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from South Africa as a potential source 
of hydrolytically active microorganisms
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Abstract 

This study assessed faecal matter from three indigenous South African herbivores—zebra, giraffe and impala—as a 
potential source for hydrolytically active aerobic and facultatively anaerobic bacteria. Herbivore droppings were col-
lected freshly in a local nature reserve in Pietermaritzburg, South Africa. Soil samples adjacent to faecal collection sites 
and faeces from a domestic herbivore, the Nguni cow, were included as controls. Hydrolase and dehydrogenase activ-
ity in faecal matter and soil samples were measured by the fluorescein diacetate and the triphenyltetrazolium chloride 
assay. Viable counts and counts for amylase, cellulase, esterase and protease producers were established using plate 
count agar and solid media containing cellulose, skim milk, starch and Tween 80. Zebra droppings produced the 
highest hydrolase and dehydrogenase activity. Faecal matter of the three indigenous herbivores generally produced 
higher hydrolytic activity than Nguni cow faeces and soil controls, thereby confirming that these materials are poten-
tial targets for hydrolytic enzyme mining.
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Background
Hydrolytic enzymes or hydrolases are biocatalysts that 
break covalent bonds by using water as co-substrate. 
Many hydrolytic enzymes are essential for microorgan-
isms by enabling the utilization of organic polymers 
such as cellulose or starch as carbon and energy source. 
At the same time hydrolytic enzymes of microbial ori-
gin are applied in numerous industrial processes such 
as the production of food and beverage, the degradation 
and recycling of organic waste or the transformation of 
cellulosic materials into glucose for biofuel production 
(Bhaskar et  al. 2008; Kirk et  al. 2002; Gupta et  al. 2002; 
Morrison et al. 2009). This indicates that the screening of 
microbes as source for such hydrolytic enzymes has eco-
nomic potential. As industrial processes require enzymes 
able to perform optimally under specific physical and 
chemical parameters such as high temperatures or salin-
ity, a potentially better option than adjusting process 

parameters is to search for suitable novel hydrolytic 
enzymes from microbial sources (Kirk et al. 2002; Cherry 
and Fidantsef 2003; Sanchez-Porro et al. 2003).

Faecal matter, particularly from wild herbivores such as 
zebra, giraffe and impala, has not been extensively stud-
ied as a source for the isolation of hydrolytic microorgan-
isms while for domestic animals many such studies were 
reported (Blackburn and Hobson 1962; Varel et al. 1984; 
Gong 2007). A study investigating environmental sources 
for cellulolytic microorganisms found more than 20 dif-
ferent cellulolytic microbial species of which at least two 
were from bovine faeces (Doi 2008). Such findings high-
light the potential of various faecal materials as potential 
sources of industrially applicable hydrolytic microbial 
enzymes. So far, only a few publications reported on the 
presence of cellulolytic hydrolytic microorganisms in 
zebra faeces (Sadhu et al. 2011; Laho et al. 2012). How-
ever, data are lacking on the presence of proteolytic, 
lipolytic or amylolytic microorganisms in zebra faeces 
and essentially no data are available for giraffe or impala 
faeces. Based on their diet comprising grasses, evergreen 
leaves and other shrubbery high in fibre (Pellew 1984; 
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Keesing 1998; de Garine-Wichatitsky et  al. 2004), it is 
highly likely that these herbivores possess active cellulo-
lytic microbes in their faeces.

Cellulolytic microorganisms have been put under the 
spotlight due to the increasing need to generate renew-
able energy from cellulose containing organic waste (Jut-
uru and Wu 2014). These microorganisms are involved in 
biofuel generation by hydrolysing cellulosic plant waste 
material, which is an essential part of the first hydroly-
sis step of the so-called anaerobic food chain. Apart from 
cellulases, three other major groups of hydrolases are 
used in industrial processes; esterases, amylases and pro-
teases (Kirk et al. 2002; Ray 2011).

