, qn ∈ Q}.
For a WPDA∅ N = (Q,�,�, δ, I, Z0,∅) over A, the r-behavior of N , denoted

by 〈rec (N )〉r , is a mapping from �∗ to A, defined for every ω ∈ �∗ by letting
〈rec (N )〉r(ω) = ∑{I(q0)· 	N ((q0,ω, Z0), (q1, σ2 . . . σn, Z1γ1))· 	N ((q1, σ2 . . . σn,
Z1γ1), (q2, σ3 . . . σn, Z2γ2)) . . . 	N ((qn−1, σn, Zn−1γn−1), (qn, ε, ε))|ω = σ1 . . . σn, σi ∈
� ∪ {ε}, i = 1, . . . , n, (q0, q1, . . . , qn) ∈ Qn+1, Z1, . . . , Zn−1 ∈ �, γ1, . . . , γn−1 ∈ �∗}.
The breadth-first algebraic behavior of N , denoted by 〈rec (N )〉b, is a mapping

from �∗ to A, defined for every ω ∈ �∗ by 〈rec (N )〉b(ω) = ∑{I(q0) · (∑{	N
((q0,ω, Z0), (q1, σ2 . . . σn, Z1γ1))· 	N ((q1, σ2 . . . σn, Z1γ1), (q2, σ3 . . . σn, Z2γ2)) . . . 	N
((qn−1, σn, Zn−1γn−1), (qn, ε, ε))|ω = σ1 . . . σn, σi ∈ �∪{ε}, i = 1, . . . , n, (q1, . . . , qn) ∈ Qn,
Z1, . . . , Zn−1 ∈ �, γ1, . . . , γn−1 ∈ �∗ })|q0 ∈ Q}.
Let x ∈ {r, b}. Then a formal power series f : �∗ → A is x-recognizable if there is a

WPDAM or WPDA∅ N over A such that 〈M〉x = f or 〈rec (N )〉x = f . We say that two
WPDAsM andM′ over A are x-equivalent if 〈M〉x = 〈M′ 〉x.
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AWPDA over A is essentially a weighted finite automaton over Awith ε-transition and
an addition of a stack, on which it can store a string of stack symbols. Droste et al. (2010)
introduced weighted finite automata (WFAs) over A and investigated their behaviors on
the basis of run semantics and initial algebra semantics. Let M1 = (Q,�, δ, I, F ) be a
WFA over A, where Q and � are the sets of finite nonempty states and input symbols
respectively; I and F are the mappings from Q to A, called the weighted subsets of initial
and final states respectively; and δ is a mapping from Q × � × Q to A.
In order to compute with words, the extension of δ, denoted by the mapping δ∗: Q ×

�∗ × Q → A, is defined as follows: for any q0, qn ∈ Q, if q0 = qn, then δ∗(q0, ε, qn) = 1;
otherwise, δ∗(q0, ε, qn) = 0; and for any θ = a1 . . . an ∈ �∗ with n ≥ 1, δ∗(q0, θ , qn) =
∑{δ(q0, a1, q1) . . . δ(qn−1, an, qn)|q1, . . . , qn−1 ∈ Q}.
For the run semantics, the language recognized by WFA M1 is a formal power

series Lr
M1

: �∗ → A, given by for every θ = a1 . . . an ∈ �∗\{ε}, ai ∈ �\{ε},
i = 1, . . . , n, Lr

M1
(ε) = ∑{I(q) · δ∗(q, ε, q) · F (q)|q ∈ Q} and Lr

M1
(θ ) = ∑{I(q0) ·

δ(q0, a1, q1) . . . δ(qn−1, an, qn) · F (qn)|q0, . . . , qn ∈ Q}.
For the breadth-first algebraic semantics, the language recognized by WFA M1 is a

formal power series Lb
M1

: �∗ → A, given by for every θ ∈ �∗, Lb
M1

(θ ) = ∑{I(q) ·
δ∗(q, θ , p) · F (p)|q, p ∈ Q}.
Noting that a bounded lattice L = (L,∨,∧, 0, 1) is a strong bimonoid. Jin et al. (2012)

have presented that the run semantics and the breadth-first algebraic semantics differ for
a given WFA over a strong bimonoid L. Moreover, when compared with WPDAs over
a general strong bimonoid A, the behaviors of WFAs over A are shown no more power
regardless of run semantics or the breadth-first algebraic semantics as follows.

Proposition 1 Let a formal power series fx: �∗ → A be x-recognizable by a weighted
finite automaton over a complete strong bimonoid A, where x ∈ {r, b}. Then fx is also
x-recognizable by a certain WPDAM over A.

Proof Assume that fx is x-recognizable by a WFAM1 = (Q,�, δ, I, F ) over A. Construct
a WPDAM = (Q,�, {Z}, η, I, Z, F ) as follows:
For every q, q′ ∈ Q and τ ∈ �, η(q, τ , Z, q′ , Z) = δ(q, τ , q′ ), η(q, ε, Z, q, Z) = 1; otherwise,

η(q, a, Z, q′ , γ ) = 0 for a ∈ � ∪ {ε} and γ ∈ {Z}∗\{Z}.
Then for every ω = σ1 . . . σn ∈ �∗\{ε}, σi ∈ �, i = 1, . . . , n, we have

fr(ω) = ∑{I(q0) · δ(q0, σ1, q1) . . . δ(qn−1, σn, qn) · F (qn)|q0, . . . , qn ∈ Q} = ∑{I(q0)· 	M
((q0,ω, Z), (q1, σ2 . . . σn, Z)) . . . 	M ((qn−1, σn, Z), (qn, ε, Z)) · F (qn)| (q0, q1, . . . , qn) ∈
Qn+1} = 〈M〉r(ω), fb(ω) = ∑{I(q0) · δ∗(q0,ω, qn) · F (qn)|q0, qn ∈ Q} = ∑{I(q0) ·
(
∑{δ(q0, σ1, q1) . . . δ(qn−1, σn, qn)|q1, . . . , qn−1 ∈ Q}) · F (qn)|q0, qn ∈ Q} = ∑{I(q0) ·
(
∑{	M ((q0,ω, Z), (q1, σ2 . . . σn, Z)) . . . 	M ((qn−1, σn, Z), (qn, ε, Z))|q1, . . . , qn−1 ∈
Q}) · F (qn)| (q0, q1, . . . , qn) ∈ Qn+1} = 〈M〉r(ω), and fr(ε) = fb(ε) = ∑{I(q) · δ∗(q, ε, q) ·
F (q)|q ∈ Q} = ∑{I(q)· 	M ((q, ε, Z), (q, ε, Z)) · F (q)|q ∈ Q} = 〈M〉b(ε) = 〈M〉r(ε).
Hence fx is also x-recognizable by a certain WPDAM over A.
By a certain semantic way, two weighted pushdown automata are considered equivalent

if they can recognize the same classes of fomal power series. Next we will prove that
WPDAs and WPDAs∅ over a complete strong bimonoid A are equivalent based on the
run semantics. ��
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Proposition 2 Let f be a formal power series from �∗ to a complete strong bimonoid A.
Then the following statements are equivalent:

(1) f is r-recognizable by a certain WPDA over A;
(2) f is r-recognizable by a certain WPDA∅ over A.

Proof (1) implies (2): Let f be r-recognizable by aWPDAM = (Q,�,�, δ, I, Z0, F ) over A.
Now construct aWPDA∅ N = (Q′ ,�,�′ , δ′ , I ′ , X0,∅) such that 〈rec (N )〉r = 〈M〉r , where
Q′ = Q ∪ {q0, qe}, q0, qe /∈ Q, �′ = � ∪ {X0}, X0 /∈ �, I ′ : Q′ → A is a mapping defined by
letting I ′ (q0) = 1, I ′ (qe) = 0 and I ′ (q) = 0 forq ∈ Q, and δ

′ : Q′×(�∪{ε})×�
′×Q′×�

′∗ →
A is a mapping defined by letting

(i) δ
′ (q0, ε, X0, q, Z0X0) = I(q), δ′ (q, ε, Z, qe, ε) = F (q), δ′ (qe, ε, Z, qe, ε) = 1, ∀q ∈ Q,Z ∈

�
′ ;

(ii) δ
′ (q, τ , X, p, γ ) = δ(q, τ , X, p, γ ), ∀q, p ∈ Q, τ ∈ � ∪ {ε}, X ∈ �, γ ∈ �∗;

(iii) Otherwise, δ′ (q, τ , X, p, γ ) = 0 for (q, τ , X, p, γ ) ∈ Q′ × (� ∪ {ε}) × �
′ × Q′ × �

′∗.

