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Abstract

The aim of this article is to expand and generalize some approximation methods pro-
posed by Tian and Di (J Fixed Point Appl, 2011. doi:10.1186/1687-1812-21) to the class
of (k, {un}, {€n}, @)total asymptotically strict pseudocontraction to solve the fixed point
problem as well as variational inequality problem in the frame work of Hilbert space.
Further, the results presented in this paper extend, improve and also generalize several
known results in the literature.
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Background

Let (,.) be an inner product, |.|| be the corresponding norm and H be a Hil-
bert space. The mapping T :H — H is said to be; nonexpansive, if
|7 =1y < ey
and g € Fix(T), n-strongly monotone, if there exists a positive constant 7 > 0 such
that <Tx — Ty, x — y> > on —y 2,Vx,y € H, uniformly L-Lipschitzian, if there exists
L > O such that||T”x — T”yH < L| x —y|
bounded linear operator, if there is a constant y > 0 such that (Tx,x) > y lxl12,Vx € H,

,V¥x,y € H, quasi-nonexpansive, if ||Tx —q| < |lx —qll,Yx € H

,Vx,y € H and T is said to be strongly positive

and also T is said to be; contraction if there exists a constant 8 € [0,1) such that
|Tx = Ty|| < pllx—»
k € [0, 1) such that

,Vx,y € H, strictly pseudocontraction if there exists a constant

|75 = D" < e =l + K|t = Ty = @ = Ty,

Vx,y € H.

The mapping 7 is said to be; asymptotically strict pseudocontraction if there exists a
constant k € [0, 1) and a sequence {k,} C [1, c0) with k,, — 1as#n — oo such that
2

| T"x — T”y”2 < k||x —y||2 + k| —T"x— T —T")y Vn>landx,y€ H,
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(k, {tn}, {&n}, @)-total asymptotically strict pseudocontraction, if there exists a con-
stant k € [0,1), u, C [0,00), &, C [0,00) with u,;, — 0 and &, — 0 as n — oo, and
continuous strictly increasing function ¢ :[0,00) — [0,00) with ¢(0) =0 such
that | 7% = 77" < [l = y|* + K[| = T = (0 = " 4 s (5 = 3[]) +
Vx,y € H.

We now give an example of (k, {i,}, {4}, ¢)-total asymptotically strict pseudocon-
traction mappings.

Example 1 Let B be a unit ball in a real Hilbert space / and T : B — B be a mapping
define by

. 2
T : (x1,%2,%3,...) = (0, X1, A2%2, A3X3, . . .), (x1,%2,%3,...) € B

where {a;} is a sequence in (0,1) such that [[{2,(a;) = %
It was proved by Goebel and Kirk (1972) that

(i) HTx — Ty|| < 2||x -9

(ii) HT”x — T”y” < 2H?:2(a,')||x —yH Vx,y € Band n > 2.

1 1
Now if we let k¥ = 2 such that k7 = 2] ,(a;), for n > 2, then

n
oo = fim <2H“i> -l

i=2

Similarly, if weletu, =k, — L, Vn > 1, ¢(t) = t2, Vt > 0,k € [0,1)and &, be a non-neg-
ative real sequence such that §, — 0, then Vx,y € B, n > 1, we have

7 = 179 < e =5l + Kl = 3 = (7% = T7)| + magh e = 5]y + &

Remark 2 Note that, every nonexpansive mapping is k-strict pseudocontraction,
k-strict pseudocontraction is asymptotically strict pseudocontraction mapping, asymp-
totically strict pseudocontraction mapping is (k, {¢n}, {4}, @)-total asymptotically
strict pseudocontraction mapping.

Throughout this paper, we adopt the notations; I is the identity operator, Fix(T) is the
fixed point set of T, VIP(C,F) is the solution set of variational inequality problem [see
Eq. (1)], “—” and “—” denote the strong and weak convergence respectively, and w, (x,)
denote the set of the cluster point of {x,} in the weak topology i.e., {Eixn/. of {x,,} such that
Kpy — x}.

