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Background
Clinical reports have shown that drug treatment in some human pathogens such virus 
HIV, hepatitis B virus (HBV), and hepatitis C virus (HCV), is not effective. Therefore, 
designing an optimal drug treatment strategy that leads to sustained immunity has 
become the essential subject (Shu et al. 2014).

This is the place where mathematical modeling plays an important role as it helps 
understanding the interactions between viral replication and immune response, (Atan-
gana 2015; Atangana and Alkahtani 2015; Atangana and Goufo 2014; Fenton et al. 2006; 
Komarova et al. 2003; Li and Shu 2010; Shu et al. 2014).

We consider the mathematical models introduced by Komarova et al. (2003) which the 
immune response is assumed to be instantaneous in this model. This model is given by 
two dimensional ordinary differential equations system, as follows

Note that the time lag should not be taken in this model, however, they proved the 
existence of two stable equilibrium; virus dominant equilibrium (no sustained immu-
nity) and immune control equilibrium (with sustained immunity).

(1)

{

y′ = ygr(y)− yz
z′ = zf (y).
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The bistability in this model leads to sustained immunity when the treatment is 
stopped, because a solution from the basis of the attraction of the virus dominant equi-
librium can be lifted to that of the immune control equilibrium via a single phase of 
therapy.

After that, Shu et  al. (2014) incorporated the time lag during the immune response 
process into Komarova et al.’s model and studied the dynamics between an immunosup-
pressive infection and antiviral immune response.

To formulate their model, they followed the line in Komarova et al. (2003) and Fenton 
et al. (2006). They considered the following model

where y and z denote the virus population size and population size of immune cells, 
respectively. The virus population is assumed to grow logistically: r is the viral replica-
tion rate and a is clearance rate. In addition, they assumed virus is killed by immune 
cells at a rate pyz and immune cells are assumed to be inhibited by the virus at a rate qyz 
and died at a rate b. The activation rate of immune cells at time t is assumed to depend 
on the virus load and the number of immune cells at time t − τ. Here, τ is the time lag 
accounting for the time needed for the immune system to trigger a sequence of events 
such as antigenic activation, selection and proliferation of immune cells to produce new 
immune cells. In model 1, it is important to note that f(y), function of immune expansion 
by virus load, is considered as follows (Shu et al. 2014)

Note that if the time lag is ignored, τ = 0, model 2 reduces to the following model:

They studied the local and global stability of the most of equilibria. By using bifurca-
tion theory, they only found Hopf bifurcation in the model when τ = τbif .

In this paper, we follow the line in Shu et al. (2014). It should be noted that, we detect 
another equilibrium point which is not considered in Shu et  al. (2014). Furthermore, 
we choose another parameters, r and c, as bifurcation parameters. The parameter r is 
the viral replication rate and the parameter c is a coefficient in the function of immune 
expansion by virus load. We consider r and c as bifurcation parameters and obtain the 
following result:

(1)	  (i) if r = rbif , then the transcritical bifurcation occurs in system 4,
(2)	  (ii) if c = cbif , then the saddle-node bifurcation occurs in system 4,
(3)	  (iii) if c = cbif , then the saddle-node bifurcation occurs in system 2.

(2)











y′(t) = ry(t)(1− y(t)
k
)− ay(t)− py(t)z(t)

z′(t) = cy(t−τ)z(t−τ)

1+dy(t−τ)
− qy(t)z(t)− bz(t),

(3)f (y) = c
y(t − τ )

1+ dy(t − τ )
− qy(t)− b.

(4)











y′(t) = ry(t)(1− y(t)
k
)− ay(t)− py(t)z(t)

z′(t) = cy(t)z(t)
1+dy(t)

− qy(t)z(t)− bz(t).
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As we mentioned, Shu et al. (2014) only investigated Hopf bifurcation by considering 
τ as bifurcation parameter. But we find new equilibrium in their model and obtain new 
dynamical behaviours in the model. Furthermore, we find other important parameters in 
studying dynamics of this model. To the best of our knowledge, this is the first time that 
these results are obtained in this immunosuppressive infection model.