This study therefore screened fresh faecal matter of 
three indigenous South African herbivores, zebra (Equus 
burchelli), giraffe (Giraffa camelopardalis) and impala 
(Aepyceros melampus), for the presence of protease-, 
amylase-, esterase- and cellulase-producing aerobic and 
facultatively anaerobic microorganisms to verify the 
potential of this material as a source for such hydrolase 
producing microorganisms and their enzymes.

Results
Moisture, pH and sCOD of faeces and soil samples
The pH of fresh faecal samples including Nguni cow 
faeces was in a range from 7.34 to 8.32, with impala 
and zebra faeces having a similar, slightly alkaline pH 
(Table  1). In contrast, all control soil samples analysed 
were slightly acidic (pH range 5.81–6.34). The sCOD of 
zebra, giraffe and impala faeces was clearly higher (57 and 
80  mg/g) than the sCOD of the matching soil samples 
(≤9 mg/g). This is indicative of the difference in soluble 
organic matter content between the collected surface soil 
and faeces. The cow faecal material had a much higher 
sCOD (339 mg/g) than the wild ungulate faeces and the 
highest moisture content (54 %), whilst the pH was near 
neutral and similar to that of giraffe faeces. Zebra faeces 

had the highest moisture content of the wild ungulates 
(49 %), while giraffe and impala faeces were almost iden-
tical with 27 and 30  % moisture content respectively. 
Generally, soil samples had the lowest moisture content, 
a more acidic pH and a much lower sCOD in compari-
son to the faecal samples, highlighting the apparent dif-
ferences between the composition of the herbivore faeces 
and the soil samples.

Enzymic activity of faeces and soil samples
In the FDA assay, samples subjected to shaking dur-
ing incubation showed higher hydrolytic activi-
ties than samples incubated under static conditions 
(Fig.  1a), which is in line with previous reports in the 
literature (Schnurer and Rosswall 1982). Overall, fae-
cal samples exhibited higher hydrolytic activity than 
soil samples, which is expected on microbiological 
grounds given that the intestinal microbial community 
is involved in breaking down organic polymers. Under 
shaking conditions, zebra faeces showed the high-
est hydrolytic activity at 1228  µg  g−1  h−1, followed by 
giraffe at 1095 µg g−1 h−1 and impala at 905 µg g−1 h−1. 
The impala soil control had the highest activity 
(121  µg  g−1  h−1) of all control soil samples. The large 
differences between the hydrolytic activities of faeces 
and the matching soil controls highlighted the different 
microbial activity and abundance in these two mate-
rials. Although the Nguni cow faeces yielded a lower 
hydrolytic activity than the faeces of the other three 
ungulates analysed, its activity was higher than that 
of soil control samples, again indicating the expected 
higher abundance of hydrolytically active microorgan-
isms in faecal matter.

Samples were also analysed for dehydrogenase activity 
using the TTC assay. The results (Fig. 1b) indicated that 
faecal samples—very much like the results obtained for 
the FDA assay—had a much higher enzymic activity than 
soil control samples. Addition of glucose to samples prior 
to incubation resulted in greater TPF yields via dehydro-
genase activity than for samples incubated without glu-
cose added. The highest dehydrogenase activity without 
glucose added was observed in zebra faeces. A compari-
son between the different soil controls indicated that the 
giraffe soil control had a somewhat higher dehydrogenase 
activity than the other soils. The dehydrogenase activ-
ity in Nguni cow faeces was higher than that in soils but 
was lower than the activity found in the faeces of the wild 
ungulates, which is again similar to the results obtained 
for the FDA assay.

