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Background
For the first time the extension of the middle surface during impact upon a thin body has 
been taken into account in the problems of impact of an elastic sphere upon an elastic 
Timoshenko beam in (Rossikhin and Shitikova 1996) and upon an elastic Timoshenko-
type thin-walled beam of open profile in (Rossikhin and Shitikova 1999). In the state-of-
the-art article (Rossikhin and Shitikova 2007a) devoted to the wave theory of impact and 
published in 2007 in “The Shock and Vibration Digest”, the impact response of an elastic 
Uflyand–Mindlin plane and a Timoshenko beam was analyzed in detail.

However, in 2014, Vershinin (2014) published a conference paper, wherein the prob-
lem of impact of an elastic sphere against an elastic Timoshenko beam was considered 
with due account for extension of the target middle surface, in so doing the solution was 
based on completely wrong formulas and equations. Thus, in page 345 of (Vershinin 
2014) a reader could find incorrect formula (6)
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where [v] is the discontinuity in the velocity of longitudinal displacement on the plane 
transient wave propagating along the beam during the impact process with the velocity 
G1 = √

E/ρ, E is Young’s modulus, ρ is the density, ν is Poisson’s ratio, hb is the beam 
thickness, and α is the local bearing the target and impactor’s materials. The above for-
mula is valid for an elastic thin plate, but it is invalid for a beam.

However, the correct formula for the beam (which will be used further in the present 
paper) was derived 50 years ago in the classical work by Landau and Lifshitz (1965)

In the same page of (p. 345 in Vershinin 2014), the equation of motion of the contact 
zone was presented as

where N is the longitudinal force, w and Q are transverse displacement and force, respectively, 
P(t) is the contact force, z is the coordinate directed along the beam axis, a dot denotes the 
time-derivative, a is the radius of the contact zone, in so doing the author of (Vershinin 2014) 
has considered that plane transient waves (surfaces of discontinuity) propagate from the con-
tact zone during the process of impact. However, if the contact domain is a circular disk with 
a volume hπa2, then the waves travelling from a circular contact zone are diverging circles.

In order the waves propagating from the contact zone to be the plane waves, the con-
tact domain should be a rectangular parallelepiped with the volume 2aF, where F is the 
cross sectional area of the beam, and the equation should have the form

In the same page of (p. 345 in Vershinin 2014), the final equation was presented as

where cb = (2ρFG2)
−1, G2 =

√
Kµ/ρ, eb = 1−ν

ν

G2
1

G2
2

hb, K is the shear coefficient, and µ is 
the shear modulus. This equation is also incorrect.

The correct equation neglecting the inertia of the contact zone (this important 
assumption was not mentioned in Vershinin (2014) ) has the form

with the correct coefficient e = G2
1

G2
2

1
νhb

.

Based on the aforesaid, the further numerical treatment presented in Vershinin (2014) 
occurs to be invalid.

[v] = −1− ν

ν
G1

α

hb
,

[v] = −1

ν
G1

α

hb
.

2N
∂w

∂z
+ 2Q + P(t) = ρhπa2ẅ,

2N
∂w

∂z
+ 2Q + P(t) = 2aFρẅ.

α̈ + 1

m
P(α)+ cb

d

dα

(
P(α)

1+ ebα

)
= 0,

α̈ + 1

m
P(α)+ cb

d

dα

(
P(α)

1+ eα

)
α̇ = 0
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In the present paper, we present not only the correct equation for the impact response 
of the elastic Timoshenko beam, but the deduction and analysis of equations describing 
the behaviour of a viscoelastic Timoshenko-type beam impacted by an elastic sphere are 
given considering the damage of the target material within the contact domain.

Problem formulation
Let an elastic sphere with the radius R and mass m move along the y−axis with a con-
stant velocity V0 towards a Timoshenko-type viscoelastic homogeneous isotropic beam 
of the width h (Fig. 1), viscoelastic features of which are described by the standard lin-
ear solid model with conventional derivatives. The dynamic behaviour of such a beam 
with due account for extension of its middle surface is described by the following set of 
equations:

where M, Q, and N are the bending moment, the shear and longitudinal forces, respec-
tively, u and w are longitudinal and transverse displacements, respectively, ψ is the angle 
of rotation of the cross section around the z-axis, v = u̇, W = ẇ, � = ψ̇, F and I are the 
cross-sectional area and the moment of inertia with respect to the x-axis, respectively, 
ρ is the density, K is the shear coefficient dependent on beam’s geometrical dimensions 
and the form of its cross section, and an overdot denotes the time derivative.