The rest of paper is organized as follows. In the next section, we obtain the neces-
sary condition of existence of equilibria in immunosuppressive infection model. In 
“Dynamics of the model without delay (system 4)” section, we will consider the dynam-
ics of model 4. The dynamical behaviour of model 2 is investigated in “Dynamics of the 
model with delay (system 2)” section. In “Numerical simulation” section, the validity 
of the main results is illustrated by numerical simulations. Finally, we state some main 
conclusions.

Existence of equilibrium points
For any τ > 0, let C := {φ : [−τ , 0] → R is continuous} be Banach space of continuous 
function on [−τ , 0] with the norm is defined as �φ� = sup−τ≤θ≤0 φ(θ). We denote the 
nonnegative cone of C by C+.

Shu et  al. (2014) showed that system 2 with any initial condition (φ,ψ) ∈ C+ × C+ 
admits an unique solution and the solution (y(t), z(t)) remains nonnegative for t ≥ 0 and 
is bounded in C+ × C+. Furthermore, they showed that the bounded region

where µ = min{a, b} > 0, is positively invariant with respect to system 2 and the system 
is well posed (Shu et al. 2014).

Now we find the equilibria of system 2. We then investigate their stability. As we said 
in “Background” section, we obtain an equilibrium point that it is not considered in Shu 
et al. (2014).

Cleary E0 = (0, 0) is a trivial equilibrium of system 2, this equilibrium means that any 
virus cell and immune response do not exist in the body. There exists an equilibrium 
E1 = (ȳ, 0) = (

k(r−a)
r , 0) provided r > a. At equilibrium E1 does not exist any immune 

response, also viruses are with positive size. Therefore, we call the equilibrium E1 the 
virus dominante equilibrium (VDE). Assume that E∗ = (y∗, z∗) is another equilibrium 
point of system 2 with y∗ > 0 and z∗ > 0 which means immune response and virus cells 
are present at the same time. Therefore, the virus cells can be controlled. Now, we con-
sider the following equations

The first equation of 6 follows that

(5)Ŵ =
{

(φ,ψ) ∈ C+ × C+ : �φ� ≤ K ,φ(−τ )+ p

c
ψ(0) ≤ rK

µ

}

,

(6)











r(1− y∗

k
)− a− pz∗ = 0

cy∗

1+dy∗ − qy∗ − b = 0.

(7)z∗ = r(k − y∗)− ak

pk
> 0,
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or other words

then y∗ < ȳ . From the second equation of 6, we have the following function

It is clear that E∗ exists if and only if y∗ is the positive root of g (y) where y∗ < ȳ (Fig. 1).
Shu et  al. (2014) investigated the existence of positive roots of g(y) when 

c > (
√
q +

√
bd)2. We obtain new results on positive roots of g(y) when 

c = (
√
q +

√
bd)2.

Remark 1  H1: if c = (
√
q +

√
bd)2, then g (y) has a double positive root that it is same 

vertex of parabola,

Now, by defining the threshold values as follows

we have the following Lemma.

Lemma 1  By considering H1, the following cases occur

(a)	  if

holds, then the equilibrium E0 = (0, 0) is the only equilibrium,
(b)	  if

(8)r(k − y∗)− ak > 0,

(9)g(y) = qdy2 − (c − q − bd)y+ b.

(10)y∗ = c − q − bd

2qd
.

(11)rt =
{

ak
k−y∗ y∗ < k

∞ y∗ ≥ k ,

(12)r ≤ a

Fig. 1  The curves of g(y) = qdy2 − (c − q− bd)y + b
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holds, then there are two equilibria: E0 and E1 = (ȳ, 0), where ȳ = k(r−a)
r ,

(c)	if

holds, then there are three equilibrium: E0, E1, E∗ = (z∗, y∗) where z∗ = r(k−y∗)−ak
pk  

(Fig. 2).

Dynamics of the model without delay (system 4)
In this section, we provide a complete description about dynamics of system 4. To this 
end, we begin with the following result on local stability of system 4.