Let C be a nonempty closed convex subset of H and F : C — H be a map. The vari-
ational inequality problem with respect to C and F is defined as search for x* € C, such
that

(Fx*,x —x*) >0, VxeC. (1)

The problem of solving a variational inequality problem of the form (1) has been inten-
sively studied by numerous authors due to its various applications in several physical
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problems such as; in operational research, economics, engineering design etc., see for
example Jianghua (2008), Noor (2007), Kinderlehrer and Stampacchia (1980) and the
references therein.

It was Yamada (2001) proposed a hybrid steepest decent method for solving variational
inequality problem, which generate a sequence {x,} by the following iterative algorithm:

2

x0 € H is arbitrarily;
Xnt1 = Ty — wpinF (Txy), ¥n >0,

where T is nonexpansive mapping, F is L-Lipschitzian and n-strongly monotone with
L>0,n>00<p< %’; and 4,, C (0, 1) satisfying the following conditions:

At 3)

= =1
n

{ () iMoo Ay = 0,3 Ay = 00;

(ii) either > |Ay41 — An] < 00 or lim,

They showed that, the sequence {x;} generated by algorithm (2) converged strongly to
the unique solution of variational inequality problem

(Fx*,x —x*) >0, Vx € Fix(T). 4)
Besides, he also proposed cyclic algorithm whose generate a sequence {x,,} by
Xop1 = T"%n = (I — tnlnE) Timxn, Y11 >0, (5)

where T(,) = T)(mod Ny he also got strong convergence results.
Marino and Xu (2006) introduced another algorithm for solving variational inequality
problem, which generate a sequence {x,} by

{ xo € H is arbitrarily;
(6)

Xn+1 = anyf(xn) + [ — o, A)Txy,

where fis a contraction, A is strongly positive bounded linear operator, T is a nonex-
pansive, {o, } is a sequence in (0, 1) satisfying the conditions in Eq. (3), then they showed
that, the sequence {x,} generated by algorithm (6), converged strongly to a common
fixed point x* of T which solve the variational inequality problem

<(yf —A)x* x — x*> <0, VxeFix(T). (7)

Tain (2010) combined algorithm (2) and (5), and he considered the following general
iterative algorithm, which generate a sequence {x,} by:

x0 € H is arbitrarily; g
X1 = anVf n) + U — poayF)Txy, ®)

where T is a nonexpansive, fis a contraction, F is k -Lipschitzian and »- strongly mono-
tone with k > 0,7 >0,0< u < i—g and {&,} is a sequence in (0, 1) satisfying the con-
ditions in Eq. (3), then the sequence {x,} generated by algorithm (8), converged to a
common fixed point x* of T which solves the variational inequality

((vf — uF)x*,x —x*) <0, Vx e Fix(T). )



Bulama and Kiligman SpringerPlus (2016)5:103 Page 4 of 13

Tian and Di (2011) designed synchronal and cyclic algorithm based on the general itera-
tive algorithm proposed by Tain (2010) for finding the common fixed point x* of finite
family of strict pseudocontraction mapping, which is the solution of the variational ine-

quality problem

N

(vf — nGa*,x —x*) <0, Va e[ )|Fix(T), (10)
i=1

and they obtained the strong convergent results as shown below:

Theorem 3 (Synchronal Algorithm). Let H be a real Hilbert space and T; : H — H
be a kj—strict pseudocontraction, for some k; C (0,1), (i=1,2,3,...,N) such that
ﬂfil Fix(T;) # @, let f be a contraction with coefficient B € (0, 1) and A; be a positive con-
stant such that Zi\il /i =1 LetG : H — H be an -strongly monotone and L-Lipschitzian
operator with L > 0 and n > 0. Assume that 0 < p < %, O0<y <umn-— ”TLZ)//B = %
Given the initial guess xo € H chosen arbitrarily and given sequences {«,} and {B,} in
(0, 1) satisfying the following conditions:

(i) limy o0, =0, Zan = 00;
(ii) Z|an+1_an| < 00, Z|,3n+1_ﬂn| < 00; (11

(iii) 0<max;ki<B,<a<1, Vn=>0.

