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Background
Nowadays the task of creation of fast and sensitive detectors in the THz spectral range 
is important for various areas such as medicine, security, and aerospace. Among other 
detector types, semiconductor bolometric detectors allow one to combine high sensi-
tivity, operation speed, and device compactness. Mercury–cadmium–telluride (MCT) 
heterostructures are promising materials for the implementation of such type of detec-
tors. Hg1−xCdxTe quantum wells (QWs) exhibit high electron mobilities and concentra-
tions, even at liquid nitrogen temperatures. In such QWs, depending on the composition 
x and quantum well width L, a semi-metallic or semiconducting state can be realized 
(Olshanetsky et  al. 2014). A semi-metallic state is characterized by much higher con-
duction electron concentration at liquid nitrogen temperatures (Melezhik et  al. 2014). 
Therefore, comparing with undoped semiconducting Hg1−xCdxTe QWs of the same 
width, semi-metallic QWs can have much lower resistivity and lower thermal noise. For 
that reason, we restrict our study to the case of semi-metallic Hg1−xCdxTe heterostruc-
tures and temperature T = 77 K.

Numerical simulation of the energy spectra and wave functions was carried out in 
the framework of 8-band k–p Hamiltonian (Melezhik et al. 2014; Novik et al. 2005) to 
incorporate strong band mixing and nonparabolicity of the dispersion law. Such mode-
ling allows one to describe the presence of semi-metallic or semiconducting states in the 
well. Earlier, we have shown that HgTe quantum wells have inverted bands order (which 
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corresponds to a semi-metallic state) for well widths larger than the critical thickness of 
about 7 nm (Melezhik et al. 2014).

Three efficient electron scattering mechanisms are dominant in bulk Hg1−xCdxTe at 
nitrogen temperature: inelastic scattering on longitudinal optical (LO) phonons, residual 
charged impurities (CI) scattering, and electron–hole (EH) scattering (the latter two are 
elastic) (Dubowski et al. 1981). To calculate the impact of these scattering mechanisms 
on the electron mobility in quantum well, the linearized Boltzmann transport equation 
(lBTE) was iteratively solved. Direct solution of lBTE allows one to accurately include 
the inelasticity of electron scattering, and recovers how the carrier distribution function 
is perturbed by the applied electric field in the channel. The obtained approximation for 
the perturbed distribution function allows us to calculate the electron mobility.

Methods
Calculations of energy spectra of Hg0.32Cd0.68Te/Hg1−xCdxTe/Hg0.32Cd0.68Te QW with 
the (100) growth axis were performed in the framework of the 8-band k-p Hamilto-
nian (Novik et al. 2005). This method and the results obtained are described in detail in 
Melezhik et al. (2014). Here, we only briefly outline the calculated dependencies of car-
rier energy spectra and intrinsic concentrations.

The dependence of the 2D-confined carrier energy spectrum on the in-plane wave-
vector k is plotted in Fig. 1. We have neglected the misfit strain in the spectrum calcula-
tions since it can be compensated in a multi-layered heterostructure. Therefore there is 
no band overlap between heavy-hole and electron states in our case.

We have also calculated the hybridized electron wave functions and incorporated 
them into the calculation of matrix elements for electron scattering. For the sake of sim-
plicity, in such calculations we used the electron wave functions taken at the Fermi level.

The perturbed distribution function is obtained from the lBTE. We followed the meth-
odology of Kawamura and Das Sarma (1992) and adapted it for the case of a nonpara-
bolic energy dispersion law. For simplicity, we consider the case when only the ground 
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Fig. 1 Dependence of the energy spectrum of 2D‑confined carriers in Hg0.32Cd0.68Te/HgTe/Hg0.32Cd0.68Te 
QW with the (100) axis on the in‑plane wave vector k. Energy levels marked HH0 to HH3 denote the ground 
state and the first three heavy hole levels, respectively, and E1 marks the first electron level. HH0 and E1 levels 
belong to the conduction band, while HH1–HH3 are levels from the valence band
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electron level is populated, and all scattering processes take place within this level. The 
energy of the bottom of the ground level is denoted E0.