Lemma 2  Assume that H1 is satisfied.

(a)	If 12 holds, then equilibrium E0 is locally stable.
(b)	If 13 holds, then E0 is unstable (saddle point) and E1 is locally asymptotically stable.
(c)	If 14 holds, then E0 is unstable (saddle point), E1 is locally asymptotically stable and 

E∗ is locally stable.

Proof  Suppose that (ỹ, z̃) is an equilibrium of system 4. The associated characteristic 
equation is given by

where

and

(13)a < r ≤ rt (i.e a < r & y∗ ≥ ȳ)

(14)r > rt (i.e a < r & y∗ < ȳ)

(15)g0(ξ) = ξ2 + c1ξ + c0

(16)c1 = −
(

r − 2r

k
ỹ− a− pz̃ + cỹ

1+ dỹ
− qỹ− b

)

(17)c0 =
(

r − 2r

k
ỹ− a− pz̃

)(

cỹ

1+ dỹ
− qỹ− b

)

+ pỹ

(

cz̃

(1+ dỹ)2
− qz̃

)

.

Fig. 2  Existence of equilibria of system 2 and 4 in parametric space (c, r)
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Then characteristic equation 15 at E0 has two roots, ξ1 = −b < 0 and ξ2 = −(a− r) . If 
12 holds, then E0 is stable and if 13 or 14 holds then E0 is saddle point.

Also, characteristic equation 15 at E1 = (ȳ, 0) has two roots,

Note to the graph of g(y), it is obvious that g(ȳ) > 0. Now, if 13 or 14 holds, then the 
equilibrium E1 is asymptotically stable. We suppose that 15 holds, by substituting E∗ at 
Eq. 15, we have

Suppose that

It is clear g1(ŷ) = 0, where ŷ =
√
c−√

q

d
√
q

. Condition H1 follows that ŷ = y∗, then g1(y∗) = 0 . 
Therefore, the roots of Eq. 15 are ξ1 = 0, ξ2 = − r

k
y∗, or other words E∗ is locally stable.

When r ≥ a, the infection can not spread in body of patient, so there is no virus cell 
and immune response. In this case, system 4 converges to E0. We know viral cells infect 
the host without immune response as r increases from a to rt. In this case, system 4 con-
verges to E1 and the equilibrium point E1 is locally asymptotically stable. By increasing r 
from rt, immune response increases and controls viral cells. In this case, E∗ and E1 exist. 
Therefore, to obtain the better conditions and control of virus cells, we should converge 
the system to the equilibrium point E∗.

Lemma 3  Assume that H1 is satisfied, therefore system 4 has a saddle node bifurcation 
at equilibrium E∗ when the parameter c varies.

Proof  By Lemma 2, characteristic equation 15 at E∗ has two simple roots ξ1 = 0 and 
ξ2 = − r

k
y∗. Therefore (E∗, c) is a bifurcation point where c = cbif = (

√
q +

√
bd)2. 

Assume that A = Df (E∗, cbif ), then the eigenvectors of A and AT at zero eigenvalue are

hence we have

(18)ξ1 = −r + a, ξ2 = − g(ȳ)

1+ dȳ
.

(19)c0 = py∗z∗
(

−q + c

(1+ dy∗)2

)

, c1 =
r

k
y∗ > 0.

(20)g1(y) = −q + c

(1+ dy)2
.

(21)V =
[

− pk
r

1

]

, W =
[

0
1

]

,

(22)(a): WTfc(E
∗, cbif ) =

y∗z∗

1+ dy∗
,

(23)(b): WT [D2f (E∗, cbif )(V ,V )] = − 2cdp2k2z∗

r2(1+ dy∗)3
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where the two conditions (a) and (b) are opposed zero. By Sotomayor Theorem (Guck-
enhiemer and Holmes 1993; Perko 1991), system 4 has a saddle-node bifurcation at E∗ 
whene c = cbif .

Lemma 4  If H1 is satisfied, then system 4 has a trancscritical bifurcation at equilibrium 
E0 when r = rbif = a.

