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Background
Differential equations, besides playing important role in pure mathematics, constitute 
fundamental part of mathematical description of physical processes. Thus, obtaining the 
solutions for differential equations is of paramount importance. Few types of differential 
equations allow explicit and straightforward analytical solutions. The development of 
computer methods and proper technical means in twenty-first century facilitated equa-
tions solving. There are numerous numerical methods for solving differential equations 
(see, for example, Von Rosenberg 1969; Smith 1985; Ghia et al. 1982; Ames 2014; John-
son 2012; Carnahan et al. 1969). However, understanding of the obtained solutions and 
of the interplay of various parameters in them can be best done in analytical form. Thus, 
despite the revolutionary breakthrough in numerical calculus, analytical studies remain 
requested. Exact and approximate solutions are searched, while the first are certainly 
preferred. Recently some fractional type ordinary and partial differential equations 
involving non-integer derivatives were explored in Demiray et al. (2015). Exact analytical 
solutions for such equations were obtained as sums of a vector-type functional (Akin-
lar and Kurulay 2013). Some partial differential–algebraic equations were also solved 
by the power series method (Filobello-Nino et  al. 2015; Benhammouda and Vazquez-
Leal 2014). The solutions were obtained in the form of converging series. Fokker–Planck 
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type equations were recently solved by differential transforms in Hesam et  al. (2012); 
the solutions obtained in form of the form of rapidly convergent series. Semi-analytical 
techniques for the solution of differential–algebraic equations were developed (Soltanian 
et al. 2013) and applied for description of an incompressible viscous fluid flow. Approxi-
mate solutions for some nonlinear delay differential equations were obtained (Caruntu 
and Bota 2014) and applied to a biologic model. A modified method of simplest equation 
was proposed in Vitanov et al. (2015) to find exact analytical solutions of nonlinear par-
tial differential equations. In many cases, these solutions are best formulated in terms of 
special functions and orthogonal polynomials when used for relevant models of physical 
processes. Hyperbolic, elliptic Weierstrass and Jacobi type, generalized Airy and Bessel 
type functions are used (Vitanov et al. 2015; Dattoli et al. 2008, 2009; Appèl and Kampé 
de Fériet 1926; Dattoli 2000; Dattoli et al. 2005; Zhukovsky 2014, 2015a, b, c, d); expan-
sion in series of Hermite and Laguerre polynomials (Appèl and Kampé de Fériet 1926) 
are employed. These polynomials possess generalized forms with many variables and 
indices (Dattoli 2000; Dattoli et al. 2005). In this framework the operational definitions 
for the polynomials are useful (Erdélyi et al. 1953). The above mentioned recent develop-
ments in analytical and semi-analytical equations solutions (Demiray et al. 2015; Akin-
lar and Kurulay 2013; Filobello-Nino et al. 2015; Benhammouda and Vazquez-Leal 2014; 
Hesam et al. 2012; Soltanian et al. 2013; Caruntu and Bota 2014; Vitanov et al. 2015) are 
indeed capable of reducing the size of computational work.

In what follows we shall demonstrate the abilities of the operational approach for 
solution of differential equations. With the help of this general method we will obtain 
exact analytical solutions for a broad class of differential equations, including those with 
non-integer derivatives, evolution type equations, generalized forms of heat, mass trans-
fer and Black–Scholes type equations, involving also the Laguerre derivative operator. 
Recently, this method was applied for solution of some differential equations in Zhu-
kovsky (2014, 2015a) and Dattoli et al. (2007). These equations cover a broad range of 
physical problems: from propagation and radiation of accelerated charges to heat and 
mass transfer (see, for example, Haimo and Markett 1992a, b; Zhukovsky 2016). Opera-
tional exponent, employed for solution, finds its application even for description of such 
fundamentals of nature as quarks and neutrinos (Dattoli and Zhukovsky 2007a, b, 2008). 
We will not include error analysis in our work since the proposed operational method 
produces analytical solutions, which satisfy the equations exactly.

When it comes to a numerical analysis, there are also practical and theoretical rea-
sons for examining the process of inverting differential operators. Indeed, the inverse or 
integral form of a differential equation displays explicitly the input–output relationship 
of the system. Moreover, integral operators are computationally and theoretically less 
troublesome than differential operators; for example, differentiation emphasizes data 
errors, whereas integration averages them. Thus, it may be advantageous to apply com-
putational procedures to differential systems, based on the inverse or integral descrip-
tion of the system.

The evident concept of an inverse function is a function that undoes another func-
tion: if an input x into the function ƒ produces an output y, then putting y into the 
inverse function g produces the output x, and vice versa. i.e., f (x) = y and g(y) = x or 
g(f (x)) = x. If a function ƒ has an inverse ƒ−1, it is invertible and the inverse function 
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is then uniquely determined by ƒ. We can develop similar approach with regard to dif-
ferential operators. In what follows we will further develop this technique and explore 
its relation with extended forms of orthogonal polynomials, producing useful relations 
for solution of a variety of differential equations, by means of inverse derivative. The rel-
evant physical problems will be considered.

Let us denote a common differential operator D = d/dx. The inverse derivative of a 
function ƒ(x) is another function F(x): D−1f (x) = F(x), whose derivative is F ′(x) = f (x). 
Naturally, we expect anti-derivative or inverse derivative D−1 as the inverse operation of 
differentiation to be an integral operator. The generalized form of the inverse derivative 
of ƒ(x) with respect to x evidently is 

∫

f (x) = F(x)+ C, where C—the constant of inte-
gration. The action of the inverse derivative operator of the n-th order

can be complemented with the definition for its zeros order action as follows:

Hence, we can write:

For a general form of differential equation

where ψ(D)—differential operator, composed of derivatives or various orders: D, 
D2, …, Dn the inverse differential operator 1/ψ(D) or (ψ(D))−1 is defined, such that

From (4) we obtain the particular integral

The inverse differential operator (ψ(D))−1 is evidently linear, i.e.

where a and b are constants, ƒ(x) and g(x) are some functions of x. Let us consider an 
elementary example of the following simple equation:

where ψ(D) consists of derivatives of various orders. The action of ψ(D) on exp(αx) 
results in ψ(D)eαx = (cnD

n + · · · + c1D + c0)e
αx = ψ(α)eαx; applying inverse operator 

(ψ̂(D))−1 to both sides, we obtain: eax = ψ(α) 1
ψ(D)e

αx or eax

ψ(α)
= 1

ψ(D)e
αx and we con-

clude that Eq. (8) possesses the following particular integral:

(1)D−n
x f (x) = 1

(n− 1)!

x
∫

0

(x − ξ)n−1f (ξ)dξ , (n ∈ N = {1, 2, 3, . . .})

(2)D0
xf (x) = f (x).

(3)D−n
x 1 = xn

n! , (n ∈ N0 = N ∪ {0}).

(4)ψ(D)F(x) = f (x),

(5)ψ(D)(ψ(D))−1f (x) = f (x).