Enumeration of hydrolytic bacteria
In addition to enzymic activity, total and specific (hydro-
lase producing) aerobic viable counts were established 

Table 1  Average pH, moisture content and sCOD of freshly 
collected zebra, giraffe, impala and cow faeces and match-
ing soil samples

All data shown are the means of measurements performed on samples collected 
on four different occasions

Source pH Moisture  
content (%)

sCOD 
(mg/g)

Zebra faeces 8.18 49 80

Zebra soil control 5.81 4 7

Impala faeces 8.32 30 57

Impala soil control 6.34 7 9

Giraffe faeces 7.34 27 73

Giraffe soil control 5.95 4 8

Cow faeces 7.39 54 339
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(Table 2) as log10 cfu per gram dry weight of faeces or soil. 
The PC agar used is a general-purpose medium providing 
an estimate of the total microbial burden present whilst 
the different hydrolase targeting media used provide 

estimates for microorganisms producing cellulases, amyl-
ases, proteases and esterases. Faecal and soil samples 
contained all of the targeted hydrolase producers, albeit 
in varying proportions. The total viable plate counts (PC 

Fig. 1  a Hydrolase (FDA) activities of fresh faeces and matching soil samples. b Dehydrogenase (TTC) activities of fresh faeces and matching soil 
samples. Error bars indicate the standard error
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agar) of all faecal samples analysed were established in a 
similar range of log 8.13–8.53 (Table 2), with giraffe hav-
ing the highest microbial count and Nguni the lowest. 
The total viable plate counts of surface soil samples were 
generally about two logs lower. Regarding the counts for 
different hydrolase producing bacteria, again, the faecal 
samples showed the highest levels and the soil samples 
the lowest (Table 2). However, in most cases the counts 
for different hydrolase producers from Nguni faeces were 

lower than the hydrolase producer counts obtained for 
wild ungulate faeces.

Relative abundances of specific hydrolase producing 
microbes were obtained by taking the colony forming 
units on PC agar as the total number (100  %) of viable 
aerobic and facultatively anaerobic microorganisms 
(Fig. 2). Only the giraffe soil control contained all the tar-
geted enzyme producers while for the other two control 
soils the counts for esterase-producing microorganisms 

Table 2  Aerobic viable count (log10 cfu per g dry weight) ± standard error of fresh faecal samples and matching soil con-
trols using plate count and hydrolase specific agar

<4 = lower than detection limit of 104   cfu/g dry weight

CMC carboxymethyl cellulose agar, PC plate count agar, cfu colony forming units

Sample PC agar Starch agar Skim milk agar Tween 80 agar CMC agar

Giraffe 8.53 ± 6.16 8.51 ± 6.00 8.50 ± 5.76 7.78 ± 5.08 8.40 ± 5.95

Giraffe soil 6.50 ± 3.99 6.49 ± 4.08 6.30 ± 4.25 6.20 ± 3.95 6.16 ± 3.95

Impala 8.29 ± 6.18 8.25 ± 5.76 8.24 ± 6.25 6.53 ± 3.95 8.01 ± 5.95

Impala soil 6.27 ± 3.57 6.10 ± 3.57 6.07 ± 4.50 <4 6.16 ± 4.18

Zebra 8.30 ± 5.64 8.13 ± 5.76 7.52 ± 6.32 8.16 ± 5.95 7.63 ± 4.95

Zebra soil 6.68 ± 4.18 5.92 ± 3.58 5.09 ± 3.00 <4 6.29 ± 3.50

Cow 8.13 ± 5.49 7.79 ± 5.34 6.76 ± 4.27 7.59 ± 5.36 7.47 ± 5.18

Fig. 2  Abundance of organic polymer-hydrolysing microorganisms in fresh faeces and matching control soil samples as percentage of the aerobic 
plate count (100 %)
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were below the detection limit. Faecal samples contained 
all the targeted hydrolase producers, with varying pro-
portions of each hydrolase producer present in faeces of 
each individual animal. While giraffe and impala faeces 
showed similar overall proportions of hydrolase produc-
ers with the exception of lipolytic organisms which were 
lower in impala, both of them had higher proportions of 
amylase and protease-producers, with esterase-produc-
ers comprising the smallest group. Faeces of zebra and 
Nguni cow showed similar patterns with esterase and 
amylase producers as the largest and protease producers 
as the smallest group of the total viable count. Compar-
ing the relative abundance of hydrolase producers and 
their counts to hydrolase activity determined indicated 
that enzymic activity was apparently linked to the overall 
microbial burden and not to one specific group of hydro-
lase producers.