Proof  By Lemma 2, characteristic equation 15 has two roots ξ1 = −b and 
ξ2 = −(a− r) . Therefore (E0, rbif ) is a bifurcation point where rbif = a and ξ2 = 0 is a 
simple zero of 15. Now, we assume A = Df (E0, rbif ) then the eigenvectors of A and AT at 
zero eigenvalue are

Therefore, we have the following quantities

By Sotomayor Theorem (Guckenhiemer and Holmes 1993; Perko 1991), system 4 has a 
trancscritical bifurcation at E0 when rbif = a.

According to Lemma 4, we know that system 4 has a transcritical bifurcation at E0, 
when r = rbif . For r ≤ rbif , only equilibrium point E0 is stable. In this case, the patient ,

s body does not have virus cells and immune response. Also, with increasing r (r > rbif  ), 
the equilibrium E1 occurs; in this case the system has a branch of stable equilibrium E1 
and a branch of the unstable equilibrum E0 that express the transcritical bifurcation. In 
the branch of the stable equilibirum E1, the patient has a viral cells without any immune 
response. Therefore as shown if the viral replication rate r is greater than the threshold 
rt , then the two equilibrium points E1 and E∗ at the same time are stable and the bistabil-
ity phenomenon occurs. Also, we know that for c < cbif , there is no equilibrium E∗ and 
according to assumption H1 at c = cbif , the equilibrium E∗ will be found. After passing 
through cbif  (c > cbif ); according to Shu et  al. (2014), the system has two equilibrium 
E∗
1 and E∗

2. This means that there is a saddle-node bifurcation. With finding quantity of 
bifurcation parameter and rising it, we should try the patient’s condition set in the stable 
branch of saddle-node bifurcation. In this case virus cells are controlled and patient is in 
the path of recuperation.

Dynamics of the model with delay (system 2)
In this section, we would like to investigate dynamics of system 2 with τ > 0.

(24)
V =

[

1
0

]

, W =
[

−1
0

]

.

(25)(a): WTfr(E0, rbif ) = 0,

(26)(b): WT [Dfr(E), rbif )V ] = −1 �= 0,

(27)(c): WT [D2f (E0, rbif )(V ,V )] = −2a

k
�= 0.



Page 8 of 15Dadi and Alizade ﻿SpringerPlus  (2016) 5:106 

Stability of equilibria

The first, we study the equilibrium E0 in following theorem.

Theorem 1  if r ≤ a, then E0 is locally stable; while if r > a then E0 is unstable.

Proof  By computing the characteristic equation of system 2 at E0, we have

It complets the proof.
Now, we consider the characteristic equation associated with the linearization of sys-

tem 2 at E1

Note that E1 exists only if r > a, thus one root is ξ1 = a− r < 0. Therefore, the dynamic 
of E1 is depend on distribution of roots of the following equation

Theorem 2  The equilibrium point E1 is locally asymptotically stable.

Proof  By Lemma 2, the conclusion is true for τ = 0. We have to prove that all roots of 
g2(ξ) have only negative real parts. Suppose that ξ = α + iω is a zero of g2(ξ). After sub-
stituting in g2(ξ), we obtain

Therefore

Note that α �= 0, by the above discussion, we assume α > 0. The right hand side conver-
gent to zero but left hand side is perfectly elder of zero. Therefore, we have a contradic-
tion or α < 0 and the proof is complete.

Theorems 1 and 2 and Lemma 1 show that if 14 holds, then E0 is unstable and E1 is sta-
ble, and E∗ exists. We now study the stability of E∗. The characteristic equation at E∗ is

where

(28)(ξ − (r − a))(ξ + b) = 0.

(29)(ξ + r − a)

(

ξ + qȳ+ b− cȳ

1+ dȳ
e−ξτ

)

= 0.

(30)g2(ξ) = ξ + qȳ+ b− cȳ

1+ dȳ
e−ξτ .