Next we prove 〈rec (N )〉r = 〈M〉r . In fact, for every ω ∈ �∗, we have 〈rec
(N )〉r(ω) = ∑{I ′ (q0)· 	N ((q0,ω, X0), (q1, σ2 . . . σn, Z1γ1))· 	N ((q1, σ2 . . . σn,
Z1γ1), (q2, σ3 . . . σn, Z2γ2)) . . . 	N ((qn−1, σn, Zn−1γn−1), (qn, ε, ε))|ω = σ1 . . . σn, σi ∈
� ∪ {ε}, i = 1, . . . , n, (q0, q1, . . . , qn) ∈ Q′n+1, Z1, . . . , Zn−1 ∈ �

′ , γ1, . . . , γn−1 ∈
�

′∗} = ∑{	N ((q0,ω, X0), (q,ω, Z0X0))· 	N ((q,ω, Z0X0), (q1, σ2 . . . σn, Z1γ1X0))
· 	N ((q1, σ2 . . . σn, Z1γ1X0), (q2, σ3 . . . σn, Z2γ2X0)) . . . 	N ((qn−1, σn, Zn−1γn−1X0),
(qn, ε, γn−1X0))· 	N ((qn, ε, γn−1X0), (qe, ε,α2 . . . αkX0))· 	N ((qe, ε,α2 . . . αkX0), (qe, ε,
α3 . . . αkX0)) . . . 	N ((qe, ε, X0), (qe, ε, ε)) |ω = σ1 . . . σn, σi ∈ � ∪ {ε}, i = 1, . . . , n, (q, q1,
. . . , qn)∈Qn+1, Z1, . . . , Zn−1 ∈�, γ1, . . . , γn−2 ∈�∗, γn−1 = α1 . . . αk ,αj ∈�, j = 1, . . . , k}
+ ∑{	N ((q0,ω, X0), (q, ω, Z0X0))· 	N ((q,ω, Z0X0), (q1, σ2 . . . σn, Z1γ1X0)) · 	N
((q1, σ2 . . . σn, Z1γ1X0), (q2, σ3 . . . σn, Z2γ2X0)) . . . 	N ((qn−1, σn, Zn−1γn−1X0), (qn,
ε, X0))· 	N ((qn, ε, X0), (qe, ε, ε))|ω = σ1 . . . σn, σi ∈ � ∪ {ε}, i = 1, . . . , n, (q, q1, . . . , qn)
∈ Qn+1, Z1, . . . , Zn−1 ∈ �, γ1, . . . , γn−2 ∈ �∗, γn−1 = ε} = ∑{I(q)· 	M ((q,ω, Z0), (q1, σ2
. . . σn, Z1γ1))· 	M ((q1, σ2 . . . σn, Z1γ1), (q2, σ3 . . . σn, Z2γ2)) . . . 	M ((qn−1, σn,
Zn−1γn−1), (qn, ε, γn−1)) · F (qn)|ω = σ1 . . . σn, σi ∈ � ∪ {ε}, i = 1, . . . , n, (q, q1, . . . , qn) ∈
Qn+1, Z1, . . . , Zn−1 ∈ �, γ1, . . . , γn−1 ∈ �∗} = 〈M〉r(ω).
(2) implies (1): Let f be r-recognizable by a WPDA∅ N = (Q,�,�, δ, I, Z0,∅) over A.

Then we construct a WPDA M = (Q′ ,�,�′ , η, I ′ , X0, F ) as follows: Q
′ = Q ∪ {q0, qf },

q0, qf /∈ Q; �′ = � ∪ {X0}, X0 /∈ �; I ′ : Q′ → A is a mapping defined by letting I ′ (q0) = 1,
I ′ (qf ) = 0 and I ′ (q) = 0 if q ∈ Q; F : Q′ → A is a mapping defined by letting F (qf ) = 1
and otherwise F (q) = 0; η : Q′ × (� ∪ {ε})× �

′ ×Q′ × �
′∗ → A is a mapping defined by

(i) η(q0, ε, X0, q, Z0X0) = I(q), η(q, ε, X0, qf , ε) = 1, ∀q ∈ Q;
(ii) η(q, τ , Z, p, γ ) = δ(q, τ , Z, p, γ ), ∀q, p ∈ Q, τ ∈ � ∪ {ε}, Z ∈ �, γ ∈ �∗;
(iii) Otherwise, η(q′ , τ ′ , Z ′ , p′ , γ ′ ) = 0.

Next we prove 〈rec (N )〉r = 〈M〉r . In fact, for every ω ∈ �∗, we have 〈rec(N )〉r(ω) =
∑{I(q)· 	N ((q,ω, Z0), (q1, σ2 . . . σn,Z1γ1))· 	N ((q1, σ2 . . . σn,Z1γ1), (q2, σ3 . . . σn, Z2γ2))
. . . 	N ((qn−1, σn, Zn−1γn−1), (qn, ε, ε))|ω = σ1 . . . σn, σi ∈ �∪{ε}, i = 1, . . . , n, (q, q1, . . . ,
qn)∈Qn+1,Z1, . . . , Zn−1∈�,γ1, . . . , γn−1∈�∗} = ∑{I ′ (q0)· 	M ((q0,ω, X0), (q,ω, Z0X0))·
	M ((q,ω, Z0X0), (q1, σ2 . . . σn, Z1γ1X0))· 	M ((q1, σ2 . . . σn, Z1γ1X0), (q2, σ3 . . . σn, Z2γ2
X0)) . . . 	M ((qn−1, σn, Zn−1γn−1X0), (qn, ε, X0))· 	M ((qn, ε, X0), (qf , ε, ε)) · F (qf )|ω =
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σ1 . . . σn, σi ∈ � ∪ {ε}, i = 1, . . . , n, (q, q1, . . . , qn) ∈ Qn+1, Z1, . . . , Zn−1 ∈ �, γ1, . . . , γn−1
∈ �∗} = 〈M〉r(ω).
Next we give a simple characterization when for every WPDA or WPDA∅ over A, its

run semantics and breadth-first semantics coincide.

Proposition 3 Let A be a completely idempotent strong bimonoid. Then the following
statements are equivalent:

(1) A is left and right distributive;
(2) 〈M〉r = 〈M〉b for every WPDA

M = (Q,�,�, δ, I, Z0, F ) over A with δ(q, ε, Z, q, Z) ∈ {0, 1} for q ∈ Q, Z ∈ �.

Proof (1) implies (2): Obviously.
(2) implies (1): Let 〈M〉r = 〈M〉b for every WPDAM over A. Let a,m, c ∈ A. Then we

construct a WPDAM = (Q,�,�, δ, I, Z0, F ) over A as follows:
Q = {q0, q1, q2, q3}, � = {σ }, � = {Z0}, I(q0) = 1, I(q1) = I(q2) = I(q3) = 0,

F (q3) = c, F (q0) = F (q1) = F (q2) = 0, δ(q0, σ , Z0, q1, Z0) = a, δ(q0, σ , Z0, q2, Z0) = m,
δ(q1, σ , Z0, q3, Z0) = 1, δ(q2, σ , Z0, q3, Z0) = 1, and otherwise δ(p, τ , Z0, q, γ ) = 0.
Since 〈M〉r = 〈M〉b, 〈M〉r(σσ ) = I(q0)· 	M ((q0, σσ , Z0), (q1, σ , Z0))· 	M ((q1, σ ,

Z0), (q3, ε, Z0)) · F (q3) +I(q0)· 	M ((q0, σσ , Z0), (q2, σ , Z0)) · 	M ((q2, σ , Z0), (q3, ε, Z0)) ·
F (q3) = 1 · a · 1 · c + 1 · m · 1 · c = a · c + m · c, and 〈M〉b(σσ ) = I(q0) · (	M
((q0, σσ , Z0), (q1, σ , Z0))· 	M ((q1, σ , Z0), (q3, ε, Z0))+ 	M ((q0, σσ , Z0), (q2, σ , Z0))· 	M
((q2, σ , Z0), (q3, ε, Z0))) · F (q3) = 1 · (a · 1 + m · 1) · c = (a + m) · c,
we have a · c + m · c = (a + m) · c, ∀a,m, c ∈ A.
Construct a WPDAM′ = (Q′ ,�,�, η, I ′ , Z0, F

′ ) over A as follows:
Q′ = {p0, p1, p2, p3}, � = {σ }, � = {Z0}, I ′ (p0) = c, I ′ (p1) = I ′ (p2) = I ′ (p3) = 0,

F ′ (p3) = 1, F ′ (p0) = F ′ (p1) = F ′ (p2) = 0, η(p0, σ , Z0, p1, Z0) = a, η(p0, σ , Z0, p2, Z0) = m,
η(p1, σ , Z0, p3, Z0) = 1, η(p2, σ , Z0, p3, Z0) = 1, and otherwise η(p, τ , Z0, q, γ ) = 0. Then
〈M′ 〉r = 〈M′ 〉b.
Since 〈M′ 〉r(σσ ) = I ′ (p0)· 	M′ ((p0, σσ , Z0), (p1, σ , Z0))· 	M′ ((p1, σ , Z0), (p3, ε, Z0)) ·

F ′ (p3)+I ′ (p0)· 	M′ ((p0, σσ , Z0), (p2, σ , Z0)) · 	M′ ((p2, σ , Z0), (p3, ε, Z0))·F ′ (p3)= c·a·1·
1+ c ·m ·1 ·1 = c ·a+ c ·m and 〈M′ 〉b(σσ ) = I ′ (p0) · (	M′ ((p0, σσ , Z0), (p1, σ , Z0))· 	M′

((p1, σ , Z0), (p3, ε, Z0)) + 	M′ ((p0, σσ , Z0), (p2, σ , Z0)) · 	M′ ((p2, σ , Z0), (p3, ε, Z0))) ·
F ′ (p3) = c · (a · 1+m · 1) · 1 = c · (a+m), we have c · a+ c ·m = c · (a+m), ∀a,m, c ∈ A.
Hence A is left and right distributive.