Discussion
Faecal samples analysed in this study were compared 
with soil collected from the same area to verify whether 
the surrounding surface soil differs from faecal matter 
regarding the microbial burden and enzymic activities. In 
addition, Nguni cow dung enabled a comparison of the 
wild herbivore faeces to that of a domestic herbivore fed 
on a fibrous diet.

Properties of faeces
The neutral to slightly alkaline pH of the giraffe and Nguni 
cow faeces (Table  1) was within the expected pH range 
of ruminants, which is typically between 6 and 8 (Artan 
et al. 1996; Moran 2005; Marãnón et al. 2006). Zebra and 
impala faeces had a slightly more alkaline pH (>8), possi-
bly indicating the presence of alkali-tolerant microorgan-
isms therein. Soluble chemical oxygen demand (sCOD) 
values indicated the potential availability of substrate in 
the faeces enabling growth of heterotrophic microorgan-
isms. The soil samples had a more acidic pH and much 
lower moisture and soluble COD content than the fae-
cal samples at the time of sampling, matching properties 
reported for infertile dry soils that have a low water bind-
ing capacity (Hartemink 2006, 2007). The highest sCOD 
of 339 mg/g was determined for Nguni cow faeces, while 
the sCOD values of the other faeces ranged between 57 
and 80 mg/g. These values are within the expected sCOD 
range of 30–6000 mg/l reported for cattle in other stud-
ies (Marãnón et al. 2006; Abubakar and Ismail 2012). The 
higher moisture content in faecal samples indicated that 
the nature of the herbivore diet was mostly water binding 
fibrous material due to the uptake of grasses and leaves 
(Ziemer et al. 2012). As a result, for all the animals ana-
lysed in this study, faecal matter had higher moisture per-
centage values than matching soils samples. Based on the 

moisture content, pH and sCOD, faecal material clearly 
differed from the surrounding soil.

Analysis of enzymic activity
Microbial activity of samples was estimated through col-
orimetric assays that yield coloured reaction products 
once hydrolysis (FDA) or reduction (TTC) occurred. 
The fluorescein diacetate assay operates on the princi-
ple of hydrolytic release of two acetate groups via ester 
bond cleavage by free and membrane-bound hydrolytic 
enzymes, yielding the yellow-green coloured fluorescein 
that can be measured at 490  nm (Adam and Duncan 
2001). FDA is a versatile substrate used for the detec-
tion of esterases within water bodies and individual cells 
(Battin 1997) and in soils (Green et  al. 2006). However, 
other hydrolytic enzymes such as amylases can cleave its 
ester bonds as well (Lundgren 1981; Green et  al. 2006). 
The FDA hydrolysis assay has also been utilised and 
recommended as an efficient method to estimate active 
cells within environmental samples (Swisher and Car-
roll 1980). The protocol employed in this study was opti-
mised from Schnurer and Rosswall (1982) as suggested 
by Green et al. (2006) to establish the best possible assay 
conditions. Thus, acetone volumes used to terminate 
reactions were reduced to 4  % (v/v) and readings were 
taken within 30–60  min of termination to enable stable 
results (Green et al. 2006). As the FDA assay can be prob-
lematic due to abiotic cleavage caused by media compo-
nents (Clarke et al. 2001; Wanandy et al. 2005), this was 
accounted for through use of an appropriate buffer and 
controls accounting for abiotic cleavage.