We consider the distribution function f(r,k t) which gives the occupation probability of 
the state |k〉 by an electron in a volume element dr at the position r at time t. The rate of 
change of f(r,k,t) with respect to time is given by the familiar Boltzmann equation:

where E is the electron energy, F is the force due to the external electric field (this force 
for electrons is F = −eEext , where Eext is the external field, and e is the electron charge). 
The last term is the collision integral, which arises from the electron scattering and is 
given by:

where S(k, k′) is the differential scattering rate from state 
∣

∣k
〉

 to state 
∣

∣k ′
〉

, bold charac-
ters are the vectors while non-bold characters are scalars. For a uniform electric field in a 
homogeneous system, the Boltzmann equation in the steady state becomes:

In equilibrium, the carrier distribution is simply given by the Fermi-Dirac occupation 
factor f0(k). The Fermi level for an intrinsic system is found numerically by setting the 
concentrations of electrons and holes in the well equal to each other. For a doped system 
with the given electron concentration, the Fermi level is found by fitting the electron 
concentration in the well to the needed value. For weak electric fields, we suppose field-
induced changes of the Fermi level to be negligible.

In the presence of a weak electric field, the distribution function f undergoes an axially 
symmetric perturbation and is shifted towards the field direction. In this case f may be 
presented as

where α is the angle between k and F, and φ(E) is the perturbation distribution, which 
has the physical dimension of time. One should note that the coefficients for the per-
turbed part of f (k) can be written in an arbitrary form since it amounts to a rescaling of 
the unknown function φ(E), and the form (4) was chosen merely to simplify the further 
algebra. To obtain the linearized form of collision integral (2), f (k) in the form of (4) is 
substituted into the expression (2), which yields the following simplified form for the 
collision integral:
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Substituting (4), (5) into Eq. (3) and neglecting the term proportional to F2 in the left-
hand side of (3), one arrives at the linearized Boltzmann transport equation (lBTE):

where ϑ is the angle between k and k′, while S(k, k′) is the differential scattering rate.
Consider the scattering mechanisms that are most important in MCT: the LO (longi-

tudinal optical) phonon scattering, CI (charged impurities) scattering and EH (electron–
hole) scattering. The LO phonon scattering is inelastic, while the CI and EH scattering 
are elastic. In HgTe, longitudinal optical phonons can be considered dispersionless, with 
the constant energy �w0 = 17 meV (Liubchenko et al. 1984). Differential scattering rates 
for different scattering mechanisms are additive, thus the total differential scattering rate 
S
(
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 can be expressed as:
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 are the differential scattering rates for phonon absorp-
tion and emission, while SCI
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 are the differential scattering rates for 
charged impurities and electron–hole scattering. Here θ(E − �w0 − E0) is the Heaviside 
(unit step) function, which reflects the fact that electrons do not scatter below the bot-
tom of the band.

To obtain the differential scattering rate for charged impurities scattering, we have 
adopted the approach of Bastard (1988) for nonzero temperatures. According to Szy-
manska and Dietl (1978), the electron–hole scattering rate can be calculated similarly 
to the electron scattering rate on CI, but the concentration of charged impurities should 
be replaced by the effective number of holes. For the LO phonon scattering, the relevant 
rate for the relaxation of the carriers from the state (k0) is given by Mitin et al. (1999).

Electrons scatter on charged impurities, heavy holes and polar optical phonons by 
the electrostatic potential. Consequently, this potential is screened simultaneously 
by the electron and hole subsystems. Such a screening drastically reduces the effec-
tiveness of scattering and it should be taken into account in the mobility calculations. 
To our knowledge, however, the explicit form of the screening function for this prob-
lem has not been established. In our calculations, we have used the two-dimensional 
screening function for graphene, obtained in Ref. Hwang and Das Sarma (2007). One 
can argue that since the energy dispersion near the Fermi level is almost linear due 
to k–p band mixing and strong electron gas degeneration in doped semi-metallic 
HgCdTe quantum wells, such a screening function should be a good approximation. 
Recent experiments (Brüne et  al. 2014) confirm the applicability of graphene-type 
screening for HgTe two-dimensional systems. For charged impurities scattering and 
heavy-hole scattering one should use the static screening function, while for the opti-
cal phonon scattering one should use the dynamic screening function at the phonon 
frequency. Our modeling incorporates screening for all three considered scattering 
mechanisms.
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Substituting (7) into (6), one can obtain:

One should note that δ(E + ℏw0, E′) and δ(E − ℏw0, E′) reflect energy conservation laws 
that restrict the range of possible values of k′ in (8), since δ(E, E′) is equal to δ(k, k′), 
where k and k′ are scalars. Thus two-dimensional integrals over the whole 2D k-plane 
reduce to one-dimensional integrals over the angle ϑ.

To obtain the perturbation function ф(E), we iteratively solve the Eq. (8). The iterative 
procedure for the calculations is described in Basu and Nag (1980). We use the modified 
iterative procedure (Melezhik et al. 2015). It allows us to reduce the computational time 
in several times in comparison with the iterative procedure from Basu and Nag (1980). 
In our modification of the iterative procedure, the starting values for the procedure 
consisting of (n + 1) iterations were determined as follows: ф0(E − nℏw0) was found 
from (8) as in the standard iteration procedure (Basu and Nag 1980) (in the first step of 
this iterative procedure one assumes that the “upper” ф(E + ℏw0) and the “lower” term 
ф(E − ℏw0) are both equal to zero). Then ф0(E + lℏw0) (for l > −n) was found from (8) 
using ф0(E + (l − 1)ℏw0) as the lower term and taking the upper term to be zero. To find 
n-th order term фn(E) from (8) one uses φn(E − �w0)as the lower term [if it is already 
found, if not φn−1(E − �w0) is used and фn−1(E + ℏw0) as the upper term]. We repeat 
these iterations until the difference between фn−1(E) and фn(E) became smaller than 5 %. 
Such a convergence is usually reached after 3–4 iterations.

As a result of iterative solution of the lBTE, we can find the dependence of the dis-
turbed distribution function ф(E). The electron mobility can be easily calculated from 
this function.

Results
Under the action of the external dc electric field Eext, the distribution function changes 
from f0(k) to f(k) (4), and the average electron velocity in the 2DEG becomes nonzero. 
This causes the electric current with the density j, which is found by averaging all pos-
sible electron velocities in the QW:

The drift mobility, according to its definition µD = j/(nsF), can be obtained as follows:

(8)

1 = φ(E)

∫

d2k ′

(2π)2

{

[1− f0(E + �w0)]

[1− f0(E)]
SaLO

(

k , k ′
)

δ
(

E + �w0,E
′
)

+
[1− f0(E − �w0)]

[1− f0(E)]
SeLO

(

k , k ′
)

δ
(

E − �w0,E
′
)

θ(E − �w0 − E0)

+(1− cosϑ)
(

SCI
(

k , k ′
)

+ SEH
(

k , k ′
))

δ
(

E,E′
)}

− φ(E + �w0)

∫

d2k ′

(2π)2
[1− f0(E + �w0)]

[1− f0(E)]
×

[

cosϑ
∂E′/∂k ′

∂E/∂k

]

SaLO
(

k , k ′
)

δ
(

E + �w0,E
′
)

− φ(E − �w0)

∫

d2k ′

(2π)2
[1− f0(E − �w0)]

[1− f0(E)]
×

[

cosϑ
∂E′/∂k ′

∂E/∂k

]

SeLO
(

k , k ′
)

δ
(

E − �w0,E
′
)

θ(E − �w0 − E0)

(9)j = en�v� =
2

(2π)2

e

�

∫

∂E

∂k
f (k)d2k

(10)
µD = π

1

2π2

e

�2

1

ns

∫
(

∂E

∂k

)2
∂f0

∂E
φ(E) · k · dk



Page 6 of 10Melezhik et al. SpringerPlus  (2016) 5:80 

The results of our numerical calculations for the electron mobility in HgTe quantum 
well of 12 nm width at T = 77 K are presented in Fig. 2. Due to the lack of experimental 
data on electron mobility in considered system at T = 77 K, we compared our numerical 
results (Fig. 2, curve 2) the experimental mobilities measured by Tkachov et al. (2011) at 
T = 4.2 K (Fig. 2, curve 1). In Ref. Tkachov et al. (2011), the increase of the electron con-
centration was achieved dynamically by applying the top-gate bias to the QW.