Proposition 4 Let A be a completely idempotent strong bimonoid. Then the following
statements are equivalent:

(1) A is left distributive;
(2) 〈rec(N )〉r = 〈rec(N )〉b for every WPDA∅ N = (Q,�,�, δ, I, Z0, F ) over A with

δ(q, ε, Z, q, Z) ∈ {0, 1} for q ∈ Q, Z ∈ �.

Proof (1) implies (2): Obviously.
(2) implies (1): Let 〈rec(N )〉r = 〈rec(N )〉b for every WPDA∅ N over A. Let a,m, c ∈ A.

Then we construct a WPDA∅ N = (Q,�,�, δ, I, Z0,∅) over A as follows:
Q = {q0, q1, q2}, � = {σ }, � = {Z0}, I(q0) = c, I(q1) = I(q2) = 0, δ(q0, σ , Z0, q1, ε) = a,

δ(q0, σ , Z0, q2, ε) = m, and otherwise δ(q, σ , Z0, p, γ ) = 0.
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Since 〈rec(N )〉r = 〈rec(N )〉b, 〈rec(N )〉r(σ ) = I(q0)· 	N ((q0, σ , Z0), (q1, ε, ε)) +I(q0)
· 	N ((q0, σ , Z0), (q2, ε, ε)) = c · a + c · m, and 〈rec(N )〉b(σ ) = I(q0) · (	N ((q0, σ , Z0),
(q1, ε, ε)) + 	N ((q0, σ , Z0), (q2, ε, ε))) = c · (a + m),
we have c · a + c · m = c · (a + m), ∀a,m, c ∈ A.
We call a strong bimonoid A additively locally finite (multiplicatively locally finite,

respectively) if for every finite set B ⊆ A, The smallest submonoid of (A,+, 0) (of (A, ·, 1),
respectively) containingB is finite. IfA is both additively andmultiplicatively locally finite,
then it is called bi-locally finite.

Proposition 5 Let |�| ≥ 2 and A be a complete strong bimonoid. Then A is bi-locally
finite if and only if Im(〈M〉r) or Im(〈M〉b) is a finite set for every WPDAM = (Q,�,�, δ,
I, Z0, F ) over A.

Proof Claim 1. If A is bi-locally finite, then Im(〈M〉r) or Im(〈M〉b) is finite for every
WPDAM = (Q,�,�, δ, I, Z0, F ) over A.
In fact, let T = Im(I)∪ Im(δ)∪ Im(F ) and R be the submonoid of (A, ·, 1) generated by T.

ThenR is finite sinceT is finite and (A, ·, 1) ismultiplicatvely locally finite. SupposeR′ is the
submonoid of (A,+, 0) generated by R. Then R′ is finite by the additively locally finiteness
of (A,+, 0). Hence 〈M〉r(ω) ∈ R′ for every ω ∈ �∗ and so Im(〈M〉r) ⊆ R′ is finite.
Let T1 be the submonoid of (A, ·, 1) generated by Im(δ). Then T1 is finite by the multi-

plicatively locally finiteness of (A, ·, 1). Let T2 be the submonoid of (A,+, 0) generated by
T1, R1 = {I(q) · k · F (p)|q, p ∈ Q, k ∈ T2} and T3 be the submonoid of (A,+, 0) generated
by R1. Then T2, R1 and T3 are finite since A is bi-locally finite. Hence 〈M〉b(ω) ∈ T3 for
every ω ∈ �∗ and so Im(〈M〉b) ⊆ T3 is finite.
Claim 2. If Im(〈M〉r) or Im(〈M〉b) is finite for every WPDA M = (Q,�,�, δ, I, Z0, F )

over A, then A is bi-locally finite. In fact, it suffices to prove that both the additive monoid
(A,+, 0) and the multiplicative monoid (A, ·, 1) are locally finite.
For the additive monoid it suffices to prove that for every a ∈ A the cyclic submonoid

of (A,+, 0) generated by a is finite because + is commutative and associative. Let a ∈ A.
Then we construct a WPDAM = (Q,�,�, δ, I, Z0, F ) over A with Q = {p, q}, � = {Z0},
I(p) = 1, I(q) = F (p) = 0 and F (q) = 1. Moreover, for every τ ∈ �, δ(p, τ , Z0, p, Z0) =
δ(q, τ , Z0, q, Z0) = 1, δ(p, τ , Z0, q, Z0) = a, and otherwise δ(p1, σ , Z0, p2, γ ) = 0. Then for
every σ ∈ � and a natural number n we have 〈M〉r(σ n) = 〈M〉b(σ n) = a + · · · + a
(n times). Thus the finite set Im(〈M〉r) ∩ Im(〈M〉b) contains the cyclic submonoid of
(A,+, 0) generated by a.
Next we prove that the multiplicative monoid (A, ·, 1) is locally finite. Let n be a natural

number and a1, . . . , an ∈ A. It suffices to show that the set A′ = {al1 . . . alk |k is a natural
number, li = 1, . . . , n for i = 1, . . . , k} is finite. Let τ1, τ2 ∈ � be distinct symbols.
We construct a WPDA M′ = (Q′ ,�,�, δ′ , I ′ , Z0, F

′ ) over A with Q′ = {q0, q1, . . . , qn},
I ′ (q0) = F ′ (q0) = 1 and I ′ (q) = F ′ (q) = 0 for every q ∈ Q′ \{q0}. The mapping δ

′ :
Q′ × (� ∪ {ε}) × � × Q′ × �∗ → A is defined as follows:

δ
′ (qi−1, τ1, Z0, qi, Z0) = 1 and δ

′ (qi, τ2, Z0, q0, Z0) = ai for every i = 1, . . . , n; and
δ

′ (q, σ , Z0, q
′ , Z0) = 0 for every other combination of σ ∈ � ∪ {ε} and q, q′ ∈ Q′ .

Then 〈M〉r(τ l11 τ2τ
l2
1 τ2 . . . τ

lk
1 τ2) = 〈M〉b(τ l11 τ2τ

l2
1 τ2 . . . τ

lk
1 τ2) = al1 . . . alk for every nat-

ural number k and li = 1, . . . , n with i = 1, . . . , k . Thus, A′ ⊆ Im(〈M〉r)∩ Im(〈M〉b), and
therefore A′ is finite.
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Next we introduce crisp-simple weighted pushdown automata over complete strong
bimonoids.

Definition 4 LetM = (Q,�,�, δ, I, Z0, F ) be aWPDA over a complete strong bimonoid
A. ThenM is called crisp-simple if Im(I) ∪ Im(δ) ⊆ {0, 1}.

Proposition 6 If a complete strong bimonoid A is multiplicatively locally finite, then for
every WPDA over A there is a r-equivalent crisp-simple weighted pushdown automaton
over A.

Proof Let M = (Q,�,�, δ, I, Z0, F ) be a WPDA over a complete strong bimonoid A.
Let T = Im(I) ∪ Im(δ) and R be the submonoid of (A, ·, 1) generated by T. Then R
is finite since T is finite and A is multiplicatively locally finite. We construct a crisp-
simple weighted pushdown automaton over A, M′ = (Q′ ,�,�, δ′ , I ′ , Z0, F

′ ), where
Q′ = Q × (R\{0}), I ′ : Q′ → A is defined by I ′ ((q, k)) = 1 when k = I(q) �= 0
and otherwise I ′ ((q, k)) = 0, and F ′ : Q′ → A is defined by F ′ ((q, k)) = k · F (q)
for every (q, k) ∈ Q′ . The mapping δ

′ : Q′ × (� ∪ {ε}) × � × Q′ × �∗ → {0, 1} is
given by δ

′ ((q, k), τ , X, (p, l), γ ) = 1 for every (q, k) ∈ Q′ , τ ∈ � ∪ {ε}, X ∈ � and
((p, l), γ ) ∈ B, δ