The FDA assay demonstrated that faecal samples from 
wild herbivores had higher hydrolase activity than soil 
controls and cow faeces, which is expected on microbio-
logical grounds (Fig. 1a). In addition, samples incubated 
under shaker conditions showed higher activity than 
those incubated statically (Fig. 1a). Although this is con-
trary to the findings of Green et al. (2006) who reported 
that shaking decreased the amount of fluorescein released 
in soil samples, it confirms recommendations by Swisher 
and Carroll (1980) and Schnurer and Rosswall (1982) that 
shaking during incubation increases hydrolytic activ-
ity due to improved homogenisation. In addition, shak-
ing improved the activity of hydrolytic microorganisms 
(Bozic et  al. 2011) and substrate distribution (Juergens-
meyer et al. 2007). The fact that a control with autoclaved 
faeces yielded no measurable activity in the FDA assay 
confirmed that its hydrolysis depended on the presence 
of hydrolytically active microorganisms or their enzymes 
in the faeces. Furthermore, the higher hydrolytic activity 
in faecal samples suggested that more hydrolase produc-
ing microorganisms were present in faeces than in soil as 
was confirmed by the plate counts (Table 2). Again, this is 
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not unexpected as an increased degree of FDA hydrolysis 
relies on the presence of metabolically active microor-
ganisms (Chrzanowski et al. 1984).

The TTC assay operates on the principle of reduc-
tion of colourless 2,3,5-triphenyltetrazolium chloride 
by active dehydrogenases to produce the corresponding 
coloured triphenylformazan (TPF). The water insolu-
ble TPF can be extracted from samples using solvents 
such as methanol, butanol and ethanol and is optimally 
measured at 485 nm (Stevenson 1959). The assay can be 
used to determine cell viability (Tergendy et al. 1967) and 
for the analysis of microbial activity present in soils and 
other samples (Stevenson 1959). Like the FDA assay, the 
TTC assay estimates cell activity through enzyme activ-
ity. Due to its somewhat lower sensitivity, the TTC assay 
requires sample incubation periods of at least 24 h (Ishi-
kawa et al. 1995). In addition, in the presence of O2 as a 
competing electron acceptor the dehydrogenase activity 
is potentially underestimated (Von Mersi and Schinner 
1991). Therefore, samples analysed by the TTC assay in 
this study were incubated statically for 1 week. The TTC 
results are in good agreement with the findings of the 
FDA assay (Fig.  1). Addition of glucose confirmed the 
presence of glucose utilising microorganisms by leading 
to higher overall dehydrogenase activity due to increased 
microbial biomass (Fig.  1b). This is expected since gut 
microorganisms in ungulates ultimately break down cel-
lulose to glucose. The high dehydrogenase and hydrolase 
activity of zebra faeces in the presence of a slightly ele-
vated pH might indicate the presence of microorganisms 
therein able to function at higher than neutral pH, pos-
sibly indicating the presence of enzymes with potential 
for use in industrial applications requiring alkaline condi-
tions (Horikoshi 1999). Comparison of sample pH values 
(Table 1) and TPF formation rates (Fig. 1b) indicates that 
increased TPF formation took place at neutral to slightly 
alkaline pH (i.e. pH  >  7), confirming previous studies 
showing that the activity of electron transport systems 
(ETS)—including dehydrogenase activity—is enhanced 
within a pH range of 7.4–8 (Trevors 1984).

Microbial counts
Viable counts in faecal samples were mostly in the range 
of 108 cells per gram dry weight, with each faecal sam-
ple containing all targeted hydrolase producers although 
strictly anaerobic hydrolytically active bacteria were not 
quantified (Table 2). The counts for soil control samples 
were generally at least 1–2 logs lower than the counts 
in the corresponding faecal samples. In addition, clear 
differences in the proportions of specific hydrolase pro-
ducers were evident (Fig. 2). Gong (2007) reported total 
and viable microscopic counts for cattle dung of about 
1011  cfu/g (dry weight) and a matching plate count for 

mesophilic aerobic and facultatively anaerobic bacteria 
of about 1010  cfu/g, with proteolytic bacteria present at 
about 108  cfu/g and both lipolytic, amylolytic and cel-
lulolytic bacteria present at about 109 cfu/g. Viable plate 
counts established in this study for Nguni cow faeces 
were lower than those reported by Gong (2007), although 
similar relative proportions were observed for the hydro-
lase producers with the exception of cellulolytic microor-
ganisms. The difference in viable counts per g of faeces 
might be due to the shorter incubation time for agar 
plates used and the typically poorer diet of the Nguni 
cow (Tada et al. 2013).