In equations (2) and (4), the operator corresponding to the Young modulus has the 
form

(1)
∂N

∂z
= ρFv̇,

∂Q

∂z
= ρFẆ , −∂M

∂z
+ Q = ρI�̇ ,

(2)N = FE∞
[
1− νε ∋∗

1 (τε)
]∂u
∂z

,

(3)Q = KFµ∞
[
1− n ∋∗

1 (tε)
](∂w

∂z
− ψ

)
,

(4)M = −IE∞
[
1− νε ∋∗

1 (τε)
]∂ψ
∂z

,

(5)Ẽ = E∞
[
1− νε ∋∗

1 (τε)
]
,

Fig. 1 Scheme of the shock interaction of a viscoelastic beam and spherical impactor
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where Z(t) is a desired function, E∞ and E0 are the non-relaxed (instantaneous modulus 
of elasticity, or the glassy modulus) and relaxed elastic (prolonged modulus of elasticity, 
or the rubbery modulus) moduli which are connected with the relaxation time τε and 
retardation time τσ by the following relationship:

In equation (3), the operator corresponding to the shear modulus has the form

where µ∞ is the nonrelaxed magnitude of the shear modulus, and n and tε are yet 
unknown constants.

Rossikhin and Shitikova (2013, 2015) have shown that if the operator Ẽ is assumed 
to be assigned and the operator of the triaxial extension–compression K̃ , according to 
experimental data (Rabotnov 1966), is considered to be time-independent, i.e. K̃ = K∞, 
where K∞ is the non-relaxed module, then Poisson’s coefficient becomes a time-depend-
ent operator

as well as the Lamé constants � and µ take the form of the time-dependent operators

and µ̃ (11), respectively, where ν∞ and �∞ are the non-relaxed magnitudes of the corre-
sponding operators, and

The impact occurs at t = 0 (Fig.  1). When t > 0, the displacement of the sphere’s 
center y could be represented in the form

(6)Ẽ−1 = E−1
∞

[
1+ νσ ∋∗

1 (τσ )
]
,

(7)νε = E∞ − E0

E∞
= �E

E∞
,

(8)∋∗
1 (τi)Z(t) = 1

τi

∫ t

0

e−(t−t ′)/τiZ(t ′)dt ′ (i = ε, σ),

(9)∋∗
1 (ti)Z(t) = 1

ti

∫ t

0

e−(t−t ′)/tiZ(t ′)dt ′ (i = ε, σ),

(10)
τε

τσ
= E0

E∞
.

(11)µ̃ = µ∞
[
1− n ∋∗

1 (tε)
]
,

(12)ν̃ = ν∞ + 1

2
(1− 2ν∞)νε ∋∗

1 (τε),

(13)�̃ = �∞
[
1+ n1 ∋∗

1 (tε)
]

n1 =
(1− 2ν∞)νε

2(1+ ν∞)A
, n = 3νε

2(1+ ν∞)A
,

A =2(1+ ν∞)+ (1− 2ν∞)νε

2(1+ ν∞)A
> 1, tε = τεA

−1
.
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where α is the quasi-static bearing of impactor and target’s materials which is connected 
with the contact force by the following formula according to the generalized Hertzian 
law:

where

In formula (16) indices 1 and 2 refer to the viscoelastic beam and elastic sphere, 
respectively, in so doing the operators Ẽ1 and ν̃1, which act within the contact domain, 
differ from operators (5), (6), and (12) valid within the other parts of the target, namely:

where all rheological constants for the fractional parameter γ remain the same as for 
γ = 1,

Ŵ[γ (n+ 1)] is the Gamma-function, ∋γ (t/τi) is Rabotnov’s fractional exponential 
function (Rabotnov 1948) which at γ = 1 goes over into the ordinary exponent, and 
operator ∋γ (τi) transforms into operator ∋∗

1 (τi). When γ → 0, the function ∋γ (t/τi) 
tends to the Dirac delta-function δ(t).

This distinction is connected with the fact that during the impact process there occurs 
decrosslinking within the domain of the contact of the beam with the impactor, result-
ing in more freely displacements of molecules with respect to each other, and finally in 
the decrease of the beam material viscosity in the contact zone (Popov et al. 2015). This 

(14)y = w + α,

(15)P(t) = 4
√
R

3
k̃ α3/2

,

(16)k̃−1 = 1− ν̃21

Ẽ1
+ 1− ν22

E2
,

(17)Ẽ1 = E∞
[
1− νε ∋∗

γ (τ γε )

]
(0 ≤ γ ≤ 1),

(18)Ẽ−1
1 = E−1

∞
[
1+ νσ ∋∗

γ (τ γσ )