Let {x,} be the sequence defined by

{ Thr = Bl + (1 — ) SN | 1T
(12)

Xpt1 = Ay f (x0) + (I — 0y uG) TPrx,,.

Then {x,} converged strongly to a common point of { Ti}fi | Which solves the variational
inequality problem (10).

Theorem 4 (Cyclic Algorithm) Let H be a real Hilbert space and T;: H — H
be a ki— strict pseudo-contraction for some k; € (0,1) (i=1,2,3,...,N) such that
ﬂf\il Fix(T;) # @ and let f be a contraction with coefficient 8 € (0,1). Let G : H — H be
a 1 -strongly monotone and L-Lipschitzian operator with L > 0 and n > 0. Assume that
O<y< /,L(n — “TLZ)/,B = % Given the initial guess xo € H chosen arbitrarily and given
sequences {a,} and { By} in (0, 1) satisfying the following conditions:

(i) limyseco, =0, Zan = o0

(i) Y len1 — oyl < 00, or limy ajil =1 (13)

(iii) Py € [k,1), where k = max{k; : 1 <i <N},

let {x,} be the sequence defined by

{A[n] = B + A = Biup) Tims

X1 = anVf Kn) + U — €t G) A 11%0, (14)
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where Tj,) = T;, with i=n(mod N), 1 < i < N, namely T|,, is one of T1, T, T3, . . ., Tn cir-
cularly. Then {x,} converged strongly to a common point of {Ti}ﬁi | which solve the vari-
ational inequality problem (10).

And also Auwalu et al. (2013) proved the following results in real Banach space which
is the generalization of Tian and Di (2011).

Theorem 5 (Synchronal Algorithm) Let E be a real q-uniformly smooth Banach
space, and C be a nonempty closed convex subset of E. Let T; : C — C be a k;—strict
pseudocontractions for some k; € (0,1), (i =1,2,3,...,N) such that ﬂf\il Fix(T;) # 0.
Let f be a contraction with coefficient 8 € (0,1) and {/li}ﬁ\i 1 be a sequence of posi-
tive number such that Zfi 14=1 Let G:C — C be an n-strongly accretive and
L-Lipschitzian operator with L > 0 and n > 0. Assume that 0 < u < (qn/quq)l/q_l,
0<y < um-— dq;ﬂ_qu/q)/ﬁ = L. Let{ay,) and {B,} be sequences in (0,1) satisfying the
following conditions:

(kl) lim}’l—)oo Oy = 0, Zan = oQ;
(k2) X lons1 —anl <00, 32 1Bus1 — Bl < 00;
(k3) O0<k<B,<a<l1l, Vn>0, wherek=min{k;:1<i<N}; (15)

(ke) o By € [, 1), where 1 € [max{O, 1- (%) ﬁ}, 1).

Let {x,} be a sequence defined by algorithm (12), then {x,} converged strongly to a com-
mon fixed point of {T,'}fi | Which solve the variational inequality problem (10).

Motivated by these two results, in this paper, we modified the algorithms of Tian and
Di (2011) to the class of total asymptotically strict pseudocontraction mapping to solve
the fixed-point problem as well variational inequality problem, this will be done in the
frame work of real Hilbert space. By imposing some conditions, we obtained new strong
convergence results. The results presented in this paper, not only extend and improve
the results of Tian and Di (2011) but also extend, improve and generalize the results of;
Yamada (2001), Marino and Xu (2006), Tain (2010) and Mainge (2009).

Preliminaries
In the sequel we shall make use of the following lemmas in proving our main results.