′ ((q, k), τ , X, (p, l), γ ) = 0 for every (q, k) ∈ Q′ , τ ∈ � ∪ {ε}, X ∈ �

and ((p, l), γ ) /∈ B, where B = {((q′ , k · k ′ ), γ ′ )|δ(q, τ , X, q′ , γ ′ ) = k ′ , q′ ∈ Q, γ ′ ∈
�∗, k ′ �= 0, k · k ′ �= 0}. Then for every ω ∈ �∗ by letting ω = σ1 . . . σn ∈ �∗,
σi ∈ �∪{ε}with i = 1, . . . , n, we have I(q)· 	M ((q,ω, Z0), (q1, σ2 . . . σn, Z1γ1))· 	M ((q1,
σ2 . . . σn, Z1γ1), (q2, σ3 . . . σn, Z2γ2)) . . . 	M (((qn−1, σn, Zn−1γn−1), (qn, ε, Znγn)) �= 0 if
and only if I ′ ((q, I(q)))· 	M′ (((q, I(q)),ω, Z0), ((q1, a1), σ2 . . . σn, Z1γ1))· 	M′ ((q1, a1), σ2
. . . σn, Z1γ1), ((q2, a2), σ3 . . . σn, Z2γ2)) . . . 	M′ ((qn−1, an−1), σn, Zn−1γn−1), ((qn, an),
ε, Znγn)) = 1, where q, q1, . . . , qn ∈ Q; Z1, Z2, . . . , Zn−1 ∈ �; γ1, . . . , γn ∈ �∗; Zn ∈ �∗,
a1 = I(q)· 	M ((q,ω, Z0), (q1, σ2 . . . σn, Z1γ1)), aj = aj−1· 	M ((qj−1, σj . . . σn, Zj−1γj−1),
(qj, σj+1 . . . σn, Zjγj)), and an = an−1· 	M ((qn−1, σn, Zn−1γn−1), (qn, ε, Znγn)), j =
2, . . . , n − 1. Hence 〈M〉r(ω) = ∑{I(q)· 	M ((q,ω, Z0), (q1, σ2 . . . σn, Z1γ1))· 	M
((q1, σ2 . . . σn, Z1γ1), (q2, σ3 . . . σn, Z2γ2)) . . . 	M (((qn−1, σn, Zn−1γn−1), (qn, ε, Znγn)) ·
F (qn)|(q, q1, . . . , qn) ∈ Qn+1, Z1, . . . , Zn−1 ∈ �, γ1, . . . , γn ∈ �∗, Zn ∈ �∗} = ∑{F ′ ((qn,
an))|an = I(q)· 	M ((q,ω, Z0), (q1, σ2 . . . σn, Z1γ1))· 	M ((q1, σ2 . . . σn, Z1γ1), (q2, σ3 . . .

σn, Z2γ2)) . . . 	M (((qn−1, σn, Zn−1γn−1), (qn, ε, Znγn)) �= 0, (q, q1, . . . , qn)∈Qn+1, Z1, . . . ,
Zn−1 ∈ �, γ1, . . . , γn ∈ �∗, Zn ∈ �∗} = ∑{I ′ ((q, I(q)))· 	M′ (((q, I(q)),ω, Z0),
((q1, a1), σ2 . . . σn, Z1γ1))· 	M′ ((q1, a1), σ2 . . . σn, Z1γ1), ((q2, a2),σ3 . . . σn, Z2γ2)) . . . 	M′

((qn−1, an−1), σn, Zn−1γn−1), ((qn, an), ε, Znγn))·F ′ ((qn, an)) |a1 = I(q)· 	M ((q,ω, Z0), (q1,
σ2 . . . σn, Z1γ1)), aj = aj−1· 	M ((qj−1, σj . . . σn, Zj−1γj−1), (qj, σj+1 . . . σn, Zjγj)), j =
2, . . . , n − 1, an = an−1· 	M ((qn−1, σn, Zn−1γn−1), (qn, ε, Znγn)), q, q1, . . . , qn ∈ Q,
Z1, Z2, . . . , Zn−1 ∈ �, γ1, . . . , γn ∈ �∗, Zn ∈ �∗} = 〈M′〉r(ω).

So 〈M〉r = 〈M′〉r .
Clearly a crisp-simple weighted pushdown automaton over a complete strong bimonoid

A is also aWPDAbyDefinition4. SoProposition4 also shows thatWPDAsover a complete
strong bimonoidA and crisp-simpleweighted pushdownautomata overA are r-equivalent
if A is multiplicatively locally finite.
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WCFGs over complete strong bimonoids
It is well known that fuzzy grammars have become a necessary tool for the analysis of
fuzzy finite automata. In this section, we will introduce the definition of weighted context-
free grammars over complete strong bimonoids and investigate the relationship between
weighted context-free grammars andweighted pushdown automata over complete strong
bimonoids.

Definition 5 Let A be a complete strong bimonoid. Then a weighted context-free gram-
mar (WCFG for short) over A is a system G = (N,T, P, I), where

(i) N is a finite nonempty alphabet of variables;
(ii) T is a finite nonempty alphabet of terminals and T ∩ N = ∅;
(iii) I : N → A is a mapping called the weighted subset of initial symbols;
(iv) P is a finite collection of productions and

P = {u r→ υ|u ∈ N,υ ∈ (N ∪ T )∗, ρ(u → υ) = r ∈ A\{0}}, where ρ is a mapping
from (N ∪T )∗ × (N ∪T )∗ to A, ρ(u,υ) means the membership degree that u will be
replaced by υ, denoted by ρ(u,υ) = ρ(u → υ).

For the sake of convenience, u r→ υ is sometimes abbreviated as u → υ in P. For
α,β ∈ (N ∪T )∗, if αυβ is directly derivable from αuβ , i.e., αuβ ⇒ αυβ by the production
u → υ in P, then we define ρ(αuβ ⇒ αυβ) = ρ(u → υ). If ωi ∈ (N ∪ T )∗ for
i = 1, . . . , n, and ωi+1 is directly derivable fromωi for i = 1, . . . , n−1, then we say thatωn
is derivable fromω1 and callω1 ⇒ ω2 ⇒ · · · ⇒ ωn the derivation chain c ofωn (fromω1),
which is written as, ω1 ⇒∗

c ωn. And we define ρ(ω1 ⇒∗
c ωn) = ρ(ω1 ⇒ ω2) . . . ρ(ωi ⇒

ωi+1) . . . ρ(ωn−1 ⇒ ωn). Moreover, for the derivation chain ω1 ⇒ ω2 ⇒ · · · ⇒ ωn and
for any i ∈ {1, 2, . . . , n− 1}, if only the leftmost variable in ωi is replaced in the process of
ωi ⇒ ωi+1, then ω1 ⇒ ω2 ⇒ · · · ⇒ ωn is called the leftmost derivation chain, which will
be abbreviated as ω1 ⇒L ω2 ⇒L · · · ⇒L ωn.
Based on run semantics, the formal power series 〈G〉r : T ∗ → A generated by WCFG

G = (N,T, P, I) is defined by, for every θ = ωn ∈ T ∗ and n ≥ 1,
〈G〉r(θ ) = ∑{I(ω0) · ρ(ω0 ⇒ ω1) . . . ρ(ωn−1 ⇒ ωn)|ω0 ∈ N,ω1, . . . ,ωn−1 ∈ (N ∪ T )∗}.
Based on breadth-first algebraic semantics, the formal power series 〈G〉b : T ∗ → A

generated by WCFG G = (N,T, P, I) is defined by, for every θ = ωn ∈ T ∗ and n ≥ 1, 〈G
〉b(θ ) = ∑{I(ω0) ·(∑{ρ(ω0 ⇒ ω1) . . . ρ(ωn−1 ⇒ ωn)|ω1, . . . ,ωn−1 ∈ (N ∪T )∗})|ω0 ∈ N }.
Two WCFGs G1 and G2 are said to be x-equivalent provided that they generate the

same formal power series, that is, 〈G1〉x = 〈G2〉x for x ∈ {r, b}.

Proposition 7 Let G = (N,T, P, I) be a WCFG over a complete and idempotent strong
bimonoid A and A satisfy the following conditions:

a · b = b · a, ∀a, b ∈ A,

Then 〈G〉Lx = 〈G〉x for x ∈ {r, b}, where 〈G〉Lr (θ ) = ∑{I(ω0) · ρ(ω0 ⇒L ω1) · ρ(ω1 ⇒L

ω2) . . . ρ(ωn−1 ⇒L ωn)|ω0 ∈ N,ω1, . . . ,ωn−1 ∈ (N ∪ T )∗}, and 〈G〉Lb(θ ) = ∑{I(ω0) ·
(
∑{ρ(ω0 ⇒L ω1) · ρ(ω1 ⇒L ω2) . . . ρ(ωn−1 ⇒L ωn)|ω1, . . . ,ωn−1 ∈ (N ∪ T )∗})|ω0 ∈ N },
∀ωn = θ ∈ T ∗, n ≥ 1.
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Proof It suffices to prove the following statement by induction on the step number n of
derivation: there exists the corresponding leftmost derivation chain such that,

ρ(ω0 ⇒∗L θ ) = ρ(ω0 ⇒∗ θ ), ∀ω0 ⇒∗ θ , θ ∈ T ∗.