(31)

{

α + b+ qȳ− cȳ

1+ dȳ
(cosωτ)e−ατ

}

+ i

{

ω + cȳ

1+ dȳ
(sinωτ)e−ατ

}

= 0.

(32)(α + b+ qȳ)2 + ω2 = e−2ατ

(

cȳ

1+ dȳ

)2

,

(33)G(ξ) = ξ2 + a1ξ + a0 + (b1ξ + b0)e
−ξτ = 0
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By Lemma 2, when τ = 0, E∗ is asymptotically stable, i.e, all roots of the characteristic 
equation 33 have negative real parts. We want to prove E∗ is locally stable. With inverse 
process, we suppose that iω (ω > 0) is the root of G(ξ), then we have

which yields

where

Since g1(ŷ) = g1(y
∗) = 0, thus c′0 = 0, and

Therefore, Eq. 33 has non purely imaginary root. On the other hand, we know g1(y∗) = 0 
or c

(1+dy∗)2 = q. Therefore a0 + b0 = 0, and ξ = 0 is a simple zero of G(ξ). Now we can 
state the following theorem.

Theorem  3  Roots of characteristic equation 33 have negative real parts other than 
ξ = 0, if

(1)	a0 > 0

(2)	a21 − 2a0 > 0.Hence,  E∗ is locally stable.

Proof  Suppose that ξ = α + iω is a zero of 33. After substituting it in 33, we obtain

Therefore

a1 = gy∗ + b+ ry∗

k
,

a0 = (qy∗ + b)
ry∗

k
− pqy∗z∗,

b1 = − (qy∗ + b),

b0 = − (qy∗ + b)
ry∗

k
+ pcy∗z∗

(1+ dy∗)2
.

ω2 − a0 = b1 cosωτ + b1ω sinωτ

−a1ω = b1ω cosωτ − b0 sinωτ ,

(34)F(ω) = ω4 + (a21 − 2a0 − b21)ω
2 + (a20 − b20) = 0,

c1
′ := a21 − 2a0 − b21 =

(

ry∗

k

)2

+ 2pqy∗z∗ > 0,

c0
′ := a20 − b20

= py∗2z∗g1(y
∗)

(

−pqz∗ − pcz∗

1+ dy∗
+ 2r(qy∗ + b)

k

)

.

(35)F(ω) = (ω2)2 + c′1ω
2 = 0.

{α2 − ω2+a1α + a0 + e−ατ ((b1α + b0) cosωτ + b1ω sinωτ)}+
i{zαω+a1ω + e−ατ (b1ω cosωτ − (b1α + b0) sinωτ)} = 0.

(α2 + ω2)+ (a1α + a0)
2 + 2(a1α + a0)(α

2 + ω2)+ ω2(a21 − 4a0)

= e−2ατ [b21(α2 + ω2)+ b0(b0 + 2b1α)].
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Note that α �= 0. By the above discussion, we assume α > 0. By conditions of (1) and 
(2)  , the right hand side is convergent to zero but left hand side is perfectly elder of zero. 
Hence, we have a contradiction or α < 0. This completes the proof.

Saddle‑node bifurcation of system 2

In this subsection, we want to study codimension-one bifurcations of system 2. For this 
aim, we consider c as bifurcation parameter. By Remark 1, we know that E∗ exists if 
c = (

√
q +

√
bd)2. Also, we know that E∗ is locally stable by Theorem 3, and codimen-

sion-one bifurcation can occur in system 2 at E∗. Define cbif = (
√
q +

√
bd)2. Now, we 

assume µ = c − cbif  as bifurcation parameter and rewrite system 2 as follows

Below we state the important theorem about existence saddle-node bifurcation of sys-
tem 36. For this aim, we use center manifold theory of DDE, see “Appendix”.

Theorem 4  System 36 has a saddle-node bifurcation at E∗
new = (y∗, z∗, 0) and µ = 0, if 

qpkdy∗(r + (qy∗ + b− pqkz∗)τ ) �= 0.