Lemma 6 (Marino and Xu 2007) Let H be a Hilbert space, there hold the following
identities;

W) [Jx—y|° = 1=1? = o] = 2(x = 3.9), Vxy e H;
(i) [|ex + (1 = 009]]* = ellxl® + @ = 0)|y||> — eQ = B)|]x — y
(iii) if {x,,} is a sequence in H such that x;,, — z, then

> Vtel0,1]andx,y € H

Z,VyeH.

lim sup ||, — y||* = limsuplla, — zl|> + ||z — y
n—00 n—oo
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Lemma 7 (Changetal. 2013) Let C be a nonempty closed convex subset of a real Hilbert
space Hand let T : C — C be a (k, {itn}, {En}, ¢)-total asymptotically strict pseudocon-
traction mapping and uniformly L-Lipschitzian. Then I — T is demiclosed at zero in the
sense that if {x,} is a sequence in C such that x,, — x*, and lim sup,,_, . I(T" — Dx,|| =0,
then (T — Ix* = 0.

Lemma 8 (Xu 2002) Assume that {a,} is a sequence of nonnegative real number such
that

ans1 = (1 — yn)an + on,n = 0,
where yy, is a sequence in (0, 1) and o, is a sequence of real number such that;

(i) limy—ooyn =0and Yy, = o0
(i) limy— oo % <0or) |oy| < oco.Thenlimy,_, o a, = 0.

Lemma 9 (Tian and Di 2011) Let F : H — H be a n -strongly monotone and L-Lip-

2
schitzian operator with L > 0 andn > 0. Assume that 0 < u < i—g, T=u (n — ZLT”) and

0<t<1 Then
| — utF)x — 4 — wtF)y|| < d —zo)||x — y||.

Lemma 10 Let S:C — H be a uniformly L-Lipschitzian mapping with L € (0,1].
DefineT : C — H by TPrx = B,x + (1 — B)S"x with B, € (0,1) and ¥x € C. Then TP is
nonexpansive and Fix(TPr) = Fix(S").

Proof Letx,y € C,from Lemma [6(ii)], we have

| TP — TPry|)* = || Butx — ) + (A — B)(S"x — S|
= Bullx —3|” + @ = B)|[5"x — S™y||”

— Bu(1 = B)|(x —3) — (8"x = S"y)

< Bullx — 5| + @ = Bo)||5"x — 5™

< (Bu+ (= B0L?) | =5

I

since L € (0,1]and B, € (0, 1), it follow that, T~ is nonexpansive, and it is not difficult to
see that Fix(T#") = Fix(S"). O

Lemma 11 (Tain 2010) Let H be a real Hilbert space, f : H — H be a contraction
with coefficient 0 < a < 1and F : H — H be a L-Lipschitzian continuous operator and
n-strongly monotone operator with L > 0 andn > 0. Then for0 <y < &I

(x —y,(WF — yf)x — (F — yf)y) = (un — ya)|jx — y||.

Main results
In this section, we prove the following theorem which is the extension of the theorems

(3) and (4).
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Theorem 12 Let T : H — H be a (k,{un}, {4}, d)-total asymptotically strict pseu-
docontraction mapping and uniformly M-Lipschitzian with ¢(t) =t>, Yt >0 and
M € (0, 1] Assume that Fix(T") # 0, and let f be a contraction with coefficient B € (0, 1),

G : H — H be an -strongly monotone and L-Lipschitzian operator with L > 0 andn > 0

respectively. Assume that0 <y < u(n — #)/,3 = %and let xo € H be chosen arbitrar-

ily, {on} and { B} be two sequences in (0,1) satisfying the following conditions:

(i) limy—ec0y, =0and > oy = o0;

(ii) Z|an+1 —ayl < OO,ZLB”_H — Bul < oo and Z'l — Bul < 00; (16)
(i) 0<k=<pyi<a<1,Vn=>0.

Let {x,} be a sequence defined by

{ Thr = B0 + (1 — B)T",
(17)

X1 = ey f () + (I — @utG) TPrxy,
then {x,} converges strongly to a common fixed of T" which solve the variational inequal-
ity problem

(yf — nGx*,x —x*) <0, Ve Fix(T"). (18)

Proof The proof is divided into five steps as follows.