In fact, if n = 1, then ω0 ⇒ θ is the leftmost derivation and so the above statement holds.
Suppose the statement is true when the step number of derivation satisfies the condition
that n < k , where k is a positive integer. Then, for any derivation chain associated with
step number n = k , ω0 ⇒∗ θ , θ ∈ T ∗, that is, ω0 ⇒ X1X2 . . .Xm ⇒∗ α1X2 . . .Xm ⇒∗

. . . ⇒∗ α1α2 . . . αm−1Xm ⇒∗ α1α2 . . . αm−1αm, where θ = α1α2 . . . αm−1αm, ρ(ω0 ⇒∗

θ ) = ρ(ω0 ⇒ X1X2 . . .Xm) · ρ(X1X2 . . .Xm ⇒∗ α1X2 . . .Xm) . . . ρ(α1α2 . . .Xm−1Xm ⇒∗

α1α2 . . . αm−1Xm) · ρ(α1α2 . . . αm−1Xm ⇒∗ α1α2 . . . αm−1αm). If Xi = αi, then Xi is
obtained from the first step of derivation. Otherwise, if Xi �= αi, then the derivation
step number of Xi ⇒∗ αi is not more than n − 1. By induction, there exists the leftmost
derivation Xi ⇒∗L αi such that ρ(Xi ⇒∗ αi) = ρ(Xi ⇒∗L αi).
Hence ω0 ⇒L X1X2 . . .Xm ⇒∗L α1X2 . . .Xm ⇒∗L · · · ⇒∗L α1α2 . . . αm−1Xm ⇒∗L

α1α2 . . . αm−1αm.
Since a ·b = b ·a, ∀a, b ∈ A, ρ(ω0 ⇒∗ θ ) = ρ(ω0 ⇒ X1X2 . . .Xm) ·ρ(X1X2 . . .Xm ⇒∗

α1X2 . . .Xm) . . . ρ(α1α2 . . .Xm−1Xm ⇒∗ α1α2 . . . αm−1Xm) · ρ(α1α2 . . . αm−1Xm ⇒∗

α1α2 . . . αm−1αm) = ρ(ω0 ⇒L X1X2 . . .Xm) · ρ(X1X2 . . .Xm ⇒∗L α1X2 . . .Xm) . . . ρ(α1α2
. . .Xm−1Xm ⇒∗L α1α2 . . . αm−1Xm) · ρ(α1α2 . . . αm−1Xm ⇒∗L α1α2 . . . αm−1αm) = ρ

(ω0 ⇒∗L θ ).
Since a + a = a, ∀a, b ∈ A, it follows by definition that 〈G〉Lx = 〈G〉x, ∀x ∈ {r, b}.
Based on breadth-first algebraic semantics and run semantics, we will investigate the

relationship between weighted context-free grammars and weighted pushdown automata
over complete strong bimonoids. For a formal power series generated by aWCFG, how to
construct a weighted pushdown automaton over a complete strong bimonoid to recognize
it? And for a formal power series recognized by a weighted pushdown automaton over a
complete strong bimonoid, how to construct a WCFG to generate it? Next We will solve
the above problems.

Proposition 8 Let G = (N,T, P, I) be a WCFG over a complete strong bimonoid A. Then
there exists a WPDA∅ M = (Q,�,�, δ, σ , Z0,∅) over A such that

〈rec(M)〉x = 〈G〉Lx , ∀x ∈ {r, b}.
Proof LetG = (N,T, P, I) be aWCFGover a complete strong bimonoidA. Then aWPDA∅

M = (Q,�,�, δ, σ , Z0,∅) over A could be constructed as follows: Q = N ∪ {q}, q /∈ N ,
� = T ,� = N ∪T ∪{Z0},Z0 /∈ N ∪T , themapping δ : Q× (�∪{ε})×�×Q×�∗ −→ A
is defined by,

(1) δ(q, ε, X, q, γ ) = ρ(X → γ ) whenever X → γ ∈ P;
(2) δ(q, a, a, q, ε) = 1 whenever a ∈ T ;
(3) δ(p, ε, Z0, q, p) = 1 whenever p ∈ N ;
(4) otherwise, δ(q1, u, X, q2, γ ) = 0.

The mapping σ : Q → A is given by σ (p) = I(p),∀p ∈ N , and σ (q) = 0.
Noting that every nonterminal string may be remarked as αXγ , where α ∈ T ∗, X ∈

N, γ ∈ �∗. Then the elements of Pmust be the following forms:
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Y → αXγ or Y → αα1,α ∈ T ∗,α1 ∈ T ∗, Y, X ∈ N, γ ∈ �∗.
Clearly, ∀ω ∈ T ∗, ∀S, X, X1, . . . , Xn ∈ N,α,α1, . . . ,αn ∈ T ∗, γ , γ1, . . . , γn ∈ �∗, S ⇒

αXγ ⇒L αα1X1γ1 ⇒L αα1α2X2γ2 ⇒L · · · ⇒L αα1 . . . αnXnγn ⇒L ω, where
ρ(S ⇒ αXγ ⇒L αα1X1γ1 ⇒L αα1α2X2γ2 ⇒L · · · ⇒L αα1 . . . αnXnγn ⇒L ω) =
k ∈ A\{0}; if and only if 	M ((S,ω, Z0), (q,ω, S))· 	M ((q,ω, S), (q,ω,αXγ ))· 	|α|

M
((q,ω,αXγ ), (q,ω1, Xγ ))· 	M ((q,ω1, Xγ ), (q,ω1,α1X1γ1))· 	|α1|

M ((q,ω1,α1X1γ1), (q,ω2,
X1γ1))· 	M ((q,ω2, X1γ1), (q,ω2,α2X2γ2))· 	|α2|

M ((q,ω3,α2X2γ2), (q,ω3, X2γ2))· 	M
((q,ω3, X2γ2), (q,ω3,α3X3γ3)) . . . 	M ((q,ωn, Xn−1γn−1), (q,ωn,αnXnγn))· 	|αn|

M ((q,ωn,
αnXnγn), (q,ωn, Xnγn))· 	M ((q,ωn, Xnγn), (q,ωn,ωn))· 	|ωn|

M ((q,ωn,ωn), (q, ε, ε)) = k ∈
A\{0}, where ω = αω1,ωk−1 = αk−1ωk , k = 2, . . . , n, the mapping 	|α|

M ((q,α,αXγ ), (q, ε,
Xγ )) is defined by,

	|α|
M ((q,α,αXγ ), (q, ε, Xγ )) =

{
1, if |α| = 0,
h, if |α| = k,

where α = a1 . . . ak , ai ∈ T, i = 1, . . . , k ; and h =	M ((q,α, a1 . . . akXγ ), (q, a2 . . . ak , a2
. . . akXγ ))· 	M ((q, a2 . . . ak , a2 . . . ak Xγ ), (q, a3 . . . ak , a3 . . . akXγ )) . . . 	M ((q, ak , ak
Xγ ), (q, ε, Xγ )).
In fact, for a given |α| ≥ 0, α ∈ T ∗, X ∈ N, γ ∈ �∗, there has 	|α|

M ((q,α,αXγ ), (q,
ε, Xγ )) = 1.
For any ω ∈ T ∗, if ρ(S ⇒ ω) = k0 ∈ A\{0}, then S ⇒ ω if and only if 	M ((S,ω, Z0),

(q,ω, S))· 	M ((q,ω, S), (q,ω,ω))· 	|ω|
M ((q,ω,ω), (q, ε, ε)) = 1· 	M ((q,ω, S), (q,ω,ω)) ·

1 =	M ((q, ε, S), (q, ε,ω)) = δ(q, ε, S, q,ω) = ρ(S → ω) = k0.
Hence, for anyω ∈ T ∗, there has 〈G〉Lr (ω) = ∑{I(S)·ρ(S → ω)|S ∈ N }+∑{I(S)·ρ(S ⇒

αXγ ⇒L αα1X1γ1 ⇒L αα1α2X2γ2 ⇒L · · · ⇒L αα1 · · ·αnXnγn ⇒L ω)|S, X, X1, . . . , Xn ∈
N,α,α1, . . . ,αn ∈ T ∗, γ , γ1, . . . , γn ∈ �∗} = ∑{σ (S)· 	M ((S,ω, Z0), (q,ω, S))· 	M
((q,ω, S), (q,ω,ω))· 	|ω|

M ((q,ω,ω), (q, ε, ε))|S ∈ N }+∑{σ (S)· 	M ((S,ω, Z0), (q,ω, S))· 	M
((q,ω, S), (q,ω,αXγ ))· 	|α|

M ((q,ω,αXγ ), (q,ω1, Xγ ))· 	M ((q,ω1, Xγ ), (q,ω1,α1X1γ1))·
	|α1|
M ((q,ω1,α1X1γ1), (q,ω2, X1γ1))· 	M ((q,ω2, X1γ1), (q,ω2,α2X2γ2))· 	|α2|

M ((q,ω3,
α2X2γ2), (q,ω3, X2γ2))· 	M ((q,ω3, X2γ2), (q,ω3, α3X3γ3)) . . . 	M ((q,ωn, Xn−1γn−1),
(q,ωn,αnXnγn))· 	|αn|

M ((q,ωn,αnXnγn), (q,ωn, Xnγn))· 	M ((q,ωn, Xnγn), (q,ωn,ωn))· 	|ωn|
M

((q,ωn,ωn), (q, ε, ε))|S, X, X1, . . . , Xn ∈ N,α,α1, . . . ,αn ∈ T ∗, γ , γ1, . . . , γn ∈ �∗,ω = αω1,
ωk−1 = αk−1ωk , k = 2, . . . , n} = 〈rec(M)〉r(ω).
So 〈rec(M)〉r = 〈G〉Lr .
Similarly it follows by definition that 〈rec(M)〉b = 〈G〉Lb .

Proposition 9 LetM be a WPDA∅ over a complete strong bimonoid A. Then there exists
a WCFG G = (N,T, P, I) such that 〈rec(M)〉x = 〈G〉Lx , ∀x ∈ {r, b}.