With the exception of lipolytic esterase produc-
ing organisms, faecal samples from impala and giraffe 
showed similar proportions of amylase, cellulose and 
protease-producers (Fig.  2). Both impala and giraffe, 
ruminants as opposed to the non-ruminant zebra, had 
relative proportions of 91 and 95 % for amylase produc-
ers, 89 and 93 % of protease producers and fairly similar 
percentages of cellulase producers (52 and 74 %). Zebra 
in turn had the highest proportion of esterase producers 
(72 %) and the lowest proportion of protease and cellu-
lase producers (17 and 21  %) amongst the three ungu-
lates. In comparison, Nguni faeces was similar to zebra 
faeces with a fairly high proportion of amylase produc-
ers (46 %), a low proportion of protease producers (4.3 %) 
and an almost identical proportion of cellulose producers 
(22  %) present. Nguni faeces displayed lower hydrolytic 
and dehydrogenase activity compared to other ungulates, 
which could be due to lower proportions of hydrolase 
producers present and the different digestive system. 
These findings are consistent with previous reports in 
the literature suggesting that cellulolytic microorganisms 
when in competition with other specialists are present at 
low proportions (Witten and Richardson 2003). The dif-
ferent digestive systems present in ruminants (for exam-
ple giraffe) and hindgut digesters such as zebra might 
result in different microbial communities.

A study of the giraffe rumen microbiome by Roggen-
buck et  al. (2014) showed via sequence analysis that in 
addition to many unknown bacteria, strictly anaerobic 
bacteria constitute a large proportion of the rumen com-
munity and that diet might influence the composition of 
this community.

The apparent differences in microbial colony counts 
and diversity of hydrolytically active bacteria within fae-
ces from different herbivores (Table  2) might be due to 
their different feeding habits. Zebra and Nguni cattle are 
grazers (Odadi et al. 2011) whilst giraffe is a browser and 
impala is a mixed feeder (grazer and browser) (Codron 
et al. 2005). In Nguni cow and zebra faeces the propor-
tion of esterase producers was higher than in faeces of 
giraffe and impala (Fig.  2) while the opposite applies to 
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the proportion of cellulose producers which was lower 
in cow and zebra faeces than in faeces from giraffe and 
impala. Grazers feed more on grasses that are considered 
less nutritious than other forage and grazing is a lengthier 
process than browsing (Udén and Van Soest 1982). Zebra 
faeces, however, displayed a higher hydrolytic activ-
ity than Nguni cow faeces (Fig. 1a) which may be due to 
the difference in their digestive systems and the micro-
bial community present. As large sized ruminants, cows 
have a longer digestion than non-ruminants and require 
more grazing time. Hydrolytic microorganisms from cat-
tle form biofilms on forage substrates within the rumen 
to efficiently hydrolyse polymeric substrates (McSweeney 
et  al. 1999) with an efficient digestion of biopolymers 
such as cellulose taking place in the foregut, mostly facili-
tated by anaerobic microorganisms. Movement of cud 
to the hindgut is usually required for secondary diges-
tion. As a result, lower counts for aerobic microorgan-
isms and hydrolase producers are expected in cow faeces 
(Mackie 2002). Although grass diets of cow and zebra are 
similar, zebra as hindgut fermenters possess an advan-
tage by feeding on greater forage variety for shorter peri-
ods (Odadi et  al. 2011). Zebra living in the local nature 
reserve probably had access to a more diverse diet than 
the Nguni cow kept at a local farm.

This study indicates that relative proportions of hydro-
lase producers in faeces—even though strictly anaerobic 
hydrolase producers were not quantified—are mostly 
similar for comparable feeding habits while hydrolytic 
activities and microbial loads can differ. This might be a 
result of different digestive systems and digestion times. 
The data for cattle and zebra indicate somewhat higher 
numbers of viable microorganisms in equine than in 
bovine faeces possibly due to shorter retention time 
(Odadi et  al. 2011) resulting in less efficient polymer 
hydrolysis. As digestion occurs within the hindgut, forage 
is usually defecated without being properly hydrolysed 
resulting in more faecal shedding in zebra (Mackie 2002) 
than in cattle, as indicated by the results in this study.