Step 1. In this step, we show that
TP is nonexpansive and Fix(TPr) = Fix(T"). (19)

The proof follows directly from Lemma (10).

Step 2. In this step, we show that
(@}, {T" %0}, {f (%)} and {GT"x,,} are all bounded. (20)

Let x* € Fix(T"), from (17) and Lemma (9), and the fact that fis a contraction, we have

ns1 — &% || = [Jenyf @n) + U — cunG) TFrx, — x*||
= [Jon(rf ) — 1Gx") + (I = auptG) TP 0y — (I — 2aptG)x*
< (1= o) [l — ™| + ||y (F o) — f &) + yf &) — G|
< (1= au(t — yB)||%n — &*|| + || yf (") — nGx™)||

< max { [Jon — o[, G0 = 1G] |
T —rh

’

By using induction, we have

*y G *
|vf (&) — nGx )||}' on

(r—vB

s -] < e { a1
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Hence {x,} is bounded, and also

1770 = 2 |* < [l = |[* 4 Klew = 2 = (7" = %) |* + 1@ ([ = 2°[]) + 52
= [l —"|* 4+ ko — 2 ||* & 77— 27
+ 2k ||wn — x| || T" %0 — || + 110 || —x*H2 + &,
<(A+k+ ,un)Hx,, — x*H2 + 2k||xn —x*||||T”xn —x*||
+ k|| T"%0 — 2*|° + En. (22)
From (22), we deduce that

@ 0772~ 2K 750 ]
— (L4 k + wn)||xn —x*||2 —£,<0.

This implies that
kllxn — x|
n,, % - 7 0
| 7720 — &*|| < 15
L VAR — 1P+ 40 = (ko ) lbin = 517 + )
2(1—k)
_ Kl =2+ VA + A=) otn =217 + (1= 0y
- 1-hk
s . k2 _
S kllxn —x* |+ (1 + (1 (f)_uz))llxn 217+ 1 k)s}’l”Tnxn_x*” < M,

(23)

where M* is chosen arbitrarily such that

wup [ Klon = x4 L+ (= D))l = €517+ A= )& | _
P a—k =7

It follows from (23) that {T"x,} is bounded. Since G is L-Lipschitzian, fis contraction
and the fact that {x,}, {T"x,} are bounded, it is easy to see that {GT"x,} and {f (x,)} are
also bounded.

Step 3. In this step, we show that

nlggo l%n41 — xnll = 0. (24)

Now,

X4 — Xpp1 = (an+1yf(xn+1) + (U — dp11G) Tﬁ”“xnﬂ)

— (anyf(xn) + - anMG)Tﬁ”xn)

= 1Y (f @na1) —f () + (@1 — @) vf ()
+ (I = a1 nG TFrim, g — (I — app1nG) TP,
+ (on — aur)DUGT Py,
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this turn to implies that
%042 — na1 | < o1V Bl%ns1 — %nll + 1 — a1 || TP+ 241 — TPr |
+ ot = el (7 [If )| + ]| GT )

<aur1¥Blns1 — Xull + (1 — pp1 D) || TP, 10 — TP, ||

+ lapp1 — oy|N, (25)

where Nj is chosen arbitrarily so that sup (y Hf(xn) H + MHGTﬂ”xn H) <N
On the other hand, nz1

HTﬂn+1xn+1 —_ Tﬂnan S HTﬂn+1xn+1 — Tﬂn+1an + HTﬂnJrlxn — Tﬂnxn”

+1
7|

=< lxn+1 — xall + 1But1 — Bulllxull + 11 — Byt

+ 1= Bl 7%
< xpt1 — xull + 1Bus1 — BulN2 + 11 — Buy1IN3 + |1 — BNy,
(26)

where Nj 3 4 satisfy the following relations:

Ny > sup|lx,ll, N3z > sup ’T"Han and N > sup||T”x,,H
n>1 n>1 n>1
respectively.