Proof Let M = (Q,�,�, δ, σ , Z0,∅) be a WPDA∅ over a complete strong bimonoid A.
Then a WCFG G = (N,T, P, I) over a complete strong bimonoid A is established as
follows: N = Q ∪ {[pzq]|p, q ∈ Q, z ∈ �}, T = �,

I(x) =
{

σ (x), if x ∈ Q,
0, if x ∈ N\Q

P consists of the following productions:

(i) p 1→ [pZ0q], ∀p, q ∈ Q;
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(ii) for any p, q ∈ Q, u ∈ � ∪ {ε}, Z, Z1, . . . , Zm ∈ �, m ≥ 1, if δ(p, u, Z, q, Z1 . . .Zm)
= l ∈ A\{0}, then [pZqm]

l→ u[qZ1q1][q1Z2q2] · · · [qm−1Zmqm],∀q1, . . . , qm ∈ Q.
(iii) if δ(p, u, Z, q, ε) = l ∈ A\{0}, then [pZq] l→ u.

For ω = u1u2 . . . um, m ≥ 2, ui ∈ � ∪ {ε}, i = 1, . . . , m, assume the set mPathlω(pZq)
consists of all the traces that inputting string ω ∈ �∗ makes state p transfer to state q and
pushes the top symbol Z out of the stack, where the string ω is a sequence catenated by
m elements from � ∪ {ε}, and the truth value of all the above propositions are l. That is
to say, mPathlω(pZq) = {(p1, u2 . . . um, Z1γ1, p2, u3 . . .um, Z2γ2, . . . , pm−2, um−1um, Zm−2
γm−2, pm−1, um, Zm−1, q, ε, ε)| 	M ((p,ω, Z), (p1, u2 . . . um, Z1γ1))· 	M ((p1, u2 . . .um, Z1
γ1), (p2, u3 . . . um, Z2γ2)) . . . 	M ((pm−2, um−1um, Zm−2γm−2), (pm−1, um, Zm−1))· 	M
((pm−1, um, Zm−1), (q, ε, ε)) = l ∈ A\{0}, p1, . . . , pm−1 ∈ Q,Z1, . . . , Zm−1 ∈ �, γ1, γ2, . . . ,
γm−2 ∈ �∗}.

Then for any t(ω) ∈ mPathlω(pZq), we define 	t(ω)
M ((p,ω, Z), (q, ε, ε)) =	M ((p,ω, Z),

(p1, u2 . . .um, Z1γ1))· 	M ((p1, u2 . . . um, Z1γ1), (p2, u3 . . . um, Z2γ2)) . . . 	M ((pm−2,
um−1um, Zm−2γm−2), (pm−1, um, Zm−1)) · 	M ((pm−1, um, Zm−1), (q, ε, ε)).
If t(ω) ∈ {(q, ε, ε)| 	M ((p,ω, Z), (q, ε, ε)) = l ∈ A\{0}}, then we define 	t(ω)

M
((p,ω, Z), (q, ε, ε)) =	M ((p,ω, Z), (q, ε, ε)).
Assume that mDrlω(pZq) = {(u1[p1Z1p

′
1]α1, u2[p2Z2p

′
2]α2, . . . , um−2[pm−2Zm−2p

′
m−2]

αm−2, um−1 αm−1, um)|ρ([pZq] ⇒L u1[p1Z1p
′
1]α1 ⇒L u1u2[p2Z2p

′
2]α2 ⇒L · · · ⇒L

u1u2 . . .um−2 [pm−2Zm−2p
′
m−2]αm−2 ⇒L u1u2 . . . um−2um−1αm−1 ⇒L u1u2 . . .um−2

um−1um) = l ∈ A\{0},α1,α2, . . . ,αm−2 ∈ N ∗,αm−1 = [pm−1Zm−1q], p1, p2, . . . , pm−1 ∈
Q, p′

1, p
′
2, . . . , p

′
m−2 ∈ Q}.

For any c(ω) ∈ mDrlω(pZq), define ρ([pZq] ⇒∗L
c(ω) ω) = ρ([pZq] ⇒L u1[p1Z1p

′
1]α1 ⇒L

u1u2[p2Z2p
′
2]α2 ⇒L . . . ⇒L u1u2 . . .um−2[pm−2Zm−2p

′
m−2]αm−2 ⇒L u1u2 . . .um−2

um−1αm−1 ⇒L u1u2 . . . um−2 um−1um).
If c(ω) ∈ {ω|ρ([pZq] ⇒ ω) = l ∈ A\{0}}, then we define ρ([pZq] ⇒∗L

c(ω) ω) = ρ

([pZq] ⇒ ω).
Now the following statements hold:
(I) ∀ω ∈ �∗, p, q ∈ Q, 	M ((p,ω, Z0), (q, ε, ε)) = l ∈ A\{0} if and only if ρ([pZ0q] ⇒L

ω) = l ∈ A\{0}.
(II) Put Pathlω(pZq) = ⋃{mPathlω(pZq)|m ≥ 2}, and Drlω(pZq) = ⋃{mDrlω(pZq)

|m ≥ 2}. Then for any ω = u1u2 . . . uk ∈ �∗, p, q ∈ Q, z ∈ �, l ∈ A\{0},
ui ∈ � ∪ {ε}, i = 1, . . . , k, k ≥ 2, there exists a bijective mapping f from
Pathlω(pZq) to Drlω(pZq), i.e., f : Pathlω(pZq) → Drlω(pZq), which is given by
f ((p1, u2 . . .um, Z1γ1, p2, u3 . . . um, Z2γ2, . . . , pm−2, um−1um, Zm−2γm−2, pm−1, um, Zm−1,
q, ε, ε))= (u1[p1Z1p

′
1]α1, u2[p2Z2p

′
2]α2, . . . , um−2[pm−2Zm−2p

′
m−2]αm−2, um−1 αm−1, um),

∀(p1, u2 . . . um, Z1γ1, p2, u3 . . . um, Z2γ2, . . . , pm−2, um−1um, Zm−2γm−2, pm−1, um, Zm−1,
q, ε, ε) ∈ Pathlω(pZq), where p′

1, p
′
2, . . . , p

′
m−2,α1,α2, . . . ,αm−2 can be determined

uniquely by the productions in P respectively.
Clearly, for any (p1, u2 . . .um, Z1γ1, p2, u3 . . . um, Z2γ2, . . . , pm−2, um−1um, Zm−2γm−2,

pm−1, um, Zm−1, q, ε, ε) ∈ mPathlω(pZq), there always has f ((p1, u2 . . . um, Z1γ1, p2, u3 . . .

um, Z2γ2, . . . , pm−2, um−1um, Zm−2 γm−2, pm−1, um, Zm−1, q, ε, ε)) ∈ mDrlω(pZq).
Next f is shown to be bijective by induction. In fact, if Pathlω(pZq) = ∅, thenDrlω(pZq) =

∅; if Pathlω(pZq) �= ∅, then Drlω(pZq) �= ∅.
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Basis: if t(ω) = (p1, u2, Z1, q, ε, ε) ∈ 2Pathlω(pZq), then 	t(ω)
M ((p,ω, Z), (q, ε, ε))

=	M ((p,ω, Z), (p1, u2, Z1))· 	M ((p1, u2, Z1), (q, ε, ε)) = l, and so [pZp′ ] → u1[p1Z1p
′ ],

[p1Z1q] → u2, and ρ([pZp′ ] → u1[p1Z1p
′ ]) =	M ((p,ω, Z), (p1, u2, Z1)), ρ([p1Z1q] →

u2) =	M ((p1, u2, Z1), (q, ε, ε)).
Suppose α1 = [p1Z1q], and p′ = q. Then c(ω) = (u1α1, u2) = f (t(ω)), ρ([pZq] ⇒∗L

c(ω)
ω) = ρ([pZq] ⇒L u1α1 ⇒L u1u2) = l.
Clearly, for any x, y ∈ 2Pathlω(pZq), if x �= y, then f (x) �= f (y). Moreover, for any

y ∈ 2Drlω(pZq), there exists x ∈ 2Pathlω(pZq) such that f (x) = y. So the mapping
f |2Pathlω(pZq), named as a restriction on a set 2Pathlω(pZq) by f, is a bijective mapping from
2Pathlω(pZq) to 2Drlω(pZq).
Assumption by induction: Assume that whenever the derivation step number from

(p,ω, Z) to (q, ε, ε) is not more than k (k ≥ 2) in the given WPDA∅ M, there exists a
bijective map f |mPathlω(pZq): mPathlω(pZq) → mDrlω(pZq), m = 2, . . . , k . Next we prove
f |k+1Pathlω(pZq):

k+1Pathlω(pZq) → k+1Drlω(pZq) is also bijective, named as a restriction
on the set k+1Pathlω(pZq) by f.
In fact, if t(ω) ∈ k+1Pathlω(pZq), then 	t(ω)

M ((p,ω, Z), (q, ε, ε)) =	M ((p, aτ1τ2 . . .