Comparing our numerical data to the experiment, one can see that the mobility 
dependencies have several similar features. First, for low electron concentrations, mobil-
ity values are fairly low in both curves. Second, such a growth of the electron concen-
tration leads to a sharp increase of the electron mobility. These similarities could be 
explained by the decrease of the hole concentration and the increase of 2DEG screening 
while the electron concentration grows. However, experimental mobility at liquid helium 
temperature from Tkachov et al. (2011) increases faster than our simulated liquid nitro-
gen temperature mobility. This probably can be explained by a faster decrease of the hole 
concentration with the Fermi level shift at T = 4.2 K due to the much lower temperature. 
To compare quantitatively the mobility in Fig. 2 (curves 1 and 2) one should note that in 
the experiment, the mobility in HgTe at liquid helium temperature is 1.5–2 times larger 
than the mobility at liquid nitrogen temperature (Pyshkin and Ballato 2013; Meyer et al. 
1992).

It is important to note that the above analysis and comparison of mobilities for differ-
ent temperatures is reasonable because charged centers scattering is usually dominant in 
semi-metal HgCdTe structures for both liquid helium and liquid nitrogen temperatures 
(see the discussion below). For liquid helium temperature, this statement can be illus-
trated by Fig. 2 from Dubowski et al. (1981) and Fig. 5 from Meyer et al. (1992).

We have also modeled the dependence of the electron mobilities in semi-metal type 
Hg0.32Cd0.68Te/Hg0.94Cd0.06Te/Hg0.32Cd0.68Te QW on the well width, for different elec-
tron concentrations. These results are presented in Fig. 3. The increase of mobility with 
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Fig. 2 Dependence of the mobility on the electron concentration in the well. The QW width is 12 nm, the 
composition is Hg0.3Cd0.7Te/HgTe/Hg0.3Cd0.7Te. Curve 1 denotes the experimental data from Tkachov et al. 
(2011) for T = 4.2 K. Curve 2 shows our numerical data for T = 77 K. Concentration of residual charged impuri‑
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the growing electron concentration can be explained by the hole concentration deple-
tion for EH scattering mechanism and screening effect enhancement, which suppresses 
all three scattering mechanisms considered.

Decrease of the QW width L shifts the system towards the phase transition point, 
which is located slightly below L =  12  nm in the case under study. It is important to 
note that the behavior of the electron mobility as a function of the QW width is different 
at different electron concentrations: For high electron concentrations, the mobility does 
not change sufficiently, while for low electron concentration the mobility changes by fac-
tor of several times. This behavior is explained by the presence of residual charged impu-
rities. Variation of the well width results in the variation of the hole concentration in 
the well (see Fig. 3). For high electron concentrations, the hole concentration is smaller 
than the residual impurity concentration, and the variation of holes concentration does 
not affect the electron mobility. For low electron concentration, the hole concentration 
is much greater than charged impurities concentration, and the electron mobility is 
strongly influenced by the change in the hole concentration.

One should note that near the band inversion point one more scattering mechanism 
becomes important—the scattering on fluctuations of effective mass (Tkachov et  al. 
2011). However, at liquid nitrogen temperature we cannot use the methodology of Tka-
chov et al. (2011), because due to higher temperature the simple 4-band approximation 
is no longer valid. Thus we can expect that near the point L = 12 nm (see Fig. 3), our 
simulation overestimates the electron mobility.