]
,

(19)ν̃ = ν∞ + 1

2
(1− 2ν∞)νε ∋∗

γ (τ γε ),

(20)

(
τε

τσ

)γ

= E0

E∞
,

(21)∋∗
1 (τ

γ
i )Z(t) =

∫ t

0

∋γ

(
t − t ′

τi

)
Z(t ′)dt ′ (i = ε, σ),

(22)∋γ

(
t

τi

)
= tγ−1

τ
γ
i

∞∑

n=0

(−1)n(t/τi)
γn

Ŵ[γ (n+ 1)] ,
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circumstance allows one to describe the behaviour of the beam material within the con-
tact domain by the standard linear solid model involving fractional derivatives, since 
variation in the fractional parameter (the order of the fractional derivative) enables one 
to control the viscosity of the beam material from its initial value at γ = 1 to its vanish-
ing at γ = 0. Thus, the substitution of operators (5), (6), and (12) with operators (17)–
(19), respectively, is quite reasonable.

Now the equation of motion of the sphere could be written in the form

where P(t) is defined by formula (15), while the equation of motion of the contact zone, 
which is considered to be rigid and is restricted by the planes z = ±a (Fig. 1)

is written as

Equations (23) and (25) are subjected to the following initial conditions

Under the assumptions made above with respect to the contact domain, transient lon-
gitudinal and transverse waves (surfaces of strong discontinuity) propagate from the 
boundary of the contact zone during the impact. A certain desired function Z(z,  t) 
behind the front of the wave surface is represented in terms of the ray series (Rossikhin 
and Shitikova 1995)

where 
[
Z,(k)

]
= Z,+

(k)−Z,−
(k)=

[
∂kZ/∂tk

]
 are the discontinuities in the k-th order deriv-

atives with respect to time t of the desired function Z(z, t) on the wave surface, the upper 
signs + and − denote that the given value is calculated immediately ahead of and behind 
the wave front, respectively, the index α labels the ordinal number of the wave, namely: 
α = 1 for the longitudinal wave, and α = 2 for the transverse wave, H(t) is the Heaviside 
function, and G(α) is the normal velocity of the surface of discontinuity.

To determine coefficients of the ray series (27), it is necessary to differentiate the gov-
erning Eqs.  (1)–(4) k times with respect to time, take their difference on the different 
sides of the wave surface � and apply the condition of compatibility for the k + 1-order 
discontinuities of the function Z, which has the following form (Rossikhin and Shitikova 
1995):

where d/dt is the complete time-derivative of the function Z,(k) (z, t) on the moving sur-
face of discontinuity.

(23)mÿ = −P(t),

(24)a(t) =
√
αR,

(25)2N
∂w

∂z
+ 2Q + P(t) = 2aFρẅ.

(26)y|t=0 = 0, ẏ|t=0 = V0, w|t=0 = ẇ|t=0 = 0.

(27)Z(z, t) =
2∑

α=1

∞∑

k=0

1

k!
[
Z,(k)

]∣∣∣
t=z/G(α)

(
t − z

G(α)

)k
H
(
t − z

G(α)

)
,

(28)G

[
∂Z,(k)

∂z

]
= −[Z,(k+1) ] +

d[Z,(k) ]
dt

,
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Since the process of impact is a transient process, then, firstly, it is possible to limit 
ourselves by zeroth terms of the ray series (28), and secondly, to neglect the waves 
reflected from the end face of the beam considering that they reach the contact zone 
after impactor’s rebound from the beam.

Further we shall interpret a shock wave in the beam (surface of strong discontinuity) 
as a layer of small thickness δ, the head front of which arrives at a certain point M with 
the coordinate z at the moment of time t, while the back front of the shock layer reaches 
this point at the moment t +�t. The desired values Z(z, t) at the point M, such as veloc-
ity, generalized forces and deformations, during the time increment �t change mono-
tonically and uninterruptedly from the magnitude Z− to the magnitude Z+, in so doing 
within the layer, according to the condition of compatibility (28), the relationship

is fulfilled, which is the more accurate the smaller the value of �t.
Substituting the derivatives ∂N/∂z, ∂Q/∂z, and ∂M/∂z in (1) with −G−1Ṅ , −G−1Q̇, 

and −G−1Ṁ, respectively, integrating then the resulting equations from t to t +�t, and 
tending �t to zero, we find

Substituting in (2)–(4) the derivatives ∂u/∂z, ∂w/∂z, and ∂ψ/∂z by the expressions 
−G−1v, −G−1W , and −G−1�, respectively, and writing them at the moments t and 
t +�t, we obtain

Expanding the integrals entering in (32), (34), and (36) into the Taylor series with 
respect to the small parameter �t and limiting ourselves by the zeroth and first approxi-
mations, we have

(29)
∂Z

∂z
≈ −G−1Ż

(30)[N ] = − ρFG[v], [Q] = − ρFG[W ], [M] = ρI G[�].