τm, Z), (q1, τ1τ2 . . . τm, X1X2 . . .Xm))· 	t(τ1)
M ((q1, τ1τ2 . . . τm, X1X2 . . .Xm), (q2, τ2 . . . τm,

X2 . . .Xm))· 	t(τ2)
M ((q2, τ2 . . . τm, X2 . . .Xm), (q3, τ3 . . . τm, X3 . . .Xm)) . . . 	t(τm)

M ((qm, τm,
Xm), (q, ε, ε)) = l, where a ∈ �∪{ε}, τ1, . . . , τm ∈ �∗,X1, X2, . . . , Xm ∈ �, q1, . . . , qm ∈ Q,
ω = aτ1 . . . τm.
Let 	M ((p, a, Z), (q1, ε, X1X2 . . .Xm)) = la, 	t(τi)

M ((qi, τi, Xi), (qi+1, ε, ε)) = li, t(τi) ∈
kiPathliτi (qiXiqi+1) ∪ Di, Di = {(qi+1, ε, ε)| 	M ((qi, τi, Xi), (qi+1, ε, ε)) = li ∈ A\{0}}, i =
1, . . . , m, qm+1 = q. Then la·l1 . . . lm = l, t(ω) ∈ k+1Pathlω(pZq) = H×A1×A2×· · ·×Am,
where H = {(q1, τ1 . . . τm, X1X2 . . .Xm)| 	M ((p, aτ1τ2 . . . τm, Z), (q1, τ1τ2 . . . τm, X1X2
. . .Xm)) = la ∈ A\{0}, τ1, . . . , τm ∈ �∗, X1, X2, . . . , Xm ∈ �, aτ1τ2 . . . τm = ω, a ∈ � ∪
{ε}, q1 ∈ Q};
A1 = {(p11, u12 . . .u1k1τ2 . . . τm, Z11γ11X2 . . .Xm, p12, u13 . . . u1k1τ2 . . . τm, Z12γ12X2 . . .

Xm, . . . , p1,k1−2, u1,k1−1u1,k1τ2 . . . τm, Z1,k1−2γ1,k1−2X2 . . .Xm, p1,k1−1, u1,k1τ2 . . . τm,Z1,k1−1
X2 . . .Xm, q2, τ2 . . . τm, X2 . . .Xm)|t(τ1)= (p11, u12 . . . u1k1 , Z11γ11, p12, u13 . . . u1k1 , Z12γ12,
. . . , p1,k1−2, u1,k1−1u1,k1 , Z1,k1−2γ1,k1−2, p1,k1−1, u1,k1 , Z1,k1−1, q2, ε, ε) ∈ k1Pathl1τ1 (q1X1q2),
τ1 = u11u12 . . . u1k1} ∪ {(q2, τ2 . . . τm, X2 . . .Xm)|t(τ1) ∈ D1};
A2 = {(p21, u22 . . .u2k2τ3 . . . τm, Z21γ21X3 . . .Xm, p22, u23 . . . u2k2τ3 . . . τm, Z22γ22 X3 . . .

Xm, . . . , p2,k2−2, u2,k2−1u2,k2τ3 . . . τm, Z2,k2−2γ2,k2−2X3 . . .Xm, p2,k2−1, u2,k2τ3 . . . τm, Z2,k2−1
X3 . . .Xm, q3, τ3 . . . τm, X3 . . .Xm)|t(τ2)= (p21, u22 . . . u2k2 , Z21γ21, p22, u23 . . . u2k2 , Z22γ22,
. . . , p2,k2−2, u2,k2−1u2,k2 , Z2,k2−2γ2,k2−2, p2,k2−1, u2,k2 , Z2,k2−1, q3, ε, ε) ∈k2 Pathl2τ2 (q2X2q3),
τ2 = u21u22 . . . u2k2} ∪ {(q3, τ3 . . . τm, X3 . . .Xm)|t(τ2) ∈ D2};
...
Am−1 = {(pm−1,1, um−1,2 . . . um−1,km−1τm, Zm−1,1γm−1,1Xm, pm−1,2, um−1,3 . . . um−1,km−1

τm, Zm−1,2γm−1,2Xm, . . . , pm−1,km−1−2, um−1,km−1−1um−1,km−1τm, Zm−1,km−1−2γm−1,km−1−2
Xm, pm−1,km−1−1, um−1,km−1τm, Zm−1,km−1−1Xm, qm, τm, Xm)|t(τm−1) = (pm−1,1, um−1,2 . . .

um−1,km−1 , Zm−1,1γm−1,1, pm−1,2, um−1,3 . . .um−1,km−1 , Zm−1,2γm−1,2, . . . , pm−1,km−1−2,
um−1,km−1−1um−1,km−1 , Zm−1,km−1−2γm−1,km−1−2, pm−1,km−1−1, um−1,km−1 , Zm−1,km−1−1, qm,
ε, ε) ∈ km−1Pathlm−1

τm−1 (qm−1Xm−1qm), τm−1 = um−1,1um−1,2 . . .um−1,km−1} ∪ {(qm, τm, Xm)
|t(τm−1) ∈ Dm−1};
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Am = {(pm1, um2 . . .umkm, Zm1γm1, pm2, um3 . . . umkm, Zm2γm2, . . . , pm,km−2, um,km−1
um,km , Zm,km−2γm,km−2, pm,km−1, um,km , Zm,km−1, q, ε, ε)|t(τm) = (pm1, um2 . . . umkm, Zm1
γm1, pm2, um3 . . .umkm, Zm2γm2, . . . , pm,km−2, um,km−1um,km , Zm,km−2γm,km−2, pm,km−1,
um,km , Zm,km−1, q, ε, ε) ∈ kmPathlmτm (qmXmq), τm = um1um2 . . . umkm} ∪ {(q, ε, ε)|t(τm) ∈
Dm}.
Let Fi = {τi|ρ([qiXiqi+1] ⇒ τi) = li ∈ A\{0}}, i = 1, . . . , m, and qm+1 = q.
Then it is obtainedby induction that,ρ

(
[q1X1q2] ⇒∗L

c(τ1) τ1
)
= l1,ρ

(
[q2X2q3] ⇒∗L

c(τ2) τ2
)

= l2, . . ., ρ
(
[qmXmq] ⇒∗L

c(τm) τm
)

= lm, c(τ1) ∈ k1Drl1τ1 (q1X1q2)∪ F1, c(τ2) ∈ k2Drl2τ2 (q2X2

q3) ∪ F2, . . ., c(τm) ∈ kmDrlmτm (qmXmq) ∪ Fm.
Soρ

(
[pZq] ⇒∗L

c(ω) ω
)

= ρ
(
[pZq] ⇒L a[q1X1q2][q2X2q3] . . . [qmXmq] ⇒∗L

c(τ1) aτ1[q2X2

q3] . . . [qmXmq] ⇒∗L
c(τ2) aτ1τ2[q3X3q4] . . . [qmXmq] ⇒∗L

c(τ3) · · · ⇒∗L
c(τm−1) aτ1 . . . τm−1[qm

Xmq] ⇒∗L
c(τm) aτ1 . . . τm

)
= la · l1 . . . lm = l, where c(ω) ∈ k+1Drlω(pZq) = E ×B1 ×B2 ×

· · ·×Bm,E={a[q1X1q2][q2X2q3] . . . [qm−1Xm−1qm][qmXmq]|ρ([pZq] ⇒L a[q1X1q2][q2X2
q3] . . . [qm−1Xm−1qm][qmXmq]) = la, a ∈ � ∪ {ε}, q1, q2, . . . , qm ∈ Q,X1, . . . , Xm ∈ �},
B1={(u11[p11Z11p

′
11]α11[q2X2q3] . . . [qm−1Xm−1qm][qmXmq], u12[p12Z12p

′
12]α12[q2X2q3]

. . . [qm−1Xm−1qm][qmXmq], . . . , u1,k1−2[p1,k1−2Z1,k1−2p
′
1,k1−2]α1,k1−2[q2X2q3] . . . [qm−1

Xm−1qm][qmXmq], u1,k1−1α1,k1−1[q2X2q3] . . . [qm−1Xm−1qm][qmXmq], u1k1 [q2X2q3] . . .

[qm−1Xm−1qm][qmXmq])|c(τ1) = (u11[p11Z11p
′
11]α11, u12[p12Z12p

′
12]α12, . . . , u1,k1−2

[p1,k1−2Z1,k1−2p
′
1,k1−2]α1,k1−2, u1,k1−1α1,k1−1, u1k1 ) ∈ k1Drl1τ1 (q1X1q2)} ∪ {τ1[q2X2q3] . . .

[qm−1Xm−1qm][qmXmq]|c(τ1) ∈ F1},
B2={(u21[p21Z21p

′
21]α21[q3X3q4] . . . [qm−1Xm−1qm][qmXmq], u22[p22Z22p

′
22]α22 [q3X3

q4] . . . [qm−1Xm−1qm][qmXmq], . . . , u2,k2−2[p2,k2−2Z2,k2−2p
′
2,k2−2]α2,k2−2[q3X3q4] . . .

[qm−1Xm−1qm][qmXmq], u2,k2−1α2,k2−1[q3X3q4] . . . [qm−1Xm−1qm][qmXmq], u2k2 [q3X3q4]
. . . [qm−1Xm−1qm][qmXmq])|c(τ2) = (u21[p21Z21p

′
21]α21, u22[p22Z22p

′
22]α22, . . . , u2,k2−2

[p2,k2−2Z2,k2−2p
′
2,k2−2]α2,k2−2, u2,k2−1α2,k2−1, u2k2 ) ∈ k2Drl2τ2 (q2X2q3)} ∪ {τ2[q3 X3q4] . . .

