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Background
Mellin transform occurs in many areas of engineering and applied mathematics. Accord-
ing to Flajolet et  al. (1995), Hjalmar Mellin (1854–1933) gave his name to the Mellin 
transform that associates to a function f(x) defined over the positive reals, the complex 
function M[f (x); s]. It is closely related to the Laplace and Fourier transforms. We start 
by recalling the definition and some important properties of the Mellin transform. The 
domain of definition is an open strip, 〈a, b〉, of complex numbers s = σ + it such that 
0 ≤ a < σ < b. Here we recollect the definition from Flajolet et  al. (1995) and some 
properties which are mentioned in Kiliçman (2006).

Definition 1  (Flajolet et al. 1995) Let f(x) be locally Lebesgue integrable over (0,∞). 
The Mellin transform of f(x) is defined by

The largest open strip 〈a, b〉 in which the integral converges is called the fundamental 
strip. The inverse Mellin transform is defined as the following:

Theorem  1  Let f(x) be integrable with fundamental strip 〈α,β〉. If c is such that 
α < c < β and f ∗(s = c + it) = M[f (x); s] is integrable, then the equality

M[f (x); s] = f ∗(s) =

∫ ∞

0
xs−1f (x)dx.

f (x) =
1

2π i

∫ c+i∞

c−i∞
M[f (x); s]x−sds

Abstract 

In this article, we define the fractional Mellin transform by using Riemann–Liouville 
fractional integral operator and Caputo fractional derivative of order α ≥ 0 and study 
some of their properties. Further, some properties are extended to fractional way for 
Mellin transform.
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holds almost everywhere. Moreover, if f(x) is continuous, then equality holds everywhere 
on (0,+∞).

Theorem 2  (Kiliçman 2004) Let f be Mellin transformable function defined on R+. If 
differentiation under the integral sign is allowed, then we have

(1)	� M[f (n)(x); s] =
∫∞

0 f n(x)xs−1dx =
(−1)nŴ(s)

Ŵ(s − n)
M[f (x); s − n]

(2)	� M[xnf (n)(x); s] =
∫∞

0 xnf n(x)xs−1dx = (−s)nM[f (x); s]

(3)	�
(

d

ds

)n

M[f (x); s] =
∫∞

0 f (x)(log x)nxs−1dx = M[(log x)nf (x); s − 1]

(4)	� M
[∫ x

0 f (t)dt; s
]

=
∫∞

0

(∫ x
0 f (t)dt

)

xs−1dx = − 1
s M[f (x); s + 1]. For more informa-

tion readers may refer to Butzer and Jansche (1997), Erdélyi et al. (1954), Flajolet 
et al. (1985), Podlubny (1999) and  Butzer and Jansche (1998), and (Kiliçman 2006).

Basic definitions of fractional calculus
Fractional calculus is a generalization of the classical calculation and it has been used 
successfully in various fields of science and engineering. In fact, there are new opportu-
nities in mathematics and theoretical physics appear, when order differential operator or 
operator becomes an integral arbitrary parameter. The fractional calculus is a powerful 
tool for the physical description systems that have long-term memory and long term 
spatial interactions see Podlubny (1999), Miller and Ross (1993), Hilfer (2000), Kilbas 
et al. (2006) and Samko et al. (1993).

There are different types of fractional derivatives in the current literature. One of the 
new fractional derivatives that was recently proposed is called Caputo–Fabrizio deriva-
tive see Atangana (2016), Caputo and Fabrizio (2015) and Losada and Nieto (2015). 
However in our study, Riemann–Liouville and Caputo derivatives have been used.

The use of integral transforms to deal with fractional derivatives traces back to Rie-
mann and Liouville (Oldham and Spanier 1974; Widder 1971). Further, in Dattoli et al. 
(2003) the authors have shown that combined use of integral transforms and special pol-
ynomials provides a powerful tool to deal with fractional derivatives and integrals.

In this section, we give the definitions of Riemann–Liouville and Caputo fractional 
operators along the main properties as follows:

Definition 2  A real function f(x), x > 0 is said to be in space Cµ,µ ∈ R if there exists a 
real number p > µ, such that f (x) = xpf1(x) where f (x) ∈ C(0,∞), and it is said to be 
in the space Cn

µ if f n ∈ Cµ, n ∈ N.

Definition 3  The Riemann–Liouville fractional derivative operator of order α of a 
function f(x) is defined as:

Definition 4  (Podlubny 1999) The Riemann–Liouville fractional integral operator of 
order α ≥ 0 of a function f ∈ Cµ,µ ≥ −1 is defined as:

(1)Dα f (x) =
1

Ŵ(m− α)

∫ x

0
(x − t)m−α−1f (t)dt, m− 1 < α < m.
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in particular J0f (x) = f (x).

Some properties of Riemann–Liouville fractional operator
If α,β are two positive real number, then:

(1)		 Dα(D−β f (x)) = Dα−β f (x),

(2)		 JαJβ f (x) = Jα+β f (x),

(3)		 JαJβ f (x) = Jβ Jα f (x).