(31)N− = −FE∞

[
G−1v− − νε

1

τε

∫ t

0

e
− t−t′

τε G−1v(t ′)dt ′
]
,

(32)N+ = −FE∞

[
G−1v+ − νε

1

τε

∫ t+�t

0

e
− t+�t−t′

τε G−1v(t ′)dt ′
]
,

(33)Q− = −KFµ∞

[
G−1W− + ψ− − nε

1

tε

∫ t

0

e
− t−t′

tε

(
G−1W (t ′)+ ψ(t ′)

)
dt ′

]
,

(34)

Q+ = −KFµ∞

[
G−1W+ + ψ+ − nε

1

tε

∫ t+�t

0

e
− t+�t−t′

tε

(
G−1W (t ′)+ ψ(t ′)

)
dt ′

]
,

(35)M− = IE∞

[
G−1�− − νε

1

τε

∫ t

0

e
− t−t′

τε G−1�(t ′)dt ′
]
,

(36)M+ = IE∞

[
G−1�+ − νε

1

τε

∫ t+�t

0

e
− t+�t−t′

τε G−1�(t ′)dt ′
]
.
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Subtracting (31), (33), and (35), respectively, from (32), (34), and (36) with due account 
for (37)–(39), and tending �t to zero, we find

From relationships (30) and (40) it is possible to find the velocities of two types of tran-
sient waves:

longitudinal-flexural wave

and shear wave

Substituting the found velocities (41) and (42) in formulae (30) and limiting, as it has 
been already mentioned, by the zeroth terms of the ray series, we have

Note that relationships (43) differ nothing from those for an elastic beam, since at the 
moment of impact a viscoelastic medium behaves as an elastic medium with the unre-
laxed elastic modulus.

Now it is necessary to substitute the values of N and Q defined by (43) in (25). How-
ever the governing set of two equations, (23) and (25), should involve only two unknown 
values, α and w, while the force N entering in (25) depends on the velocity v, as it follows 
from (43), and therefore v should be expressed in terms of α and w.

(37)

∫ t+�t

0

e
− t+�t−t′

τε v(t ′)dt ′ =
∫ t

0

e
− t−t′

τε v(t ′)dt ′ + v(t)�t

−�t
1

τε

∫ t

0

e
− t−t′

τε v(t ′)dt ′,

(38)

∫ t+�t

0

e
− t+�t−t′

tε

[
G−1W (t ′)+ ψ(t ′)

]
dt ′ =

∫ t

0

e
− t−t′

tε

[
G−1W (t ′)+ ψ(t ′)

]
dt ′

+
[
G−1W (t ′)+ ψ(t ′)

]
�t

−�t
1

tε

∫ t

0

e
− t−t′

tε

[
G−1W (t ′)+ ψ(t ′)

]
dt ′,

(39)

∫ t+�t

0

e
− t+�t−t′

τε ψ(t ′)dt ′ =
∫ t

0

e
− t−t′

τε ψ(t ′)dt ′ + ψ(t)�t

−�t
1

τε

∫ t

0

e
− t−t′

τε ψ(t ′)dt ′.

(40)[N ] = − FE∞G−1[v], [Q] = −KFµ∞G−1[W ], [M] = IE∞G−1[�].

(41)G(1)
∞ =

(
E∞
ρ

)1/2

,

(42)G(2)
∞ =

(
Kµ∞
ρ

)1/2

.

(43)N = − ρFG(1)
∞ v, Q = − ρFG(2)

∞ W , M = ρIG(1)
∞ � .
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For this purpose we write the relationship for the stress tensor in a viscoelastic 
medium

where summation is carried out over two repeated indices, an index after a comma labels 
the derivative with respect to the corresponding coordinate, σij and ui are the stress ten-
sor and displacement vector components, respectively, x = x1, y = x2, z = x3, and δij is 
the Kronecker symbol (i, j = 1, 2, 3).

Using the procedure applied above to deduce formulae (40), from relationship (44) we 
obtain

Multiplying (45) sequentially by kikj and sisj, and neglecting the press of layers within 
the front of the surface of strong discontinuity in the direction of the vectors �k and �s, i.e., 
considering that

we have

whence it follows the equality

Considering the generalized geometric conditions of compatibility (Rossikhin and Shi-
tikova 2007b)

relationships (47) and (48) could be rewritten in the form

Since in further treatment one-term ray expansions will be used, then (52) and (53) 
take the form

or

(44)σij = �∞
[
1+ n1 ∋∗

1 (tε)
]
ul,lδij + µ∞

[
1− n ∋∗

1 (tε)
](
ui,j + uj,i

)
,

(45)[σij] = �∞[ul,l]δij + µ∞
(
[ui,j] + [uj,i]

)
.