Impala and giraffe appear to be similar regarding the 
relative proportions of protease, cellulose and amyl-
ase producers. As ruminants, they have a more com-
plex digestive system than zebra and as browsers a more 
diverse diet. The impala in this study might have fed on 
a diet similar to the diet of giraffe, comprising of more 
browse forage than grasses, resulting in mostly similar 
relative hydrolase producer proportions. The smaller 
body size of impala means that digestion time is shorter 
compared to cows and faecal microbial numbers may 
therefore be higher (Gordon 2003).

The presence of proportionally more lipolytic ester-
ase producers in zebra and Nguni cow than in impala 

and giraffe faeces might be due to the varying lipid con-
tent of plant species (Hadley and Rosen 1974) included 
in their diet. The presence of protease producers in fae-
ces—although at a lower relative proportion in zebra 
and cow faeces—was expected, as proteases are present 
in the majority of heterotrophic microorganisms. Simi-
larly, cellulose and amylase producing microorganisms 
were observed which is expected based on the pres-
ence of large amounts of cellulose and starch in leaves 
and grasses (Ben-Shahar and Coe 1992). Apart from 
the hydrolases targeted in this study, other hydrolytic 
enzymes which are of interest for industry (Kirk et  al. 
2002) such as xylanases and hemicellulases are typically 
detected in faecal samples of ungulates (Fon and Nsahlai 
2012).

Microbial interactions in the intestinal systems of these 
herbivores are similar to anaerobic bioreactors utiliz-
ing cellulosic material as substrate, with similar hydro-
lytically active bacteria documented as members of the 
anaerobic food chain in artificial (bioreactors) and natu-
ral systems (digestive tract of herbivores) (Krakat et  al. 
2011; Morrison et al. 2009).

Conclusions
The detection of large numbers of proteolytic, cellulo-
lytic, amylolytic and lipolytic bacteria in faecal matter 
from zebra, giraffe and impala indicates that this mate-
rial is a useful source for the isolation of hydrolase pro-
ducing microorganisms. Zebra, giraffe and impala faeces 
appeared more promising than cattle faeces and soil con-
trols due to generally higher numbers of microbial hydro-
lysers and higher overall hydrolytic activity. This study 
used a culture-based approach to screen for the presence 
of specific hydrolase producers present in herbivore fae-
ces. A metagenomics approach targeting genes encod-
ing for hydrolytic enzymes in these samples could be a 
potential experimental technique to evaluate such faeces 
as source for additional hydrolases.

Methods
Sample collection
Fresh faecal samples from zebra, giraffe and impala were 
collected on four different occasions (January 2011–
January 2012) at the Bisley Valley Nature Reserve in 
Pietermaritzburg (S29°39′44″, E30°23′25″). Soil samples 
near faecal collection points and fresh faeces from pas-
ture-fed Nguni cows (Ukulinga Research Farm, UKZN, 
Pietermaritzburg) were used for comparison. All soil 
and faecal samples were collected in sterile plastic bags, 
transported on ice and then stored at 4 °C. Samples were 
analysed in the laboratory on the same day within 6  h 
after collection.
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Moisture content
About 1  g of sample material was dried in an oven at 
105 °C for 48 h. Samples were then cooled to room tem-
perature, reweighed and the percentage moisture content 
was established.

Soluble chemical oxygen demand
The soluble organic fraction in fresh faeces and soil sam-
ples was quantified as soluble chemical oxygen demand 
(sCOD). 100 fold dilutions of 1 g of fresh sample mate-
rial in distilled water were homogenised (shaking at 
150 rpm for 20 min), centrifuged (5 min at 10,000×g) and 
then used to determine the sCOD as reported previously 
(Gemmell and Schmidt 2012). Values were established as 
mg of sCOD per gram dry weight.