Consider impacts of each scattering mechanism. Strong dynamical screening leads 
to a strong suppression of the longitudinal optical phonon scattering. For an intrinsic 
20 nm wide quantum well with the composition x  =  0, the electron mobility for the LO 
phonon scattering is about 3.8  ×  106 cm2/(V s), while for n-doped quantum well of the 
same width with composition x  =   0.06 (electron concentration 1.5  ×   1017 cm−3), the 
mobility is about 6.8  ×   106 cm2/(V  s). As these mobilities are much greater than the 
corresponding total mobilities, we can conclude that the main contribution to the total 
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mobility comes from the charged impurity scattering and electron–hole scattering. Rela-
tive importance of these two scattering mechanisms can be easily seen from the com-
parison of the hole and charged impurity concentrations presented in Fig. 4.

To use semi-metallic HgCdTe quantum well as a channel of THz hot-electron bolome-
ter, one needs to estimate the noise in the channel. There are three main noise generation 
mechanisms present in this case: thermal (Johnson’s) noise, generation-recombination 
noise and photon noise, which can be calculated using standard formulas (Momot et al. 
2010). For such an estimate one needs the bolometer channel resistance which we have 
extracted from the calculated values of the mobility and the channel dimensions. Fur-
ther, for the estimate of the generation-recombination noise one needs to know the elec-
tron lifetime in such heterostructures. The corresponding experimental data is scarce; 
however, from Tkachov et al. (2011), Grein et al. (2005), Morozov et al. (2012) this time 
could be roughly estimated as being about 10−10 s.

We calculate the noises using the value of bias current of 1 mA from Dobrovolsky et al. 
(2010), for the quantum well of 20 nm width, with the composition x = 0.06, the electron 
concentration 1.5 × 1017 cm−3 and the electron mobility 9 × 105 cm2/(V s). For those 
parameters the total voltage noise, which consists of the Johnson–Nyquist, generation-
recombination, and photon noises, is about 3 × 10−10 V. The evaluated noise is almost 
two orders of magnitude smaller than the corresponding noise for n-type semiconductor 
HgCdTe bolometers from Dobrovolsky et al. (2010).

An estimate of the resistance in semi-metallic HgCdTe quantum well used as a chan-
nel of THz hot-electron bolometer shows that at high electron concentration this resist-
ance is much smaller than 1 kΩ. This resistance is 1–2 orders of magnitude lower than 
the corresponding resistances in graphene channels [where the typical resistance is of 
the order of 10 kΩ (Du et al. 2014; Farmer et al. 2009)]. Thus, HgCdTe channels produce 
smaller thermal noise and, compared to graphene, can provide more efficient coupling 
to planar antennas in hot-electron bolometer applications.
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Conclusions
We have studied the dependence of the electron mobility in n-type semi-metallic Hg1−

xCdxTe quantum well on the well width and electron concentration. In our simulations, 
processes of electron scattering on longitudinal optical phonons, charged impurities, 
and holes have been included. Inelasticity of the LO phonon scattering have been taken 
into account in the iterative solution of the linearized Boltzmann transport equation. 
Our modeling shows that the increase of the electron concentration in the well enhances 
the 2D electron gas screening, decreases the hole concentration, and can ultimately lead 
to a high electron mobility at liquid nitrogen temperature. The increase of the electron 
concentration in the QW could be achieved during the QW growth by delta-doping of 
barriers, or dynamically by applying the top-gate bias voltage.

Our results show that for low electron concentration the increase of the QW width 
leads to a strong suppression of the electron mobility. At high electron concentration 
values, the electron mobility is much higher and depends only weakly on the QW width. 
These results are important in the context of establishing the optimal parameters for the 
fabrication of high-mobility Hg1-xCdxTe quantum wells applications such as terahertz 
detectors working at liquid nitrogen temperatures.

We have also assessed advantages of the semimetal type HgCdTe QW hot-electron 
bolometer channel in comparison with the semiconductor HgCdTe epitaxial layer and 
graphene hot electron bolometers for THz applications. We conclude that HgCdTe 
semi-metallic QWs can demonstrate higher mobility, lower noise, higher operational 
speed, and can provide much more efficient coupling to planar antennas in THz range 
detector applications.
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