Proof  We consider the linearization of system 36 at E∗
new

where

The characteristic equation associated with system 37 is

where G(ξ) is defined by 33.
By Theorem 3, G(ξ) has ξ = 0 as a root. Thus, G2(ξ) has double zero roots. We want to 

obtain the center manifold associated with 37. To this end, we compute basis of a center 
subspace associated with 37 and adjoint system as follows

(36)























y′(t) = ry(t)(1− y(t)
k
)− ay(t)− py(t)z(t),

z′(t) = (µ+cbif )y(t−τ)z(t−τ)

1+dy(t−τ)
− qy(t)z(t)− bz(t),

µ′ = 0.

(37)





ẏ(t)
ż(t)
µ̇(t)



 = A0





y(t)
z(t)
µ(t)



+ A1





y(t − τ )

z(t − τ )

µ(t − τ )





(38)A0 =







r − 2r
k
y∗ − a− pz∗ − py∗ 0

−qz∗ − qy∗ − b
y∗z∗

1+dy∗

0 0 0






, A1 =





0 0 0
cbz

∗

(1+dy∗)2
cby

∗

(1+dy∗) 0

0 0 0



.

(39)G2(ξ) = ξ .G(ξ) = ξ3 + a1ξ
2 + a0ξ + (b1ξ

2 + b0ξ)e
−ξτ = 0

(40)φ =







−pk
r

pk2z∗

r2(1+dy∗)
1 0
0 1






, ψ ′ =

�

0 0 1
0 1 0

�

.
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By using inner multiplication, we have

With normalization ψ relation to φ, we obtain

where

then

Now, suppose that local coordinates at center manifold is U = (u,µ)T. The terms of 
nonlinear system 36 and matrix B are

Therefore, we have the following system by using the center manifold

Define

and

(41)�ψ ′,φ� =
[

0 1

1+ (qy∗ + b− pqkz∗

r )τ
pqk2z∗2

r2(1+dy∗) τ

]

.

(42)ψ =
[

0 Ā1 Ā2

0 0 1

]

,

(43)Ā1 =
r

r + (qy∗ + b− pqkz∗)τ
,

(44)Ā2 =
pqk2z∗2τ

r(1+ dy∗)(r − pqkz∗τ )+ r2cy∗τ

(45)�ψ ,φ� = I2.

(46)B =
[

0 0
0 0

]

,

F(y, z,µ) =
(

2r

k
y∗y(t)− ry2(t)

k
+ p(z∗y(t)+ y∗z(t))− py(t)z(t)+ y∗(a− r) ,

(cb + µ)y(t − τ )z(t − τ )

1+ dy(t − τ )
− qy(t)z(t)+ q(y∗z(t)+ z∗y(t))

−y∗z∗µ(t)

1+ dy∗
− cbz

∗y(t − τ )

(1+ dy∗)2
− cby

∗z(t − τ )

1+ dy∗
, 0

)T

(47)











u′ = 1
Ā1
[
�

− 2qpkdy∗

r

�

u2 +
�

2qpdk2y∗z∗

r2(1+dy∗)

�

uµ−
�

y∗z∗

1+dy∗

�

µ− bu]

µ′ = 0.

(48)A := −2qpkdy∗

rĀ1

, B := 2qpdk2y∗z∗

r2(1+ dy∗)Ā1

, C := − y∗z∗

Ā1(1+ dy∗)
, D := −b

Ā1

,

(49)µ1 := µ, µ2 := Bµ+ D.
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Then

Also, by assumption unew = u− µ2

A2, we have

where

Thus, studying dynamics of system 36 is equivalent to studying the following system

Hence, by assumption of theorem, system 53 or other words system 36 has a saddle-
node bifurcation.

Numerical simulation
By considering the following parameters:

we have the saddle-node bifurcation in system 36, see Fig. 3.

Conclusion
An immunosuppressive infection model with discrete delays and without delay is con-
sidered. We have analyzed this model without delay in this paper and showed that 
the model has transcritical and saddle-node bifurcation at different parameters. We 
obtained a new equilibrium in our model with delay. Then, we have shown that this 
model undergoes saddle node bifurcation at this equilibrium. We then compute its nor-
mal form. Finally, the presented numerical simulations have demonstrated the correct-
ness of the theoretical analysis.