(46)[σij]kikj = [σij]sisj = 0,

(47)�∞[ul,l] + 2µ∞[ux,x] = 0,

(48)�∞[ul,l] + 2µ∞[uy,y] = 0,

(49)[ux,x] = [uy,y].

(50)[ui,j] = −G−1[vi]νj + [ui,x]kj + [ui,y]sj ,

(51)[ul,l] = −G−1[vl]νl + [ux,x] + [uy,y],

(52)[v] = [vl]νl = 2(�∞ + µ∞)�−1
∞ [ux,x]G(1)

∞ ,

(53)[v] = [vl]νl = 2(�∞ + µ∞)�−1
∞ [uy,y]G(1)

∞ .

(54)uy,y = ux,x = G(1)
∞

−1
ν∞v = −ν∞uz,z ,

(55)v = ν−1
∞ G(1)

∞ uy,y = −ν−1
∞ G(1)

∞
α

h
.
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Note that formula (54) has been presented in Landau and Lifshitz (1965) for elastic 
beams.

Thus, considering formulae (43) and (55), the force N could be rewritten in the form

Considering (56) and (24), as well as relationship

Eq. (25) could be rewritten in the form

where e = 2ρFG
(1)
∞

2
(
G

(2)
∞ ν∞h

)−1

, g = 2ρFG
(2)
∞ , and l = 2ρF

√
R.

Substituting (14) in (23) yields

Adding Eqs. (58) and (59), we find

As it has been shown in Rossikhin and Shitikova (2013), the operator k̃  entering in (15) 
has the form

where

Thus Eq. (58) takes the form

(56)N = ρFG(1)
∞

2
ν−1
∞ αh−1

.

(57)
∂w

∂z
= −G(2)

∞
−1

W ,

(58)(eα + g)W + lα1/2Ẇ = P(t),

(59)mẆ +mα̈ = −P(t).

(60)mẆ +mα̈ + lα1/2Ẇ + (eα + g)W = 0.

(61)k̃ =
(
1− ν̃21

Ẽ1
+ 1− ν22

E2

)−1

= d−1
[
1− e1 ∋∗

γ

(
t
γ
1

)
− e2 ∋∗

γ

(
t
γ
2

)]
,

t
−γ
1,2

= 1

2

[
τ−γ
ε (1+ g1)+ τ−γ

σ (1+ g2)
]

± 1

2

√[
τ
−γ
ε (1+ g1)− τ

−γ
σ (1+ g2)

]2
+ 4τ

−γ
ε τ

−γ
σ g1g2 ,

d =1− ν2∞
E∞

+ 1− ν2
2

E2
, g1 =

(1− 2ν∞)2νε

4E∞
, g2 =

3νσ

4E∞d
,

e1 =
b2 − a2

a1b2 − a2b1
> 0, e2 =

a1 − b1

a1b2 − a2b1
> 0,

a1 =
t
−γ
1

t
−γ
1

− τ
−γ
ε

> 0, a2 =
t
−γ
2

t
−γ
2

− τ
−γ
ε

> 0,

b1 =
t
−γ
1

t
−γ
1

− τ
−γ
σ

< 0, b2 =
t
−γ
2

t
−γ
2

− τ
−γ
σ

> 0.

(62)

mẆ +mα̈ =− k1

[
α3/2(t)− e1

∫ t

0

∋γ

(
− t − t ′

t1

)
α3/2(t ′)dt ′

− e2

∫ t

0

∋γ

(
− t − t ′

t2

)
α3/2(t ′)dt ′

]
,
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where k1 = 4
3

√
Rd−1.

A solution of the set of two equations, involving differential equation (60) and integro-
differential equation (62), allows one to find the time-dependence of the values W and α.

Note that since the impact process is of short duration, then in the integrals entering 
in (62)

Equations (60) and (62) are subjected to the initial conditions (26).

Solution of the problem in the case of neglecting the extension of the beam’s middle 

surface

If the extension of the middle surface is excluded from consideration, then the set of the 
governing equations (60) and (62) with due account for (63) is reduced to the following:

where

The solution of (65) could be constructed in the form

where the function C(t) could be found using the method of variation of an arbitrary 
constant, resulting in

Substituting (67) in (62), we arrive at the governing integro-differential equation

subjected to the initial conditions

where f1 = k1
g = k1

2ρFG
(2)
∞

.