(6)F(x) = (ψ(D))−1f (x)

(7)
1

ψ(D)

{

af (x)+ bg(x)
}

= a
1

ψ(D)
f (x)+ b

1

ψ(D)
g(x),

(8)ψ(D)F(x) = eαx,
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It can be easily shown by means of the inverse derivative operator that (9), being the 
solution of Eq. (8), is true also for the operator ψ(D) with higher than the second order 
derivatives. Moreover, it is easy to prove the following identity:

and the action of the inverse operator (ψ(D + α))−1 on a function ƒ, which can be 
expressed via the inverse differential operator (ψ(D))−1, reads as follows:

Inverse differential and exponential operators for solution of some non‑integer ordinary 

differential equations

Let us consider the following equation:

where we denote operator D̃ ≡ D + α and α, β—constants. In order to find the particu-
lar integral

we shall make use of the well-known operational identity (Erdélyi et al. 1953; Srivastava 
and Manocha 1984), frequently used in fractional derivative calculus:

which reads for the operator q̂ = β2 − D̃2:

There are several ways to proceed with the solution. One of them consists in the follow-
ing. Note that differential operator −tD̃2 in the exponential reduces to the first order 
derivative with the help of the following integral presentation for the exponential of a 
square of an operator p̂ (Wolf 1979):

where p̂ =
√
tD̃ in our case. Thus, the above formula reads as follows:

(9)F(x) = (ψ(D))−1eαx = eαx

ψ(α)
.

(10)(ψ(D))−1eαxf (x) = eαx(ψ(D + α))−1f (x),

(11)F(x) = (ψ(D + α))−1f (x) = e−αx(ψ(D))−1eαxf (x).

(12)
(

β2 − (D + α)2
)ν

F(x) = f (x), D + α ≡ D̃,

(13)F(x) =
(

β2 − D̃2
)−ν

f (x)

(14)q̂−ν = 1

Γ (ν)

∞
∫

0

exp(−q̂t)tν−1dt, min{Re(q), Re(ν)} > 0,

(15)
(

β2 − D̃2
)−ν

f (x) = 1

Γ (ν)

∞
∫

0

exp(−β2t)tν−1 exp(tD̃2)f (x)dt.

(16)exp
(

p̂2
)

= 1√
π

∞
∫

−∞

exp
(

−ξ2 + 2ξ p̂
)

dξ ,
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Now, if we take into account the action of the operator of translation exp(ηD̃) for 
D̃ = D + α:

the above-sketched operational procedure yields the following expression for the par-
ticular integral (13):

Upon performing the change of variables, given by

we finally obtain the solution of the Eq. (12):

Equation  (12) involves a convolution transform φ(x, τ) = G(x, τ) · f (η) or 
φ =

∫∞
−∞G(x − η)f (η)dη with the kernel, equal to the Gauss frequency function 

G(x, τ) = exp(−(x/2τ )2 − αx), so that

Evidently, for α = 0

and its solution becomes the particular case of (15) with the substitution D̃ → D:

where the differential operator

was thoroughly explored by Srivastava and Manocha (1984). In particular, for 
f (x) = exp(−x2) we can make use of the Gleisher operational rule (Srivastava and Man-
ocha 1984)

(17)exp(tD̃2)f (x) = 1√
π

∞
∫

−∞

exp(−ξ2 + 2ξ
√
tD̃)f (x)dξ .

(18)exp(η(D + α))f (x) = exp(ηα)f (x + η),

(19)

F(x) = 1√
πΓ (ν)

∞
∫

0

tν−1 exp
(

(α2 − β2)t
)

∞
∫

−∞

exp
(

−(ξ −
√
tα)2

)

f (x + 2ξ
√
t)dξdt.

(20)η = x + 2ξ
√
t and t = τ 2,

(21)F(x) = 1√
πΓ (ν)

∞
∫

0

τ 2(ν−1) exp
(

−(βτ)2
)

∞
∫

−∞

exp

(

−
(

η − x

2τ

)2

+ α(η − x)

)

f (η)dηdτ .

(22)F(x) = 1√
π Γ (ν)

∞
∫

0

τ 2(ν−1) exp
(

−(βτ)2
)

φ(x, τ)dτ = 1√
πΓ (ν)

∞
∫

−∞

e2ντ−β2e2τ φ
(

x, eτ
)

dτ .

(23)
(

β2 − D2
)ν

F(x) = f (x)

(24)F(x) = 1

Γ (ν)

∞
∫

0

exp(−β2t)tν−1Ŝ f (x)dt,

(25)Ŝ = exp(tD2
x) ≡ exp(tD2)
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to obtain the following particular solution:

The other approach to Eq.  (12) consists in combining the exponential operator tech-
nique, the inverse derivative formalism and the Gauss transform. Indeed, when solving 
equations with D + α, we can write the particular integral based upon the operational 
rule (11), where

Proceeding with account for (23), (24) and (25), we compute the result of the action of 
the operator exp(∂2x ) on exp(αx)g(x) with the help of the following chain rule:

where y and α are the parameters. It eventually yields the following solution for Eq. (12):

where Θ̂ is the well-known operator of translation:

and operator Ŝ is encountered in problems, related to heat propagation and defined in 
(25). Its action can be written in integral form by means of common Gauss transforms:

Thus, we conclude that the integrand of the solution (30) of the Eq. (12), apart the phase 
and the factor, responsible for the equation dimension ν, is a result of consequent action 
of operators of heat propagation Ŝ and operator of translation Θ̂ on the function f (x):

With these notations we can write the solution as follows:

(26)Ŝ f (x) = exp

(

y
∂2

∂x2

)

exp(−x2) = 1
√

1+ 4y
exp

(

− x2

1+ 4y

)

(27)F(x) = 1

Γ (ν)

∞
∫

0

exp(−β2t)tν−1

√
1+ 4t

exp

(

− x2

1+ 4t

)

dt.

(28)ψ−1(D) =
(

β2 − D2
)−ν

.

(29)exp(y ∂2x ) exp(αx)g(x) = exp(α x) exp(α2y) exp(2α y ∂x) exp(y∂
2
x )g(x),

(30)F(x) = 1

Γ (ν)

∞
∫

0

tν−1 exp
{

−(β2 − α2)t
}

Θ̂ Ŝf (x)dt,

(31)Θ̂ = exp(2αtDx) ≡ exp

(

2αt
∂

∂x

)

, Θ̂f (x) = f (x + 2αt)

(32)Fi(x, t) ≡ Ŝf (x) = 1

2
√
π t

∞
∫

−∞

exp

{

− (x − ξ)2

4t

}

f (ξ)dξ .

(33)F(x, t) ≡ Θ̂ Ŝf (x) = Fi(x + 2αt, t) = 1

2
√
π t

∞
∫

−∞

exp

{

− (x + 2αt − ξ)2

4t

}

f (ξ)dξ .
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The solution is best illustrated by the example of a Gaussian function f (x):

With the help of the above described operational procedure and on the account of (26) 
we easily obtain the following solution of Eq.  (12) for f (x) = exp(−x2) is given by a 
Gaussian:

So far, we have demonstrated on simple examples how the usage of inverse derivative 
together with operational formalism and, in particular, with exponential operator tech-
nique, provide elegant and easy way to find solutions in some classes of differential equa-
tions. In what follows we will apply the concept of inverse differential operator to find 
solutions of more sophisticated problems, expressed by differential equations.

Operational approach and orthogonal polynomials for solution of some non‑integer 

ordinary differential equations

Despite the traditional presentation of many polynomial families is the expansion in 
series, they are worth being viewed from operational point of view too. Particularly 
interesting appears their relation with the exponential operators of derivatives and 
inverse derivatives and special functions. Recently, Hermite, Laguerre and other poly-
nomial families were reconsidered by means of the operational technique (Dattoli 2000; 
Dattoli et al. 2005, 2006). Hermite polynomials of two variables are explicitly given by 
the following operational rule (Dattoli 2000) and the series expansion (Gould and Hop-
per 1962):

Note, that

where Hn(x, y) are more commonly known Hermite polynomials of two variables

with the following generating function:

(34)F(x) = 1

Γ (ν)

∞
∫

0

tν−1 exp
{

−(β2 − α2)t
}

F(x, t)dt.