(50)u′ = Au2 + µ2u+ Cµ1.

(51)u′new = Au2new + µnew

(52)µnew = Cµ1 −
µ2
2

4A

(53)

{

u′new = Au2new + µnew

µ′
new = 0.

(54)y∗ = 1.003, z∗ = 1.003, A = 1.012, B = 0.25 D = −1, µ = 0.249, µ2 = −1

Fig. 3  Saddle-node bifurcation diagram
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Appendix (Center manifold for DDES)
We consider the center manifold theory is stated in Dadi et al. (2012). In this section, 
we briefly state the center manifold theory for DDEs with parameters. For more details, 
one can refer to Balachandran and Kalmar-Nagy (2009), Hale and Lunel (1993) and Hale 
(1977). Consider the general delay-differential equation

where Y = (X ,µ), µ ∈ R, X ∈ R2 and τ > 0. We shall assume that g is Cr, for r large 
enough and the equation admits zero as the equilibrium. Note that the Eq. (55) should 
be viewed as the suspended system where the parameter µ is included as trivial dynamic 
(µ̇ = 0). We separate the system (55) to the linear and nonlinear terms

where

and

where j = 0, 1 and i, k = 1, . . . , 3. Here, Djg means the jacobian of g with respect to its 
jth component and Aj(µ0)’s are the submatrix of the matrix Dj+1g(0, 0,µ0).

Let C = C([−τ , 0],R2+1) be the Banach space of all continuous mappings from [−τ , 0] 
into R2+1 which is equipped with the supremum norm �φ�τ = supθ∈[−τ ,0] |φ(θ)| for 
φ ∈ C.

We write the system (56) in the following DDE form

where  Ut(θ) = [u(t + θ),µ(t + θ)]T ∈ C for  θ ∈ [−τ , 0].
L:C → R2+1 is the linear mapping and  F ∈ Cr(C ,R2+1), r ≥ 1 is the nonlinear map-

ping. Let u(t) = X(t) and ut(θ) = u(t + θ), then the system (56) is

(55)Ẏ (t) = g(X(t),X(t − τ ),µ)

(56)







Ẋ(t) = A0(µ)X(t)+ A1(µ)X(t − τ )

+G(X(t),X(t − τ ),µ)
µ̇ = 0

Dj+1g(0, 0,µ0) = [(Dj+1g)ik ]3×3

Aj(µ0) = [(Dj+1g)ik ]2×2

(57)
d

dt
U(t) = LµUt + F(Ut)
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Therefore, for every ϕ = (ϕ1,ϕ2) and φ = (ϕ,ϕ3)
T ∈ C, we have

and

The stability of the trivial solution of the Eq. (55) can be studied by the DDE of the fol-
lowing form

Substituting Y (t) = Ce�t in the system (59), gives the following characteristic equation

Obviously, the Eq. (60) always has one eigenvalue on the imaginary axis. We assume that 
this characteristic equation has m+ 1 eigenvalues (counting multiplicity) on the imagi-
nary axis and all other eigenvalues have negative real parts. Therefore, the space C can 
be split as C = P ⊕ Q where Q ⊂ C is infinite-dimensional stable subspace and P ⊂ C is 
an (m + 1)-dimensional center subspace tangent to the center manifold. We will denote 
a basis for P by the 3× (m+ 1) matrix Φ; the columns of Φ are the basis vectors. Also, 
we will consider the transpose of the Eq. (59) with (m +1)-dimensional center subspace 
P′. We will denote a basis for P′ by the (m+ 1)× 3 matrix Ψ ′. Also, we define a new basis 
Ψ  by Ψ =< Ψ ′,Φ >−1 Ψ ′ which implies < Ψ ,Φ >= I. This bilinear form is defined

where

This kind of basis Ψ  can help us to decompose the space C and also reduce the Eq. (57) 
on the local center manifold Wc

loc which is defined by

where h(z, F) ∈ Q for each z and is a Cr−1 function with respect to z. Moreover, z satis-
fies the following ordinary differential equation

(58)







d

dt
u(t) = Lµut + G(ut ,µ)

d

dt
µ = 0.