A solution of (68) could be found using the method of successive approximations. 
Thus, a particular solution of (68) neglecting its terms in square brackets has the form

(63)∋γ

(
− t

tj

)
≈ tγ−1

t
γ
j Ŵ(γ )

(j = 1, 2).

(64)mẆ +mα̈ =− k1

[
α3/2 −�γ

∫ t

0

(t − t ′)γ−1α3/2(t ′)dt ′
]
,

(65)Ẇ + g

m
W =− α̈,

�γ = 1

Ŵ(γ )

(
e1

t
γ
1

+ e2

t
γ
2

)
.

(66)W = C(t)e−
g
m t

,

(67)mẆ +mα̈ = g α̇ − g2

m
α − gV0.

(68)α̇ − g

m
α = −f1

[
α3/2 −�γ

∫ t

0

(t − t ′)γ−1α3/2(t ′)dt ′
]
+ V0

(69)α̇|t=0 = V0, α|t=0 = 0,

(70)
α(t) = m

g
V0

(
e

g
m t − 1

)
.
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Expanding exponent

and substituting (71) in (70) yield

Now substituting (72) in the right-hand side of (68), we could find the general solution 
of the obtained nonhomogeneous equation in the form

where the function C1(t) could be found by the method of variation of an arbitrary 
constant

where C0 is the constant of integration, resulting in the following final solution:

Considering (71), solution (75) for two limiting cases is reduced to the following:
at γ = 0

and at γ = 1

where

Relationships (76) and (77) allow one to estimate for the limiting cases the time of 
impactor’s rebound from the target treb and the time tmax at which the indentation attains 
its maximal magnitude αmax, i.e., at γ = 0

(71)e
g
m t ≈ 1+ g

m
t,

(72)α ≈ V0t.

(73)α = C1(t)e
g
m t − V0

m

g
,

(74)C1(t) = −f1V
3/2
0

(
2

5
t5/2 −�γ

∫ t

0

dt ′′
[∫ t ′′

0

(t ′′ − t ′)γ−1t ′3/2(t ′)dt ′
])

+ C0,

(75)

α =m

g
V0

(
e

g
m t − 1

)

− f1V
3/2
0

(
2

5
t5/2 −�γ

∫ t

0

dt ′′
[∫ t ′′

0

(t ′′ − t ′)γ−1t ′3/2(t ′)dt ′
])

e
g
m t

.

(76)α = V0t −
2

5
f1V

3/2
0 t5/2e

g
m t

,

(77)α = V0t −
2

5
f1V

3/2
0 t5/2e

g
m t + 4

35
�f1V

3/2
0 t7/2e

g
m t

,

� = e1

t1
+ e2

t2
.

(78)t0
reb

=
(

5

2f1
V

−1/2
0

)2/3

,

(79)
t0max =

(
1

f1
V

−1/2
0

)2/3

,
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and at γ = 1

Reference to formulas (78)–(83) shows that the increase in the parameter γ from 0 to 1 
results in the increase of the duration of contact between the impactor and the viscoe-
lastic target, and this increase rises with the increase in the defects of moduli e1 and e2 
and with the decrease in the relaxation times t1 and t2. Moreover, within the variation of 
the parameter γ from 0 to 1, the maximal magnitude of the value α, as well as the time, 
at which the indentation attains its maximum, increase. All enumerated peculiarities are 
governed by the increase in viscosity of the material, from which the viscoelastic beam is 
made of, with the increase of the fractional parameter γ.

Solution of the problem in the case of considering the extension of the beam’s middle 

surface

Elastic target

If the term α1/2Ẇ  is omitted in (58) due to its small magnitude, i.e. the inertia of the 
contact domain is neglected, then this equation for an elastic beam is reduced to

Substituting (84) in (59), we obtain the equation for determining α(t)

or, after the substitution A = α̇,

To find the solution of (86), it is necessary to use the initial condition

The governing Eq. (85) differs from the corresponding equation presented in Vershinin 
(2014) not only by its coefficients (due to the fact that an incorrect formula was used for 
transverse deformation) but by its structure as well, namely: the multiplier α̇ was missed 

(80)α0
max = V0t

0
max −

2

5
f1V

3/2
0

(
t0max

)5/2
= 3

5
V

2/3
0 f

−2/3
1 ,

(81)t1reb = t0
reb

+ 4

21
�

(
t0
reb

)2
,

(82)t1max = t0max +
4

15
�

(
t0max

)2
,

(83)α1
max = α0

max +
4

35
� f1V

3/2
0

(
t0max

)7/2
.

(84)W = P(α)

eα + g
.