(35)f (x) = exp(−x2).

(36)F(x) = 1

Γ (ν)

∞
∫

0

tν−1 exp
{

−(β2 − α2)t
}

√
1+ 4t

exp

{

− (x + 2αt)2

1+ 4t

}

dt.

(37)H (m)
n

(

x, y
)

= exp

(

y
∂m

∂xm

)

xn, H (m)
n

(

x, y
)

= n!
[n/m]
∑

r=0

xn−mryr

(n−mr)!r! .

(38)H (1)
n

(

x, y
)

=
(

x + y
)n

and H (2)
n

(

x, y
)

= Hn

(

x, y
)

,

(39)Hn

(

x, y
)

= exp

(

y
∂2

∂x2

)

xn, Hn

(

x, y
)

= n!
[n/2]
∑

r=0

xn−2ryr

(n− 2r)!r!

(40)exp
(

xt + yt2
)

=
∞
∑

n=0

tn

n!Hn(x, y).
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They can be reduced to the well-known forms of Hermite polynomials of single variable:

Note also the following useful and easy to prove relation (Gould and Hopper 1962) for 
Hermite polynomials:

Laguerre polynomials of two variables can be given by an operational relation (Dattoli 
2000) or a sum as follows:

They also reduce to polynomials of a single variable (Srivastava and Manocha 1984) as 
follows:

The introduction of the second variable in Hermite and Laguerre polynomials allows 
us to consider them as solutions of partial differential equations with proper initial 
conditions:

for Laguerre polynomials Ln(x, y) and

for Hermite polynomials Hn(x, y). Importantly, the following differential operators

are non commutative:

and the following operational relation between them exists (Dattoli et al. 2006):

With the help of this relation, we can extend our approach on differential equations, 
including operator ∂xx∂x, sometimes called Laguerre derivative LDx. Then, from the defi-
nition (47) we immediately conclude for Laguerre polynomials Ln

(

x, y
)

, defined in (43), 
that in terms of inverse derivative operator they are expressed as follows:

(41)Hn(x, y) = (−i)nyn/2Hn

(

ix

2
√
y

)

= in(2y)n/2Hen

(

x

i
√

2y

)

.

(42)znHn(x, y) = Hn(xz, yz
2).

(43)Ln
(

x, y
)

= exp

(

−y
∂

∂x
x
∂

∂x

)

(−x)n

n! = n!
n

∑

r=0

(−1)ryn−rxr

(n− r)!(r!)2
.

(44)Ln(x, y) = ynLn

(

x

y

)

, Ln(x) = y−nLn(xy, y) = Ln(x, 1).

(45)∂yLn
(

x, y
)

= −(∂xx∂x)Ln
(

x, y
)

with Ln(x, 0) =
(−x)n

n!

(46)∂yHn

(

x, y
)

= ∂2xHn

(

x, y
)

with Hn(x, 0) = xn

(47)LDx =
∂

∂x
x
∂

∂x
= −P̂ and M̂ = y− D−1

x

(48)[LDx,D
−1
x ] = −1, ([A,B] = AB− BA)

(49)LDx =
∂

∂x
x
∂

∂x
= ∂

∂D−1
x

.
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Moreover, it follows from (43) and (50) that the following operational identity is true for 
Laguerre polynomials:

Various polynomial families, such as Hermite, Laguerre, Legendre, Shaffer and hybrid 
polynomials can be reviewed in the context of umbral calculus as members of a more 
general family of Appèl polynomials, which they belong to. Such consideration is pos-
sible in the framework operational approach, where inverse derivative plays important 
role as an instrument for the study of relevant polynomial families, their features and 
properties.

For example, let us consider Eq. (12) with f (x) = xk. Then, making use of the opera-
tional rule (11), and of the identity

which arises from the operational relation:

and from generating function (40), we can write the particular integral (13) for f (x) = xk 
as follows:

The above expression with the shifted argument of the Hermite polynomial can be 
derived directly from the general form of the solution (30) and the operational defini-
tion of the Hermite polynomials (39). Particular solutions for (12) with f (x) = xk and α, 
β = 0, obviously follow from (54).

Note, that even without specifying the type of the function f in the r.h.s. of (12) and the 
values of ν and α and, we can still disentangle two integrals in (21) by involving Hermite 
polynomials of two variables (40) as follows:

Now, let us consider the following equation:

From operational point of view, its solution writes as follows:

(50)
Ln(x, y) = n!

n
∑

k=0

(−x)kyn−k

(n− k)!(k!)2 = (y− D−1
x )n{1}.

(51)exp

(

α
∂

∂D−1
x

)

Ln(x, y) = Ln(x, y− α).

(52)exp(yD2
x)x

keαx = e(αx+α2y)Hk(x + 2αy, y),

(53)exp

(

y
∂m

∂xm

)

f (x) = f

(

x +my
∂m−1

∂xm−1

)

{1}

(54)F(x) =
(

β2 − (Dx + α)2
)−ν

xk = 1

Γ (ν)

∞
∫

0

e−t((β2−α2)tν−1Hk(x + 2αt, t)dt.

(55)

F(x) = 1√
πΓ (ν)

∞
∑

n=0

∞
∫

0

τ 2(ν−1) exp(−β2τ 2)Hn

(

α,− 1

4τ 2

)

dτ
1

n!

∞
∫

−∞

(η − x)nf (η)dη.

(56)

(

β − ∂

∂x
x
∂

∂x

)ν

F(x) = f (x).
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Note, that upon the change of variable t → et the last integral can be transformed into 
the following

In the particular case of β = 1, ν = 1 the above integral presentation reduces to the 
Laplace transforms for the differential operator LDx, involved in (57), identical, except 
for the change LDx ↔ Dx, to the well known Laplace transforms for the operator Dx

By choosing f (x) = xn in Eq. (57), we obtain the following result:

Moreover, we can write a solution of Eq. (56) for an arbitrary function f (x), if its expan-
sion into series of simple Laguerre polynomials Ln(x) exists. Then, provided

and taking into account (51), the solution (57) of Eq. (56) can be also written as the fol-
lowing integral of series of Laguerre polynomials:

For the exponential function f (x) = exp(−γ x) we can employ the generalized form of 
the Gleisher operational rule (see Dattoli et al. 2007)

which immediately yields the following result:

(57)F(x) =
(

β − ∂

∂x
x
∂

∂x

)−ν

f (x) = 1

Γ (ν)

∞
∫

0

exp(−βt)tν−1 exp(tLDx)f (x)dt.

(58)F(x) =
(

β − ∂

∂x
x
∂

∂x

)−ν

f (x) = 1

Γ (ν)

∞
∫

−∞

etνe−βet ee
t
LDx f (x)dt.

(59)
1

1− D̂x

=
∞
∫

0

exp(−s(1− D̂x))ds.

(60)(β − LDx)
−νxn = n!

Γ (ν)

∞
∫

0

exp(−βt)tn+ν−1Ln(x/t)dt.

(61)f (x) =
∞
∑

n=0

cnLn(x),

(62)F(x) = 1

Γ (ν)

∞
∫

0

exp(−βt)tν−1
∞
∑

n=0

cnLn(x, 1− t)dt.