Now substituting (26) into (25), yields
ins2 = a1l < o1y Blnes = all + (L= ana ) (Ines = ]
+ 181 = BulNa + 11 = Bt 1IN + 1 = B,INa )

+ |an+1 — aylN1
= 1+ apt1(vB — O)l%n41 — Xull + |1 — an|N3

+ (U= ™) (1Buss = BalNa + [1 = Bt N + 1= BulNa )
= L= apa(c = yB)lns —
+ (U= @10 (1Brs = Bal + 11 = Busal + (1= Bl + lenss — aal )N,

where N5 choosing appropriately such that N5 > max{Ni, N2, N3, N4}
By Lemma (8) and (ii), it follows that

lim %41 — %]l = 0.
n—>00

From Eq. (17), we have,
([n 1 = TPrxn| = [[otnyf ) + (T = €unG) TPy — TPray |
< an|yf @n) = nGTPrxs|| — 0.

On the other hand,
11 = TP = [[ns1 — B+ (1 = Bu) T")acn |

= [|@ng1 — x0) + (1 = Bp) (vn — T"x) |

>(1- ﬂn)”xn - Tnan — N1 — xall,

Page 9 of 13
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this implies that

Hxn—&-l - T'B”an + [|%n41 — %l

on = T | <

- (1 —Bu)
< ||xn+1 - Tﬁ”an + %n+1 — xall -0
- (1—a) '

From the boundedness of {x,}, we deduce that {x;,} converges weakly. Now assume that
%y — p, by Lemma (7) and the fact that||x, — T"x,| — 0, we obtain p € Fix(T"). So, we
have

W (xn) C Fix(T"). 27)

By Lemma (11) it follows that (yf — uG) is strongly monotone, so the variational ine-
quality (18) has a unique solution x* € Fix(T").

Step 4. In this step, we show that

lim sup<()/f — uG@)x*, %, — x*> <0. (28)

The fact that {x,} is bounded, we have {x;,,} C {x,} such that

lim sup((yf — nG)x*, x, — x*) = limsup{(yf — nG)x*, x,, — x*) < 0.

n—00 i—00

Suppose without loss of generality that x,,, — x, from (27), it follows that x € Fix(T").
Since x* is the unique solution of (17), implies that

lim sup((yf — nG)x™, x, — x*) = limsup((yf — nG)x*, x,, — x™).
n—00 3

1—> 00

=((vf —uGa*,x —x*) <0.
Step 5. In this step, we show that

lim Hxn — x*H =0. (29)

n—0o0

By Lemma (9) and the fact that fis a contraction, we have

ns1 = 2| = [|an(rf Gon) — nG2™) + U = @uuG) TP, — (I — G|
< ||t — G TPy — (I — yuGa*||”
+ 200, (yf (6n) — LGx*, %11 — %)
< (1= an)?||n — 2> + 2007 (f () — f (), xs1 — 2
+ 20, (yf (%) — nGx*, %041 — ™)
< (1 — 0| — &*||* + 20 By |0 — [ [|stns1 — 5
+ 20, (yf (&") — uGx*, %011 — ™)
N L (S Ty
+ 20, (yf (") — uGx™, %41 — x*),

Page 10 of 13
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this implies that

(@ = au0)? + @uy ) ln — 571

s =" <

1= auyB)
N 20, (yf (&%) — nGx*, Xpg1 — x*)
(1 —auyp)
2 (ant)? 2
< (1 -t - yﬁ)an) o0 — || " + men — x|

N 20, (yf (x*) — uGx*, Xpp1 — x*)
1 —anyp)

’

this implies that
i1 — 2P < @ = y)|J2n — 2| > + 0w,

where

¥n == (27 — yB)ay and
0y = (l—iﬁ (anrznxn - x*”2 + 2(yf (&) — nGx*, xpp1 — x*>)
From [12(i)], it follows that

Jim 10 =0

Z Yn = 00,
oy 1

Ve QT —yB (1 —anyp)