(85)α̈ + d

dα

(
P(α)

eα + g

)
α̇ = − 1

m
P(α),

(86)A
dA

dα
+ d

dα

(
P(α)

eα + g

)
A = − 1

m
P(α).

(87)A|α=0 = V0.
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out in the second term, though the inertia of the contact zone was not neglected in the 
cited paper (Vershinin 2014).

Equation (86) could be rewritten in the form

If we neglect the term eα with respect to g (α is small) in (88), then it is reduced to

where

The solution of (89) can be constructed analytically in terms of a series

where

From (90) it is seen that all coefficients ai (i ≥ 5) and bi (i ≥ 4) are expressed in terms of 
the coefficients a1 and a2, which are defined by three different processes being caused by 
the shock interaction. The coefficient a1 is responsible for the dynamic processes arising in 
the beam during the propagation of shear wave, but the coefficient a2 answers for the qua-
sistatic process occurring at local bearing of the material due to Hertz’s theory and for the 
dynamic processes arising in the beam during the propagation of the longitudinal wave.

When g = 0, which is realized at an infinitely large speed of the shear wave propaga-
tion, the solution (90) for small α goes over into the quasi-static solution obtained by 
Timoshenko (1934) for the Bernoulli–Euler beam.

If we put f2 = 0 in (90) in order to neglect membrane effects at e = 0, then the series 
(90) is the solution to equation

(88)A
dA

dα
+ k1

eα3/2 + 3/2 gα1/2

(eα + g)2
A = −k1

m
α3/2

.

(89)A
dA

dα
+ 3

2
f1α

1/2A+ f2 α
3/2A = −k1

m
α3/2

,

f2 =
k1e

g2
= f1

G
(1)
∞

2

G
(2)
∞

2

1

ν∞h
.

(90)A = V0 +
∞∑

i=1

aiα
(2i+1)/2 +

∞∑

i=1

biα
i
,

a1 =− f1, a2 = −2

5

k1

V0m
− 2

5
f2, a3 = a4 = 0, a5 =

5

11

a2
1
(a2 + f2)

V 2
0

,

a6 =
5

104

a1

(
a2 + 2

5
f2

)
(21a2 + 2f2)

V 2
0

, a7 =
1

6

a2

(
a2 + 2

5
f2

)
(3a2 + 2

5
f2)

V 2
0

,

b1 = b2 = b3 = b6 = 0, b4 = −5

8

a1

(
a2 + 2

5
f2

)

V0

,

b5 =− 1

2

a2

(
a2 + 2

5
f2

)

V0

, b7 = − 5

14

a3
1

(
a2 + 2

5
f2

)

V 3
0

.

(91)A
dA

dα
+ 3

2
f1α

1/2A = −k1

m
α3/2

,
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which was presented in Rossikhin and Shitikova (2007a).

Viscoelastic target

Neglecting the inertia of the contact domain in (60), expressing Ẇ + α̈ from (62) with 
due account for (63), and substituting the resulting expression in (60) yield

Considering that α is a small value, expanding 
( g
m + e

m α
)−1 into a Taylor series, and lim-

iting ourselves by two terms, Eq. (92) is reduced to

Now substituting (72) in the right-hand side of (93) and putting γ = 1, we could find

Substituting (94) in (65) and integrating twice yield

Putting γ = 0 in (94) and (95), we could find the solution for this limiting case

Relationships (95) and (97) allow one to estimate for the limiting cases the time of impac-
tor’s rebound from the target tex

reb
 and the time texmax at which the indentation attains its 

maximal magnitude αex
max with due account for extension of the beam’s middle surface, 

i.e., at γ = 0

and at γ = 1

(92)W = f1
g
m + e

m α

[
α3/2 −�γ

∫ t

0

(t − t ′)γ−1α3/2(t ′)dt ′
]
.

(93)W = f1

[
α3/2 −�γ

∫ t

0

α3/2(t ′)dt ′
]
m

g

(
1− e

g
α

)
.

(94)W = f1V
3/2
0 t3/2

(
1− 2

5
�t − e

g
V0t

)
.

(95)α = V0t −
2

5
f1V

3/2
0 t5/2 + 2

7
f1V

3/2
0

(
2

5
�+ e

g
V0

)
t7/2.

(96)W = f1V
3/2
0 t3/2

(
1− e

g
V0t

)
,

(97)α = V0t −
2

5
f1V

3/2
0 t5/2 + 2

7
f1

e

g
V

5/2
0 t7/2.