(63)exp(−tLDx) · exp(−γ x) = 1

1− γ t
exp

(

− γ x

1− γ t

)

,

(64)

(

β − ∂

∂x
x
∂

∂x

)−ν

exp(−γ x) = 1

Γ (ν)

∞
∫

0

exp(−βt)tν−1 1

1+ γ t
exp

(

− γ x

1+ γ t

)

dt.
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Another interesting case arises in the case of the Laguerre derivative LDx instead of 
the common derivative ∂x in the Eq.  (12). Let us choose the following initial condition 
function:

where

Wn(x,m)—particular case of the Bessel–Write function (Srivastava and Manocha 1984). 
Then, following (14), we can write the solution:

Eventually, based on the operational definition of Laguerre polynomials (43) and exploit-
ing the other generalized form of the Gleisher operational rule (Dattoli et al. 2006) in the 
form

we obtain:

Moreover, according to the developed above procedure, we can write the solutions for 
other than above specified types of equations. For example, we can take advantage of the 
following generalization of the Laguerre polynomials L(α)n (x, y):

where operator 
⌣

Dx is defined as follows:

Inverse operator technique easily allows us to write the solution of the equation

Indeed, by following the operational rule (14), we get

(65)f (x) = W0(−x2, 2),

(66)Wn(x,m) =
∞
∑

s

xs

s!(ms + n)! ,

(67)

(

β2 −
(

∂

∂x
x
∂

∂x

)2
)−ν

W0(−x2, 2) = 1

Γ (ν)

∞
∫

0

exp(−β2t)tν−1 exp(tLD
2
x)f (x)dt.

(68)exp(LD
2
x)W0(−x2, 2) = 1√

1+ 4t
W0

(

− 1

1+ 4t
, 2

)

,

(69)

(

β2 −
(

∂

∂x
x
∂

∂x

)2
)−ν

W0(−x2, 2) = 1

Γ (ν)

∞
∫

0

exp(−β2t)tν−1 1√
1+ 4t

W0

(

− 1

1+ 4t
, 2

)

dt.

(70)L(α)n

(

x, y
)

= exp

[

−y
⌣

Dx

]{

(−x)n

n!

}

,

(71)
⌣

Dx = x∂2x + (α + 1)∂x.

(72)(x∂2x + (α + 1)∂x)
νF(x) = f (x).

(73)
⌣

D
−ν

x f (x) = 1

Γ (ν)

∞
∫

0

exp(−βt)tν−1 exp(t
⌣

Dx)f (x)dt
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and for initial the condition function f (x) = xn, we then write:

Similarly to (60), taking advantage of the generalized form of the Gleisher opera-
tional rule from Srivastava and Manocha (1984), we obtain for the operator 

⌣

Dx and 
f (x) = exp(−γ x):

Operational solution of some partial differential equations

The method of the inverse differential operators has multiple applications for solving 
mathematical problem, describing wide range of physical processes, such as the heat 
transfer, the diffusion, wave propagation etc. Some of the examples of solution of the 
heat equation, of the diffusion equation and of their modified forms, the Laguerre heat 
equation and others, by the inverse derivative method were considered in Dattoli et al. 
(2006, 2007) and Zhukovsky and Dattoli (2011). In what follows we will explore more 
complicated, generalized forms of the aforementioned equations, as well as some second 
order over the time variable partial differential equations will be touched on.

It is worth mentioning that, despite the relation (11) seems trivial to all appearance, it is 
very useful for solution of a broad family of differential equations by operational method. 
Indeed, for the differential equation ψ(Dx + α)F(x, t) = f (x, t) we can rewrite (11) in 
the following form: eαxF(x, t) = ψ−1(Dx)e

αxf (x, t) and, for example, for the evolutional 
type equations, where f (x, t) = ∂tF(x, t), we obtain ψ(Dx)e

αxF(x, t) = ∂t e
αxF(x, t).  

By denoting eαxF(x, t) = G(x, t) we have the equation ψ(Dx)G(x, t) = ∂tG(x, t) 
with ψ(Dx) and with the initial condition g(x) = G(x, 0) = eαxF(x, 0) = eαxf (x).  
Thus, in order to obtain the desired solution F(x, t) = e−αxG(x, t) of the equation 
ψ(Dx + α)F(x, t) = f (x, t) with the initial condition F(x, 0) = f (x), we end up with the 
necessity to solve the equation with ψ(Dx) for the function G(x, t) with the initial con-
dition g(x) = eαxf (x). Note that the above discussed method is applicable not only to 
the evolutional type equations with ∂t in the r.h.s., but also to other operators D̂(t), act-
ing over the time variable. Indeed, if G(x, t) is the solution of ψ(Dx)G(x, t) = D̂(t)G(x, t) 
with g(x) = G(x, 0) = eαxF(x, 0) = eαxf (x) , then, following the above scheme, it 
is easy to demonstrate that F(x, t) = e−αxG(x, t) is the solution of the equation 
ψ(Dx + α)F(x, t) = D̂(t)F(x, t) with F(x, 0) = f (x). Evidently, in the case of the second 
order differential operator D̂(t) the second boundary or initial condition has to be cho-
sen for the differential equation for F(x, t) and, accordingly, for G(x, t). In what follows, 
we shall apply the above-discussed method to several examples of equations, common in 
physics and not only.

(74)
⌣

D
−ν

x xn = (−1)nn!
Γ (ν)

∞
∫

0

exp(−βt)tν−1L(α)n (x,−t)dt.

(75)
⌣

D
−ν

x exp(−γ x) = 1

Γ (ν)

∞
∫

0

exp(−βt)tν−1 1

(1+ γ t)α+1
exp

(

− γ x

1+ γ t

)

dt.
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Black–Scholes type equations

To demonstrate the solution of differential equations by the operational method we first 
consider the following differential equation, which is a generalized form of a Black–
Scholes equation, frequently used in financial models:

where α, ρ, λ andи μ are the constant coefficients and f (x) = F(x, 0) is the initial condi-
tion function. The apparently complicated Eq. (76) reduces to the following form:

by the substitution ∂x → ∂x + α. Therefore, according to (11) and to the discussion in 
the beginning of this chapter, the solution of the Eq.  (76) will be found, if we obtain 
the solution of the Black–Scholes Eq. (77) for G(x, t) with the initial condition function 
g(x) = G(x, 0) = eαxF(x, 0). Then, the solution of (76) reads as follows:

The Eq. (77) can be easily solved with the help of the operational approach if we distin-
guish the perfect square of the operator x∂x (see Dattoli et al. 2007):

where γ = γ (t) = 2
√
ρt, ε = µ+ (�/2)2. Let us choose the initial condition 

f (x) = e−αxxn for the Black–Scholes type Eq. (76), i.e. g(x) = xn; then the solution (79) 
has the simple form G(x, t) = xn exp{ρt(n2 + �n− µ)} (see Dattoli et al. 2007) and the 
Eq. (76) has the following solution:

Let us consider another generalization of the Black–Scholes type differential equation 
with the Laguerre derivative (see 43, 47):

where ρ, λ and μ are the constant coefficients and g(x) = A(x, t = 0) is the initial con-
dition function. The Eq.  (81) generalizes and unifies equations of Laguerre diffusion 
of matter and of heat, considered in Dattoli et al. (2005, 2007). This equation also can 
be solved by the operational method developed above. Indeed, by distinguishing the 
perfect square of the Laguerre derivative LDx = ∂xx∂x in (81), the solution evidently 
reads in the form of the exponential A(x, t) = exp

{

ρt
(

(LDx + �/2)2 − ε
)}

g(x), where 
ε = µ+ (�/2)2. Now we apply the operational identity (16) to exp(aLDx) to obtain the 
following solution for A(x, t):

(76)
1

ρ

∂

∂t
F(x, t) =

[

x2
∂2

∂x2
+ 2αx2

∂

∂x
+ �x

∂

∂x
+ (αx)2 − µ

]

F(x, t), f (x) = F(x, 0),

(77)
1

ρ

∂

∂t
G(x, t) = x2

∂2

∂x2
G(x, t)+ �x

∂

∂x
G(x, t)− µG(x, t), g(x) = G(x, 0),

(78)F(x, t) = e−αxG(x, t), with g(x) = G(x, 0) = eαxF(x, 0).