(anrszn - x*HZ + 2<yf(x*) — uwGx*, %01 — x*>)

Thus lim,;— o0 % <0.
Hence by Lemma (8), it follows that x,, — x*asn — oo. O

Corollary 13 Let B be a unit ball in a real Hilbert space Iy, and let the mapping
T : B — B be defined by

. 2
T : (x1,%2,%3,...) > (0, X7, A2X2, A3X3, . . .), (x1,%2,%3,...) €B,

where {a;} is a sequence in (0, 1) such that Hioiz(ﬂi) = % Let, f,G,y,{an}, {Bn} be as in
theorem (12). Then the sequence {x,} define by algorithm (17), converges strongly to a
common fixed point of T" which solve the variational inequality problem (18).

Proof By example (1), it follows that T is (k,{u}, {§4}, ¢)-total asymptotically strict
pseudocontraction mapping and uniformly M-Lipschitzian with M = 2L, (a).
Hence, the conclusion of this corollary, follows directly from theorem (12). (|

Corollary 14 Let H be a real Hilbert space and T : H — H be a (k,{k,})- asymptoti-
cally strict pseudocontraction mapping and uniformly M-Lipschitzian with M € (0,1].
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Assume that Fix(T") # 0, and Let f, G,y {a,} and {B,} be as in theorem (12). Then, the
sequence {x,} generated by algorithm (17), converges strongly to a common fixed point of
T" which solve the variational inequality problem (18).

Corollary 15 (Tain 2010) Let the sequence {x,} be generated by the mapping
Xnt1 = oYV f %) + (I — ponF) Ty,

where T is nonexpansive, ay is a sequence in (0,1) satisfying the conditions in Eq. (11). It
was proved in Tain (2010) that {x,} converged strongly to the common fixed point x* of T,
which is the solution of variational inequality problem

((vf — uF)x*,x —x*) <0, Vx e Fix(T). (30)

Proof Take n=1,k = u, =&, = 0and F = G in theorem (12). Therefore all the condi-
tions in theorem (12) are satisfied. Hence the conclusion of this corollary follows directly
from theorem (12). O

Corollary 16 (Marino and Xu 2006) Let the sequence {x,} be generated by
Xn+l = an)’f(xn) + I — o, A) Txy,

where T is nonexpansive and the sequence a,, C (0, 1) satisfy the conditions in Eq. (16).
Then it was proved in Marino and Xu (2006) that {x, } converged strongly to x* which solve
the variational inequality

(yf —A)x*,x —x*) <0, Vx e Fix(T). 31)

Proof Take n=1, u, =&, =0and u = 1and G = A in theorem (12). Therefore all the
conditions in theorem (12) are satisfied. Hence the conclusion of this corollary follows
directly from theorem (12). O

Corollary 17 (Yamada 2001) Let the sequence {x,} be generated by

X1 = Txy — winF (Txy),

where T is nonexpansive mapping on H, F is L-Lipschitzian and n-strongly monotone with
L>0,n>0and0<pu< %’;, if the sequence 1, C (0,1) satisfies the conditions in (3).
Then, it was proved by Yamada (2001) that {x,} converged strongly to the unique solution
of the variational inequality

(Fx*,x —x™) >0, Vx & Fix(T). (32)

Proof Taken =1,k = u, =&, =0and also take y =0, 8, = 0 and G = F. Therefore
all the conditions in theorem (12) are satisfied. Hence the result follows directly from
theorem (12). O

Conclusion
In this paper, we modified the algorithms by Tian and Di (2011) in order to include the
class of total asymptotically strict pseudocontraction mapping to solve the fixed-point
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problem as well variational inequality problem, this was done in the frame work of real
Hilbert spaces. By imposing some conditions, we also obtained some new strong conver-
gence results. Further we state that the results which were presented in this paper, not
only extend and improve the results (Tian and Di 2011) but also extend, improve and
generalize the results of; Yamada (2001), Marino and Xu (2006), Tain (2010) and Mainge
(2009).
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