(98)t0 ex
reb

= t0
reb

+ 10

21
V0

e

g

(
t0
reb

)2
,

(99)t0 exmax = t0max +
2

3
V0

e

g

(
t0max

)2
,

(100)α0 ex
max = α0

max +
2

7
f1

e

g
V

5/2
0

(
t0max

)7/2
,

(101)t1 ex
reb

= t1reb +
10

21
V0

e

g

(
t0
reb

)2
,
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Comparison of formulas (98)–(103) with the corresponding formulas in (78)–(83) shows 
that the account for extension of the target’s middle surface results in the increase of 
the duration of contact between the impactor and the target, the maximal magnitude of 
the value α, as well as the time, at which the indentation attains its maximum, and this 
increase rises with the increase in the coefficient e  /  g governing the extension of the 
beam’s middle surface.

Numerical example

For numerical analysis it is convenient to rewrite formulas (78)–(83) and (98)–(103) in 
the dimensionless form:

the case without considering the middle surface extension at γ = 0

and at γ = 1

the case with due account for extension of the beam’s middle surface at γ = 0

(102)t1 exmax = t1max +
2

3
V0

e

g

(
t0max

)2
,

(103)α1 ex
max =α1

max +
2

7
f1

e

g
V

5/2
0

(
t0max

)7/2
.

(104)t0
reb

∗ = t0
reb

t0max

=
(
5

2

)2/3

,

(105)t0max

∗ = t0max

t0max

= 1,

(106)α0
max

∗ = α0
max

V0t0max

= 3

5
,

(107)t1reb
∗ = t1

reb

t0max

=
(
5

2

)2/3
[
1+ 4

21
χ1

(
5

2

)2/3
]
,

(108)t1max

∗ = t1max

t0max

= 1+ 4

15
χ1,

(109)α1
max

∗ = α1
max

V0t0max

= 3

5
+ 4

35
χ1;

(110)t0 ex
reb

∗ = t0 ex
reb

t0max

=
(
5

2

)2/3
[
1+ 10

21
χ2

(
5

2

)2/3
]
,

(111)t0 exmax

∗ = t0 exmax

t0max

= 1+ 2

3
χ2,
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and at γ = 1

where χ1 = �t0max and χ2 = V0 eg
−1t0max are dimensionless parameters, and all dimen-

sionless values are marked by asterisk.
The dimensionless time t∗ = t

(
t0max

)−1 dependence of the dimensionless value 
α∗ = α

(
V0t

0
max

)−1 characterizing the local bearing of impactor and target materials for 
different values of the fractional parameter γ, which are indicated by figures near the 
corresponding curves, is shown in Fig. 2. Solid curves are calculated without consider-
ing the extension of the target middle surface, while dashed lines correspond to the case 
with due account for middle surface extension at χ1 = 2 and χ2 = 0.5.

The character of curves behaviour in Fig. 2 verifies conclusions made on the basis of 
the approximate calculations.

(112)α0 ex
max

∗ = α0 ex
max

V0t0max

= 3

5
+ 2

7
χ2,

(113)t1 ex
reb

∗ = t1 ex
reb

t0max

=
(
5

2

)2/3
[
1+ 4

21
χ1

(
5

2

)2/3
]
+ 10

21
χ2

(
5

2

)4/3

,

(114)t1 exmax

∗ = t1 exmax

t0max

= 1+ 4

15
χ1 +

2

3
χ2,

(115)α1 ex
max

∗ = α1 ex
max

V0t0max

= 3

5
+ 4

35
χ1 +

2

7
χ2,

Fig. 2 The dimensionless time dependence of the dimensionless value characterizing the local bearing of 
impactor and target materials
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Conclusion
The main goal of this paper is to bring to light the physical sense of the fractional parameter 
in problems on impact, since one and the same question arises very often, namely: Why is 
it needed to introduce a fractional derivative in problems of mechanics? The authors have 
tried to answer this question at least for the problems of impact by connecting the frac-
tional parameter with the changes in microstructure of beam’s material within the contact 
domain. For this purpose we have assumed that viscoelastic features of the beam outward 
the contact zone is determined by the standard linear solid with ordinary derivatives, while 
the contact force is also viscoelastic and its features are governed by the standard linear 
solid model with fractional derivatives, in so doing relaxed and non-relaxed moduli and 
relaxation and retardation times coincide with the corresponding moduli and times for the 
viscoelastic medium out of the contact zone, and the fractional parameter varies from zero 
till unit controlling the viscosity within the contact domain. This is connected with the fact 
that during the low-velocity impact there could occur decrosslinking within the domain 
of the contact of the beam with the sphere, resulting in more freely displacements of mol-
ecules with respect to each other, and finally in the decrease of the beam material viscosity 
in the contact zone without discontinuity of the target medium within this zone.
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