(79)G(x, t) = exp(−ρεt)√
π

∞
∫

−∞

exp

[

−σ 2 + σγ
�

2ρ

]

g(x exp(σγ ))dσ ,

(80)F(x, t) = e−αxxn exp{ρt(n2 + �n− µ)}.

(81)
1

ρ

∂

∂t
A(x, t) = (∂xx∂x)

2A(x, t)+ �(∂xx∂x)A(x, t)− µA(x, t), g(x) = A(x, 0),
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where α = α(t) = √
ρt. For a given function g(x) we still have to find the result of the 

action of the operational exponent exp(−aLDx)g(x) and to take the integral 
∫

dσ. Let us 
choose, for example, the initial condition function g(x) = (−x)n/(−x)nn!. Then we can 
make use of the operational definition of the Laguerre polynomials (43) and obtain the 
integral form for A

Further integration over dσ yields the solution of the Black–Scholes equation with the 
Laguerre derivative (81) and with the initial condition g(x) = (−x)n/n! in the following 
form:

where

Γ  is the gamma function and 1F1 is the hypergeometric function. Evidently, if the initial 
condition function can be expanded in the power series of x, then the respective solu-
tion represents series of the already obtained solution (84). Moreover, if the expansion in 
series of the Laguerre polynomials for the initial condition function g(x) =

∑

n anLn(x) 
exists, then we can exploit the relationships (51) and (44) to obtain the solution in the 
following form:

In the most general case the solution A(x, t) can be obtained through the following 
procedure: we employ the operational definitions (47) and the definition of the inverse 
derivative (1) to write

(82)A(x, t) = exp(−εα2)√
π

∞
∫

−∞

exp
(

−σ 2 − σα�− 2σαLDx

)

g(x)dσ ,

(83)A(x, t) = exp(−εα2/4)√
π

∞
∫

−∞

exp
(

−σ 2 − σα�

)

Ln(x, 2σα)dσ .

(84)A(x, t) = exp(−α2µ)√
π

n!
n

∑

r=0

(−x)r(2α)n−r

(n− r)!(r!)2 I ,

(85)

I = α�

2

(

ei(n−r)π − 1
)

Γ

(

1+ n− r

2

)

1

F1

(

1− (n− r)

2
,
3

2
,−

(

α�

2

)2
)

+ 1

2

(

ei(n−r)π + 1
)

Γ

(

1+ n− r

2

)

1

F1

(

−n− r

2
,
1

2
,−

(

α�

2

)2
)

,

(86)A(x, t) = exp(−εα2/4)√
π

∑

n

an

∞
∫

−∞

exp
(

−σ 2 − σα�

)

Ln(x, 2σα + 1)dσ .

(87)A(x, t) = exp(−εα2)√
π

∞
∫

−∞

exp
(

−σ 2 − σα�

)

exp

(

−2σα
∂

∂D−1
x

)

φ(D−1
x )1dσ ,
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where φ(D−1
x ) 1 = g(x) and the explicit form of the function φ is given by the integral 

φ(x) =
∫∞
0 exp(−κ)g(xκ)dκ, provided it converges. Note, that exp(−tLDx)g(x) is the 

solution of the Laguerre diffusion equation (Dattoli et al. 2007) ∂t f (x, t) = −LDxf (x, t) 
with the initial condition f (x, 0) = g(x); therefore, the result of the action of the expo-
nential operator in (87) is in fact f (x, t) = exp

(

−t ∂

∂D−1
x

)

g(x) = φ(D−1
x − t)1—the solu-

tion of the above mentioned Laguerre diffusion equation. Then the desired solution of 
the Eq. (81) takes the following form:

where

Consider the following initial condition: g(x) = W0(−x2, 2), Wn(x,m) =
∑∞

r=0
xr

r!(mr+n)! , 
(m ∈ N, n ∈ N0) is the particular case of the Bessel–Write function (Srivastava and 
Manocha 1984). The corresponding image function is φ(x) = exp(−x2). With account 
for (16) and (89) we obtain (see also Dattoli et al. 2007)

where Cn(x) =
∑∞

r=0
(−x)r

r!(r+n)!, (n ∈ N0) is the Bessel–Tricomi function (Watson 1944), 
related to the Bessel–Write function Cn(x) = Wn(−x, 1) and to the commonly known 
cylindric Bessel functions Cn(x) = x−n/2Jn(2

√
x). Thus, the solution (81) with the initial 

condition g(x) = W0(−x2, 2) is explicitly determined by the formulae (88) and (90).

Heat diffusion type equations

Let us consider the following generalized heat type equation with the linear term

with the initial condition F(x, 0) = f (x). The solution of Eq. (91) reads (for example, see 
Zhukovsky and Dattoli 2011 for α = 1):

where Θ̂ = eab∂x, Ŝ = ea ∂
2
x, Φ(x, t;β) = 1

3ab
2 + bx, a = αt, b = βt. The solution (92) 

consists in the action of the evolution operator on the initial condition F(x, 0) = f (x), 
which is transformed by ˆ̄S and ˆ̄Θ. Let us choose now the initial condition f (x) = xn for 
the heat diffusion type Eq. (91). Then, upon the action of the ˆ̄S operator on it and accord-
ing to the operational definition of the Hermite polynomials (39) ea∂xxn = Hn(x, a), we 
obtain the solution F(x) ∝ Hn(x + ab, a), and we end up with

(88)A(x, t) = exp(−εα2)√
π

∞
∫

−∞

exp
(

−σ 2 − σα�

)

g(x, t)dσ ,

(89)g(x, t) = φ(D−1
x − 2σα)1 = exp

(

−2σα
∂

∂D−1
x

)

φ(D−1
x )1.

(90)g(x, t) = 1√
π

∞
∫

−∞

exp
(

−ξ2 + 4iσαξ
)

C0(2iξx)dξ ,

(91)∂tF(x, t) = α∂2x F(x, t)+ βxF(x, t)

(92)F(x, t) = eΦ(x,t;β)Θ̂ Ŝf (x) = eΦ(x,t;β)f (x + βt2, t),

(93)F(x, t) = eΦHn

(

x + αβt2,αt
)

.
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Let us now consider the following equation:

It can be viewed as Eq.  (91) where we substituted ∂x → ∂x + δ and set α = 1. Distin-
guishing the perfect square of the operator ∂x + δ, we can search the desired solution of 
the Eq. (94) in the following form:

where G(x, t) satisfies the Eq.  (91) for G with the initial condition G(x, 0) = g(x) , 
g(x) = exp(δx)f (x). Let us choose the initial condition for (94), for example, in the 
form of the powers of x: f (x) = xk. Then g(x) = xkeδx and we have in fact Eq. (91) for G
: ∂tG = (∂2x + βx)G. Upon the action of the ˆ̄S operator on it and due to the operational 
rule (52) we obtain Ŝg(x) = exp (δ(x + δa))Hk(x + 2δa, a) = g(x, t). The consequent 
action of the translation operator Θ̂ yields the shift along the x argument and, thus, the 
solution of Eq. (91) for G, taken G(x, 0) = g(x), has the following form:

where �1 = δ
(

x + δαt + αβt2
)