A0(µ)ϕ(0)+ A1(µ)ϕ(−τ ) = Lµϕ

(Lµϕ, 0)
T = Lµφ

F(φ,µ) = (G(ϕ,µ), 0)T .

(59)

{

Ẋ(t) = A0(µ)X(t)+ A1(µ)X(t − τ )

µ̇ = 0.

(60)� · det(�I2 − A0(µ)− e−�τA1(µ)) = 0.

(61)< ψi,φj >= ψi(0)φj(0)+
∫ 0

−τ

ψi(ξ + τ )A1φj(ξ)dξ

Φ = (φ1,φ2, . . . ,φm+1)

Ψ = (ψ1,ψ2, . . . ,ψm+1)
T

< Ψ ,Φ > = [< ψi,φj >](m+1)×(m+1)

(62)
Wc

loc = {φ ∈ C : φ = Φz + h(z, F),

z is in a neighborhood of zero in Rm+1}
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where the (m+ 1)× (m+ 1) matrix B satisfies the relation d
dθ
Φ = ΦB, (Balachandran 

and Kalmar-Nagy 2009; Hale and Lunel 1993; Hale 1977).

Received: 18 September 2015   Accepted: 18 January 2016

References
Atangana A (2015) A novel model for the lassa hemorrhagic fever: deathly disease for pregnant women. Neural Comput 

Appl 26(8):1895–1903
Atangana A, Alkahtani BST (2015) Modeling the spread of Rubella disease using the concept of with local derivative with 

fractional parameter. Complexity. doi:10.1002/cplx.21704
Atangana A, Goufo EFD (2014) On the mathematical analysis of Ebola hemorrhagic fever: deathly infection disease in 

West African countries. BioMed Res Int. 7 pages, Article ID 261383
Balachandran B, Kalmar-Nagy T et al (2009) Delay differential equations, recent advances and new directions. Springer, 

New York
Dadi Z, Afsharnezhad Z, Pariz N (2012) Stability and bifurcation analysis in the delay-coupled nonlinear oscillators. Nonlin-

ear Dyn 70:155–169
Fenton A, Lello J, Bonsall MB (2006) Pahtogen responses to host immunity: the impact of time delays and memory on 

the evolution of virulence. Proc R Soc B Biol Sci 273:2083–2090
Guckenhiemer J, Holmes P (1993) Nonlinear oscillations, dynamical system, and bifurcations of vector fields. Springer, 

New York
Hale J, Lunel S (1993) Introduction to functional differential equations. Springer, New York
Hale J (1977) Theory of functional differential equations. Springer, New York
Komarova NL, Baranes E, Klenerman P, Wodarz D (2003) Boosting immunity by antiviral drug therapy: a simple relation-

ship among timing, efficacy, and success. Proc Natl Acad Sci USA 100:1855–1860
Li M, Shu H (2010) Global dynamics of a mathematical model for HTLV-I infection of CD4+ T cells with delayed CTL 

response. Nonlinear Anal Real World Appl 13:1080–1092
Perko L (1991) Differential equation and dynamical systems. Springer, New York
Shu H, Wang L, Watmough J (2014) Sustaind and transient oscillation and chaos induced by delayed antiviral immune 

response in a immunosuppressive infection model. J Math Biol 68:477–503

(63)
d

dt
z = Bz + Ψ (0)F(Φz + h(z, F))

http://dx.doi.org/10.1002/cplx.21704

	Codimension-one bifurcation and stability analysis in an immunosuppressive infection model
	Abstract 
	Background
	Existence of equilibrium points
	Dynamics of the model without delay (system 4)
	Dynamics of the model with delay (system 2)
	Stability of equilibria
	Saddle-node bifurcation of system 2

	Numerical simulation
	Conclusion
	Authors’ contributions
	References