[qm−1Xm−1qm][qmXmq]|c(τ2) ∈ F2},
...
Bm−1 = {(um−1,1[pm−1,1Zm−1,1p

′
m−1,1]αm−1,1[qmXmq], um−1,2[pm−1,2Zm−1,2p

′
m−1,2]

αm−1,2[qmXmq], . . . , um−1,km−1−2[pm−1,km−1−2Zm−1,km−1−2p
′
m−1,km−1−2]αm−1,km−1−2[qm

Xmq], um−1,km−1−1αm−1,km−1−1[qmXmq], um−1,km−1 [qmXmq])|c(τm−1) = (um−1,1[pm−1,1
Zm−1,1p

′
m−1,1]αm−1,1, um−1,2[pm−1,2Zm−1,2p

′
m−1,2]αm−1,2, . . . , um−1,km−1−2[pm−1,km−1−2

Zm−1,km−1−2p
′
m−1,km−1−2]αm−1,km−1−2, um−1,km−1−1αm−1,km−1−1, um−1,km−1 ) ∈ km−1Drlm−1

τm−1

(qm−1Xm−1qm)}∪ {τm−1[qmXmq]|c(τm−1) ∈ Fm−1}, Bm = kmDrlmτm (qmXmq)∪{τm|c(τm) ∈
Fm}.
Since f |ki Pathliτi (qiXiqi+1)

is a bijectivemapping from kiPathliτi (qiXiqi+1) to kiDrliτi (qi Xiqi+1),
where qm+1 = q, ∀i = 1, . . . , m,
f |⋃m

i=1
ki Pathliτi (qiXiqi+1)

is a bijectivemapping from
⋃m

i=1
kiPathliτi (qiXiqi+1) to

⋃m
i=1

kiDrliτi
(qiXiqi+1). And so f |k+1Pathlω(pZq) is also bijective from k+1Pathlω(pZq) to k+1Drlω(pZq).
Then themapping f is bijective bymathematical induction from Pathlω(pZq) toDrlω(pZq).
Therefore |Pathlω(pZq)| = |Drlω(pZq)|.
Now we write nl as a shorthand for l + · · · + l (n summands) for every l ∈ A and a

positive integer n. Let 0l = 0. Then for every ω ∈ �∗, there always have 〈rec(M)〉r(ω) =
∑{σ (p)· 	M ((p,ω, Z0), (q, ε, ε))|p, q ∈ Q} + ∑{σ (p)· 	t(ω)

M ((p,ω, Z0), (q, ε, ε))|p, q ∈
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Q, t(ω) ∈ Pathlω(p, Z0, q), l ∈ A\{0}} = ∑{I(p) · ρ(p ⇒ [pZ0q] ⇒L ω)|p, q ∈ Q} +
∑{|Pathlω(pZ0q)|(σ (p) · l)|p, q ∈ Q, l ∈ A\{0}} = ∑{I(p) · ρ(p ⇒ [pZ0q] ⇒L ω)|p, q ∈
Q}+∑{|Drlω(pZ0q)|(I(p) · l)|p, q ∈ Q, l ∈ A\{0}} = ∑{I(p) ·ρ(p ⇒ [pZ0q] ⇒L ω)|p, q ∈
Q} + ∑{I(p) · ρ([pZ0q] ⇒∗L

c(ω) ω)|p, q ∈ Q, c(ω) ∈ Drlω(pZ0q), l ∈ A\{0}} = 〈G〉Lr (ω),
and 〈rec(M)〉b(ω) = ∑{σ (p) · (∑{	M ((p,ω, Z0), (q, ε, ε))|q ∈ Q})|p ∈ Q} + ∑{σ (p) ·
(
∑{	t(ω)

M ((p,ω, Z0), (q, ε, ε))|q ∈ Q, t(ω) ∈ Pathlω(p, Z0, q), l ∈ A\{0}})|p ∈ Q} = ∑{I(p) ·
(
∑{ρ(p ⇒ [pZ0q] ⇒L ω)|q ∈ Q})|p ∈ Q}+∑{I(p)·(∑{ρ([pZ0q] ⇒∗L

c(ω) ω)|q ∈ Q, c(ω) ∈
Drlω(pZ0q), l ∈ A\{0}})|p ∈ Q} = 〈G〉Lb(ω).
Finally wewill give two examples to show that in the basis of run semantics and breadth-

first algebraic semantics, how to construct the equivalent machines for weighted context-
free grammars and weighted pushdown automata over strong bimonoids respectively.
In the first example we construct a weighted pushdown automaton over the underlying
strong bimonoid equivalent to the given weighted context-free grammar over a strong
bimonoid. In the second example we consider an equivalent weighted context-free gram-
mar over the strong bimonoid when given a WPDA∅ over a strong bimonoid.

Example 1 Let G = ({X, B}, {a, b}, P, I) be a WCFG over a complete strong bimonoid A,
where
P = {X t1→ baXXa, X t2→ ab, B t3→ bBB, B t3→ ba}, I(X) = t0 = I(B), t0, t1, t2, t3 ∈ A\{0}.
Next we construct a WPDA∅ M = (Q,�,�, δ, σ , Z0,∅) over the strong bimonoid A as

follows:

(1) Q = {X, B, q};
(2) � = {a, b};
(3) � = {a, b, X, B, Z0};
(4) σ (X) = σ (B) = t0, σ (q) = 0;
(5) δ(S, ε, Z0, q, S) = 1,∀S ∈ {X, B};
(6) δ(q, a, a, q, ε) = δ(q, b, b, q, ε) = 1;
(7) δ(q, ε, X, q, baXXa) = t1, δ(q, ε, X, q, ab) = t2, δ(q, ε, B, q, bBB) = t3, δ(q, ε, B, q, ba) =

t3.

Otherwise, δ(p1, u, γ , p2, γ1) = 0.
Then by Proposition 8, we has 〈rec(M)〉x = 〈G〉Lx ,∀x ∈ {r, b}.

Example 2 LetM = (Q,�,�, δ, σ , Z0,∅) be a WPDA∅ over a complete strong bimonoid
A, where Q = {p, q, q1, q3, q4 , q5, q6}, � = {a, b}, � = {Z0, X, X1, X2, X3}, σ (p) = 1, σ (y) =
0,∀y ∈ Q\{p}; suppose t, t1, t2, t3, t4 , t5, t6, t7 ∈ A\{0}, a map δ : Q × (� ∪ {ε}) × � × Q ×
�∗ → A is given by, δ(p, a, Z0, q1, XX1) = t, δ(q1, b, X, q, X2X3) = t, δ(q, b, X2, q3, X2) = t1,
δ(q, b, X2, q4 , ε) = t2, δ(q3, a, X2, q3, ε) = t3, δ(q4 , a, X3, q4 , X3) = t4, δ(q3, a, X3, q5, ε) = t5,
δ(q4 , a, X3, q5, ε) = t6, δ(q5, a, X1, q6, ε) = t7, otherwise, δ(p1, u, γ , p2, γ1) = 0.
By Proposition 9, construct a WCFG G = (N,T, P, I) over A as follows:
N = Q ∪ {[p1Zp2]|p1, p2 ∈ Q,Z ∈ �}, T = �, I(p) = σ (p), I(x) = 0,∀x ∈ N\{p}. P

consists of the following productions:

(1) p1
1→ [p1Z0p2],∀p1, p2 ∈ Q;

(ii) [pZ0p2]
t→ a[q1Xp1][p1X1p2], [q1Xp2]

t→ b[qX2p1][p1X3p2], [qX2p2]
t1→ b[q3X2p2],

[q4X3p2]
t4→ a[q4X3p2],∀p1, p2 ∈ Q;
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(iii) [qX2q4]
t2→ b, [q3X2q3]

t3→ a, [q3X3q5]
t5→ a, [q4X3q5]

t6→ a, [q5X1q6]
t7→ a.

It follows by Proposition 9 that 〈rec(M)〉x = 〈G〉Lx , ∀x ∈ {r, b}.

Conclusions
In this paper, we considered firstly weighted pushdown automata and context-free gram-
mars over strong bimonoids on the basis of run semantics and breadth-first algebraic
semantics. The algebraic properties characterizations of these machines are investigated.
Based on each semantics, weighted pushdown automata with empty stack and weighted
context-free grammars over strong bimonoids are shown to be equivalent. Finally, two
examples are presented to illustrate the proposed methods in this paper. These results
obtained in this paper, which generalize the previous conclusions in literature (Qiu 2007b;
Xing and Qiu 2009) to a certain extent, will lay the foundations for more detailed analysis
of the applications such as in multi-valued model checking. Further studies will explore
the normal context-free grammars over strong bimonoids based on some semantic ways.
It would be interesting to see how much differently these context-free grammars’ behav-
iors. Also, it would be interesting to utilize weighted context-free grammars and weighted
pushdown automata based on complete strong bimonoids to deal with modelling and
control problems of fuzzy discrete event systems.
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