. For δ = 0 it immediately returns the result (93). Study-
ing the evolution at prolonged times, such that t >> δ/β notice that �1 << Φ and, 
provided at so long times the special condition x >> δ2α/β is also fulfilled, that is the 
coordinate travel is limited, we end up with the separation of the dependence of the 
solution on time and coordinate. The coordinate dependence is contained in the expo-
nential factor exp (βtx), while the time is contained in this factor as well as in the Her-
mite polynomial arguments Hk

(

2δαt + αβt2,αt
)

. For the short times of the evolution of 
the system, such that t << δ/β the phase approximately reads Φ +�1

∼= xδ + αδ2t and 
the Hermite polynomials depend on both coordinate and time: Hk(x,αt). Thus, for rela-
tively short times we have the solution approximated by G(x, t)|t→0 = exδ+αδ2tHk(x,αt) 
and for infinitely short times αt → 0 the Hermite polynomials become Hk(x, 0) = xk, 
which is perfect agreement with our initial condition g(x) = xkeδx. The desired solution 
of the Eq. (94) follows immediately upon the assumption of α = 1 in (96) with different 
phase �2 = tγ + t2δβ:

The two-dimensional heat diffusion type equation with the linear terms

and the initial condition F
(

x, y, 0
)

= f
(

x, y
)

 can be solved following (Zhu-
kovsky 2014) or with the help of the Baker–Campbell–Hausdorf formula 
exp

(

Â+ B̂
)

= exp
(

−[Â, B̂] /2
)

exp
(

Â
)

exp
(

B̂
)

. In complete analogy with the one-
dimensional case, we obtain the solution of the two-dimensional heat conduction equa-
tion with lineal terms (98) in the following form:

(94)∂tF(x, t) = ∂2x F(x, t)+ 2δ∂xF(x, t)+ βxF(x, t)+ γ F(x, t), F(x, 0) = f (x).

(95)F(x, t) = exp
(

t
(

γ − δ2
)

− δx
)

G(x, t),

(96)G(x, t) = e�+�1Hk

(

x +
(

αδ2/β

)(

2tβ/δ + t2(β/δ)2
)

,αt
)

,

(97)F(x, t) = eΦ+∆2Hk

(

x + 2tδ + t2β , t
)

.

(98)∂tF
(

x, y, t
)

=
{(

α∂2x + β∂x∂y + γ ∂2y

)

+ bx + cy
}

F
(

x, y, t
)

, min(α,β , γ ) > 0,



Page 17 of 25Zhukovsky ﻿SpringerPlus  (2016) 5:119 

where Ψ = (αb2 + γ c2 + βbc)t3/3+ t(bx + cy) is the phase, Θ̂x = e t
2(αb+βc/2)∂x and 

Θ̂y = et
2(γ c+βb/2)∂y are the diffusion operators for each of the two coordinates, and

is the two-dimensional analogue of heat diffusion operator Ŝ (25). The explicit double 
integral form of the operator Ê was obtained in Dattoli et al. (2006) and it is the Gauss 
type integral, which we omit here for the sake of conciseness. It is easy to demonstrate 
that in the case of β = 0 the heat diffusion is executed by the one-dimensional opera-
tors (25) ŜxŜy instead of the more general operator Ê. The solution in this case reads as 
follows:

Note, that the operational definition (100) allows for the direct computation of the result 
in many cases, avoiding the necessity to calculate the double integral for the operator 
Ê . Let us, for example, choose the initial function in the form of the powers of x and y: 
f
(

x, y
)

= xmyn. Then, according to the operational definition of the Hermite polynomi-
als of four variables and two indices Hm,n

(

x, tα, y, tγ
∣

∣β
)

 (see, for example, Erdélyi et al. 
1953; Dattoli et al. 2006, 2007) we obtain

where Hm,n

(

x, tα, y, tγ
∣

∣β
)

 are the above mentioned Hermite polynomials with the fol-
lowing generating exponent:

The presentation of Hm,n

(

x, tα, y, tγ
∣

∣β
)

 in the form of sums (see Erdélyi et al. 1953) of 
the two-variable Hermite polynomials Hm

(

x, y
)

, defined in (39), reads as follows:

The action of the translation operators Θ̂xΘ̂y on the Hermite polynomials 
Hm,n

(

x, tα, y, tγ
∣

∣β
)

 yields the solution of the two-dimensional heat type equation with 
the linear terms (98) and with the initial condition in the form of powers f

(

x, y
)

= xmyn:

(99)F(x, y, t) = eΨ Θ̂xΘ̂yÊf
(

x, y
)

∝ f
(

x + t2(αb+ βc/2), y+ t2(γ c + βb/2), t
)

.

(100)Ê = exp
[

t
(

α∂2x + β∂x∂y + γ ∂2y

)]

(101)F(x, y, t) = eΨ Θ̂xΘ̂yŜxŜyf
(

x, y
)

∝ f
(

x + t2αb, y+ t2γ c, t
)

.

(102)Ê
{

xmyn
}

= Hm,n

(

x, tα, y, tγ
∣

∣tβ
)

,

(103)

∞
∑

m,n

umvn

m!n! Hm,n

(

x,α, y, γ
∣

∣β
)

= exp
(

xu+ αu2 + yv + γ v2 + βuv
)

.

(104)
Hm,n

(

x,α; y, γ
∣

∣β
)

= m!n!
min(m,n)
∑

s=0

βs

s!(m− s)!(n− s)!Hm−s(x,α)Hn−s

(

y, γ
)

.

(105)F(x, t) = eΨHm,n

(

x + t2(αb+ βc/2), tα; y+ t2(γ c + βb/2), tγ
∣

∣

∣
tβ

)

.
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It appears evident that the obtained solution (105) of the two-dimensional heat con-
duction problem (98) represents a direct generalization of the solution (93) for the one-
dimensional heat conduction analog (91).

Operational solution of some second order of time partial differential equations

The operational method for solution of differential equations can be successfully applied 
for the second order of time partial differential equations too. Let us consider the equa-
tions of the following type:

where D̂(x) is a differential operator, acting over the coordinate, such as, for example, the 
heat diffusion operator ∂2x or the Laguerre derivative LDx or any other. General solution 
of the Eq. (106) reads as follows:

where C1,2(x) are to be determined from the initial conditions. Suppose the initial con-
dition F(x, 0) = f (x) is given and, for example, we can require for the second order 
Eq. (106) that its solution converges at infinite time t → ∞. Other initial and boundary 
conditions are, of course, possible, but they will be considered elsewhere. Our choice sets 
C2(x) = 0 and the remaining branch of the solution is subject to the Laplace transforms

Thus, we obtain for the Eq. (106) the following fading at infinite times solution:

provided the integral converges. The particular form of the solution depends on the 
operator D̂(x) and on the initial function f (x).

Let us first consider the following equation:

Then (107) reduces to F(x, t) =
(

e−t
√

D̂(x)C1(x)+ et
√

D̂(x)C2(x)

)

. For D̂(x) = LDx it 
becomes

(106)

(

∂2

∂t2
+ ε

∂

∂t

)

F(x, t) = D̂(x)F(x, t),

(107)F(x, t) = e−
tε
2

(

e−
t
2

√
ε2+4D̂(x)C1(x)+ e

t
2

√
ε2+4D̂(x)C2(x)

)

,

(108)e−t
√
V = t

2
√
π

∞
∫

0

dξ

ξ
√
ξ
e
− t2

4ξ −ξV
, t > 0.