Measurement of pH
The pH of samples was measured according to ISO 10390 
(2005) by adding 50 ml of 0.1 M calcium chloride solu-
tion to 10 g of air-dried (48 h in the dark) homogenised 
sample material. Measurements were done using a cali-
brated pH electrode (Crison, MicropH 2001, USA) after 
5.5 h incubation at 25 °C.

Hydrolase and dehydrogenase activity
Overall hydrolytic activity in samples was quantified 
using a modified fluorescein diacetate (FDA) assay essen-
tially following the procedure reported by Green et  al. 
(2006), while the dehydrogenase activity in samples 
was determined using the triphenyltetrazolium chlo-
ride (TTC) assay (Stevenson 1959). The FDA assay was 
carried out in duplicate Erlenmeyer flasks containing 
50 ml 60 mM sodium phosphate buffer (pH 7.6), 0.5 ml 
FDA (4.8 mM in acetone) and 1 g of fresh sample mate-
rial followed by incubation for 1.5 h in the dark at 30 °C, 
either statically in a thermo-controlled incubator or at 
150  rpm in a thermo-controlled shaker. Reactions were 
terminated by adding 2 ml acetone, followed by centrifu-
gation (20,000×g, 5  min), measuring the absorbance at 
490  nm (Shimadzu 1240) and extrapolating fluorescein 
concentrations using calibration curves established using 
authentic fluorescein. Hydrolase activities were estab-
lished as µg of fluorescein formed per gram dry weight 
per hour of incubation. Appropriate controls (flasks 
with sample material and no FDA and flasks with only 
phosphate buffer and FDA) were always included and 
accounted for. For the TTC assay 7.5 ml deionised water, 
3  ml 3  % aqueous TTC and 6  g of fresh sample were 
mixed and incubated for 1 week in the dark at ambient 
temperature. Additional incubations were done with 
0.1  g glucose added as substrate to verify the presence 
of glucose utilizing microorganisms. Triphenylformazan 
(TPF) was extracted from samples using methanol and 

quantified with absorbance measured at 485 nm and by 
using standard curves established using authentic TPF. 
The dehydrogenase activities were reported as µg of TPF 
formed per gram dry weight.

Bacterial enumeration
Viable counts of heterotrophic bacteria were deter-
mined via spread plating onto plate count (PC) agar 
(Merck). Decimal dilutions of environmental samples 
(ranging from 10−1 to 10−8) were established by initially 
adding 10  g of sample material to 90  ml peptone water 
(8.5  g NaCl and 1  g peptone per litre, pH 7.0) followed 
by homogenisation at 150  rpm for 15  min and subse-
quent decimal dilutions up to 10−8. Samples (100  µl) 
from each decimal dilution were then spread-plated in 
triplicate onto PC agar; Tween 80 agar (5 g peptone, 3 g 
meat extract, 10  ml Tween 80, 100  mg CaCl2 ×  2H2O 
and 15 g agar per litre, pH 7.2); skim milk agar (10 g skim 
milk powder, 3 g meat extract, 5 g NaCl, 2 g Na2HPO4, 
15 g agar and 0.05 g bromothymol blue per litre, pH 7.2); 
carboxymethylcellulose agar (CMC agar) (2 g NaNO3, 1 g 
K2HPO4, 0.6 g MgSO4, 0.6 g KCl, 2 g carboxymethylcellu-
lose sodium salt, 0.2 g peptone and 17 g agar per litre, pH 
7.2) and starch agar (3 g beef extract, 10 g soluble starch 
and 12  g agar per litre, pH 7.2). Colony counts were 
established after incubation for 48 h at a temperature of 
30 °C as suggested by Gong (2007). CMC and starch agar 
plates were flooded with Gram’s iodine solution to detect 
cellulase and amylase positive colonies displaying a clear 
halo; protease positive colonies displayed blue colour 
due to casein hydrolysis on skim milk agar; esterase posi-
tive colonies on Tween 80 agar produced calcium oleate 
precipitates.
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