(109)F(x, t) = e−
εt
2

t

4
√
π

∞
∫

0

dξ

ξ
√
ξ
e
− t2

4ξ −ξε2
exp

(

−4ξ D̂(x)
)

f (x),

(110)
∂2

∂t2
F(x, t) = D̂(x)F(x, t), F(x, 0) = f (x), F(x,∞) < ∞.

(111)
∂2

∂t2
F(x, t) = ∂xx∂xF(x, t).
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We now make use of the identity

which yields the following bounded at infinite times solution of Eq. (111) for the initial 
function f (x) = xn in terms of the Gegenbauer polynomial Ck

n and of the gamma func-
tion Γ:

For example, for m = 2 (113) immediately reduces to 
F(x, t)|n=2 =

(

t4 + 12t2x + 6x2
)

/12 .
Let us consider the Black–Scholes type differential operator in the r.h.s. of the second 

order differential equation, namely

Distinguishing the full square of the operator D̄ = x∂x , we have 
to compute the result of the action of the exponential operator 
exp

[

−4ξ
(

(

D̄ + �/2
)2 − ν

)]

g(x), where ν = µ+ (�/2)2. To achieve it, we exploit 
the operational identity (16), applying it to the exponential exp

[

(

D̄ + �/2
)2
]

: 
e−4ξ

(

D̄+�/2
)2

=
∫∞
−∞ exp

[

−u2 + 2iu�
√
ξ + 4iu

√
ξ D̄

]

du/
√
π . Upon the action on g(x), 

we obtain exp
[

4iu
√
ξx∂x

]

g(x) = g
(

e4iu
√
ξx
)

, which yields the function

and the solution of Eq. (114) now takes the following form:

Eventually, let us consider the following rather complicated differential equation of 
second order of time and coordinate:

with the initial condition F(x, 0) = f (x) and we seek non-diverging at infinite times solu-
tion F(x,∞) < ∞. The solution arises directly from (116), (115) and from (114). Indeed, 
by noting that Eq. (117) is in fact Eq. (114) with ∂x + α instead of ∂x, we write our solu-
tion F(x, t) = e−αxG(x, t), where G(x, t) satisfies Eq.  (114) with the initial condition 
g(x) = G(x, 0) = eαxF(x, 0) = eαxf (x), and we demand F(x,∞) < ∞ and G(x,∞) < ∞ 

(112)
t

2

∞
∫

0

umdu

u
√
u

exp

(

− t2

4u

)

= 4−mt2mΓ

(

1

2
−m

)

,

(113)F(x, t) = n!√
π

n
∑

r=0

(−x)r4−(n−r)t2(n−r)Ŵ[1/2− (n− r)]

(n− r)!(r!)2
= n!

(−x)nC
(−2n)
2n

(

t
2
√
x

)

Ŵ(1+ 2n)
.

(114)

(

∂2

∂t2
+ ε

∂

∂t

)

G(x, t) =
(

x2
∂2

∂x2
+ �x

∂

∂x
− µ

)

G(x, t), G(x, 0) = g(x),G(x,∞) < ∞.

(115)g(x, ξ) = e−4ξ
(

D̄+�/2
)2

f (x) = 1√
π

∞
∫

−∞

e−u2+2iu�
√
ξ g
(

e4iu
√
ξx
)

du,

(116)G(x, t) = e−tε/2 t

4
√
π

∞
∫

0

dξ

ξ
√
ξ
exp

[

− t2

16ξ
− ε2ξ + 4ξν

]

g(x, ξ).

(117)

(

∂2

∂t2
+ ε

∂

∂t

)

F(x, t) =
[

x2
∂2

∂x2
+ 2αx2

∂

∂x
+ �x

∂

∂x
+ (αx)2 − µ

]

F(x, t).
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respectively. Now the expression (116) for G(x, t) with account for (115), where 
g(x) = eαxf (x), provide our solution F(x, t) = e−αxG(x, t). Consider the simple example 
of the initial function f (x) = e−αxxn, which illustrates the above-sketched technique. It 
returns g(x) = xn and we easily obtain upon the integration over du and dξ the function

It, in turn, yields the desired solution F(x, t)|t→∞ < ∞ of (117) with f (x) = e−αxxn as 
follows:

The solution for the particular case ε = 0 reads as follows: 
F(x, t)|ε=0 = xne−αx−t

√
n(n−1+�)−µ/4.

Hyperbolic heat equation solution

Another example of the operator D̂(x) in the r.h.s of Eq. (106) is given by the ∂2x :

which is one-dimensional case of the Cattaneo’s hyperbolic heat conduction equation 
(Cattaneo 1958)

where τ = 1/ε is an intrinsic thermal property of the media, characterizing the time 
needed for the initiation of a heat flow after a temperature gradient appears at the 
boundary of the domain, and kT = α/ε denotes heat diffusivity. The time τ = 1/ε is 
often related to the speed of the second sound C in media (τ = kT /C

2); 
√

kT /τ = C 
represents a velocity like quantity, associated with the speed of the heat wave in the 
medium, which characterizes the thermal wave propagation the same way as the diffu-
sion behaviour is characterized by the diffusivity. Equation (121) is the simplest model of 
the second sound phenomenon observed first in liquid Helium (Peshkov 1944) and then 
also in solid crystals (Ackerman and Overton 1969). To solve it we have to compute the 
result of the action of the operator Ŝ: e−4αξ∂2x f (x). The fading at infinite time solution for 
the initial function f (x) follows directly from (109):

The action of the operator Ŝ can be accomplished with the help of the identity (16):

(118)G(x, t) = xn exp
[

−t/2
(

ε +
√

ε2 + 4(n(n− 1+ �))− µ

)]

.

(119)F(x, t) = xn exp
[

−αx − t/2
(

ε +
√

ε2 + 4(n(n− 1+ �))− µ

)]

.

(120)

(

∂2

∂t2
+ ε

∂

∂t

)

F(x, t) = α
∂2

∂x2
F(x, t), F(x, 0) = f (x), F(x,∞) < ∞,

(121)(τ∂2t + ∂t)T = kT∇2T ,

(122)F(x, t) = e−
εt
2

t

4
√
π

∞
∫

0

dξ

ξ
√
ξ
e
− t2

16ξ −ε2ξ
Ŝf (x), Ŝf (x) = e−4αξ∂2x f (x).

(123)F(x, t) = e−
εt
2

t

4
√
π

∞
∫

0

du

u
√
u
e−

t2

16u−ε2u 1√
π

∞
∫

−∞

e−v2 f
(

x + 4iv
√
uα

)

dv,
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Let us consider the initial monomial f (x) = xn, for which we obtain the Hermite poly-
nomials upon the action of the operator Ŝ, as follows from the operational definition (39) 
with account for (41). Thus, the solution of Eq. (120) takes the following explicit form:

Let us now consider the initial function F(x, 0) = eγ xxn. We make use of the opera-
tional identity (52) to obtain the following integral form of the solution:

For brevity we omit here the result of the above integration, which is rather cumber-
some. In the particular case of given n and γ, for the example for n = −γ = 1, we obtain

The example of F(x, t)|f (0,t)=x10e−3x for n = 10, γ = −3 is more demonstrative for 
graphical presentation. We omit here the exact formula for this solution for brevity and 
present its behaviour for α = ε = 1, i.e. kT = 1, τ = 1, in Fig.  1. Observe fading wave 
propagation.

By choosing α = ε = 10 in (120), i.e. kT = 1, τ = 0.1, we reduce the effect of the sec-
ond time derivative in the equation, maintaining the heat conductivity unchanged. In 
this case the fading of the solution happens earlier, as seen in Fig. 2. The diffusive char-
acter of the heat conduction in this case prevails over the wave-like propagation process.

Contrary to this case, the choice of α = ε = 0.1 in (120), i.e. kT = 1, τ = 10, under-
lines the wave-like propagation of the initial function in Fig. 3.

Non-Fourier diffusive, wave-like heat propagation in Cattaneo’s model (120), (121) 
had some success in the description of second sound. However, it did not agree with the 
experimental observations and it was superseded by other, more adequate heat propaga-
tion models, which included additional terms in the hyperbolic equation to describe the 
whole complex of phenomena. We will obtain analytical solutions for them in forthcom-
ing publications.

Results and conclusions
We advocated operational method for solution of linear differential equations. We use 
inverse differential operators; it allows direct and straightforward computation of solu-
tions in the framework of operational calculus. The obtained solutions contain conse-
quent action of operators of heat conduction and shift, involving common and Laguerre 
derivative with exponential and power factors. Their action can be expressed via Gauss 

(124)

F(x, t)|F(x,0)=xn = e−tε/2 t(−i)n(−4α)n/2

4
√
π

∞
∫

0

u
n−3
2 Hm

(

x/4
√
αu

)

exp

[

− t2

16u
− uε2

]

= e−
t
2τ

√

t

πτ
n!

[n/2]
∑

r=0

(x)n−2r

(n− r)!r! (−tkT )
rK 1

2−r

(

t

2τ

)

(125)F(x, t)|F(x,0)=xneγ x =
te−

tε
2 +γ x

4
√
π

∞
∫

0

Hn(x − 8γαu,−4αu)

u
√
u

exp

[

− t2

16u
− u

(

ε2 + 4αγ 2
)

]

du.

(126)

F(x, t)|f (x)=xe−x = e−x− tε
2
− t

2

√
4α+ε2

(

x+ 2tα√
4α + ε2

)

= e−x− t
2τ (1+

√
1+4τkT )

(

x+ 2tkT

(1+ 4τkT )1/2

)
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type integrals and shift of arguments. Using operational definitions of Hermite and 
Laguerre orthogonal polynomial families, we executed direct operational transforms 
over them, consisting in shift and factorization. Combined where necessary with integral 
transforms, it yielded solutions of relatively complicated linear differential equations of 
several types.

In particular, we have obtained explicit exact solutions for some ordinary differ-
ential equations of non-integer dimension, involving shifted derivatives. The par-
ticular solution of equation ψ−1(D) =

(

β2 − (D + α)2
)−ν

f (x) for any Real ν is given 
by the integral of the weighted consequent action of operators of heat propagation 
Ŝ and translation Θ̂ on the function f (x). We wrote it as a convolution transform 
φ(x, τ) = G(x, τ) · f (η) or φ =

∫∞
−∞G(x − η)f (η)dη with the kernel, equal to the Gauss 

frequency function. The examples of Gaussian f (x) = e−x2 and monomial functions 
f (x) = xk were demonstrated by explicit solutions in terms of integrals and series of 
Hermite polynomials. Operational solutions for equations, involving Laguerre deriva-
tives: (x∂2x + (α + 1)∂x)

νF(x) = f (x) were obtained. Examples of the exponential 

Fig. 1  Solution (126) of the Eq. (121) for kT = 1, τ = 1 for the initial function F(x , 0) = e
−3x

x
10

Fig. 2  Solution (126) of the Eq. (121) for kT = 1, τ = 0.1 for the initial function F(x , 0) = e
−3x

x
10
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f (x) = exp(−γ x), of the monomial and of Bessel–Wright functions were demonstrated. 
By using operational technique we immediately write their explicit solutions; they 
involve integrals and generalized Laguerre polynomials.

We obtained solutions for several types of partial differential equations. In particu-
lar, extended Black–Scholes equation was solved. Moreover, generalized form of Black–
Scholes type equation with Laguerre derivative LDx = ∂xx∂x was solved operationally. 
The example of a monomial initial function yields the explicit solution with series of 
gamma function and hypergeometric function. For initial Bessel–Wright function the 
solution of the Black–Scholes equation with Laguerre derivative is given by integrals of 
Bessel–Tricomi function.

Extended forms of heat diffusion equation were solved. Their operational solu-
tion readily yields explicit forms upon consequent action of operators of shift and 
heat diffusion on the initial function. Examples of initial functions g(x) = xkeδx and 
f
(

x, y
)

= xmyn produce Hermite polynomials and their generalized forms with four 
variables and two indices: Hm,n

(

x, tα, y, tγ
∣

∣β
)

. Two-dimensional heat diffusion type 
equation with the linear terms was solved. Its operational solution consists in the action 
of the generalized two-dimensional analogue of heat diffusion operator and respective 
coordinate shifts with a phase factor.

Operational solutions of a number of hyperbolic equations with regular and Laguerre 
coordinate derivatives were obtained. For the second order of time hyperbolic equa-
tions with Laguerre derivatives of the 1st and 2nd order we obtained explicit solutions 
in terms of elementary functions, Gegenbauer polynomials and gamma function for the 
initial monomial f (x) = xn and for the exponential f (x) = xme−αx. Hyperbolic heat 
equation was thoroughly explored with the help of operational method. Explicit solution 
for f (x) = xme−αx was obtained in elementary functions. The role of various equation 
terms in the behaviour of the solution was elucidated. Maintaining the heat conductiv-
ity unchanged, we underlined the role of the second time derivative. Fading of the wave 
propagation happens earlier, if we reduce the effect of the second time derivative in the 
equation, choosing its coefficient small with respect to others: kT = 1, τ = 0.1. In this 

Fig. 3  Solution (126) of the Eq. (121) for kT = 1, τ = 10 for the initial function F(x , 0) = e
−3x

x
10
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case the diffusive character of the heat conduction prevails over the wave-like propaga-
tion process. On the contrary, high value of the second time derivative term in (120): 
kT = 1, τ = 10, underlines the wave-like propagation with very little fading as follows 
from the comparison of Figs. 1, 2 and 3.

Thus, operational approach allowed for easy and straightforward solution of differential 
equations and relevant physical problems, such as modified Fourier heat diffusion in three 
dimensions, Cattaneo heat propagation, Laguerre type diffusion, evolution of a system, 
obeying Black–Scholes type equations, common in financial studies. Operational method 
has obvious advantages, respectively to other methods: it is universal, applies to ordinary 
and partial linear DE and non-integer DE, the solutions are obtained readily; they are light 
computationally and have transparent meaning. The effect of each term in the initial equa-
tion on the solution is distinguished. The validity of the obtained solutions was verified 
by direct substitution in the solved equations. The solutions in form of integrals contain 
consequent action of operators of heat conduction and shift with exponential and power 
factors. The considered examples of solutions of the hyperbolic and Fourier heat equa-
tions with common and Laguerre derivatives for given initial functions contain integrals 
and series of Hermite polynomials; explicit solutions, such as (96), (97), (105), (113), (119), 
(126) do not possess critical or singular coordinate points. For the second order of time 
differential Eqs. (106) with ordinary and Laguerre derivatives we obtained strictly bounded 
solutions. Rigorous investigation of stability of all of the obtained solutions for differ-
ent initial functions, including fractional differential equations and employing Lyapunov 
methods, will constitute a stand-alone study in a forthcoming dedicated publication.

In conclusion we would like to note, that our results, being exact, can represent a 
benchmark for numerical solutions. These latter can, perhaps, cover more extensions, 
but should reduce to our results in the limiting cases. Application of our study for more 
complicated equations, describing non-Fourier heat propagation by ballistic heat trans-
fer and other equations, modelling physical processes, will be also made in forthcoming 
publications.
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