Definition 5  (Caputo 1969) The Caputo fractional derivative of f ∈ Cm
−1,m ∈ N, is 

defined as

for m− 1 < α ≤ m, m ∈ N.

Theorem 3  If m− 1 < α ≤ m,m ∈ N , f ∈ Cm
µ ,µ > −1, then the following two proper-

ties hold

(1)	� Dα
c

[

Jαc f (x)
]

= f (x),

(2)	� Jα
[

Dα
c f (x)

]

= f (x)−
∑m−1

k=0 f k(0)

(

xk

k!

)

.

Definition 6  (Fractional Cauchy’s integral formula) (Jumarie 2010) Assume that 
f : U → C, z → f (z) is a fractional analytic function of order α = 1

N ,N ≥ 1, N integer. 
For every a ∈ U consider the disk D ⊂ U with the boundary defined by the circle γ of 
which the radius is r. Then f (z) is actually infinitely αth differentiable, with

As a special case when n = 1, the fractional derivative can be written in the form:

Main results
In this part, some properties of Mellin transform of fractional operator have shown.

Theorem  4  Let f(x) be Mellin transformable function on (0,∞), where 
0 ≤ n− 1 < α < n, then

(2)D−α f (x) = Jα f (x) =
1

Ŵ(α)

∫ x

0
(x − t)α−1f (t)dt, t > 0, α > 0

Dα
c f (x) = Jm−αDnf (x)

Dα
c f (x) =

1

Ŵ(m− α)

∫ x

0
(x − t)m−α−1f m(t)dt, m− 1 < α ≤ m,

f (nα)(a) =
(nα)!

(2π i)αNα

∮

c(0,N )

f (z)

(z − a)(n+1)α
dz, α =

1

N
.

f (α)(a) =
(α)!

(2π i)αNα

∮

c(0,N )

f (z)

(z − a)2α
dz, α =

1

N
.
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(1)	� M[Dα
c J

α
c f (x); s] = M[f (x); s],

(2)	� M[JαDα
c f (x); s] = M[f (x); s] −

∑m−1
k=0

f k(0)

k!(k + s)
, Re(s) > −Re(k),

(3)	� M[JαJβ f (x); s] =
Ŵ(1− α − β − s)

Ŵ(1− s)
M[f (t);α + β + s].

Proof 
(1)	 The result is obtained by applying Mellin transform to both sides of the first prop-

erty (1) in Theorem 3 

(2)	 We apply Mellin transform on the part (2) in Theorem 3, then we obtain 

(3)	 Now,we are applying Mellin transform of JαJβ

Setting x = t
u, then the x-integral becomes 

So, 

After using beta function which is defined by B(α,β) =
∫ 1
0 tα−1(1− t)β−1dt and 

the fact that B(α,β) =
Ŵ(α)Ŵ(β)

Ŵ(α + β)
, hence obtain, 

Theorem 5  Let f be Mellin transformable defined on R+, then

(1)	 M
[

f
1
2 (x); s

]

=
∫∞

0 xs−1f
1
2 (x)dx, by using fractional integration by parts and frac-

tional derivative of power function, we obtain

M
[

Dα
c J

α
c f (x); s

]

= M[f (x); s].

M
[

JαDα
c f (x); s

]

= M[f (x); s] −M

[

m−1
∑

k=0

f k(0)xk

k!
; s

]

= M[f (x); s] −

m−1
∑

k=0

f k(0)

k!

∫ ∞

0
xk+s−1dx

= M[f (x); s] −

m−1
∑

k=0

f k(0)

k!(k + s)
, Re(s) > −Re(k)

M
[

JαJβ f (x); s
]

= M
[

Jα+β f (x); s
]

=

∫ ∞

0

xs−1
1

Ŵ(α + β)

∫ x

0

(x − t)α+β−1f (t)dtdx

=
1

Ŵ(α + β)

∫ ∞

0

f (t)dt

∫ ∞

t
xs−1(x − t)α+β−1dx.

tα+β+s−1

∫ 1

0
u−α−β−s(1− u)α+β−1du.

M
[

JαJβ f (x); s
]

=
1

Ŵ(α + β)

∫ ∞

0
tα+β+s−1f (t)dt

∫ 1

0
u−α−β−s(1− u)α+β−1du,

where Re(α + β) > 0, Re(α + β + s) < 1.

M
[

JαJβ f (x); s
]

=
Ŵ(1− α − β − s)

Ŵ(1− s)

∫ ∞

0
tα+β+s−1f (t)dt

=
Ŵ(1− α − β − s)

Ŵ(1− s)
M[f (t);α + β + s].
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(2)	 M
[

f
3
2 (x); s

]

=
∫∞

0 xs−1f
3
2 (x)dx, by using fractional integration by parts and frac-

tional derivative of power function, we obtain

Continuing by the induction, then the results in Theorem 5 can be extended to further 
fractional derivatives as the following theorem:

Theorem 6  Let f be Mellin transformable function on R+, and f is a fractional deriva-
tive function for all n− 1 < α < n, n ∈ N, then:

Remark 4  By using the same technique in above theorem, Mellin transform of frac-
tional integral can be yielded as the following formula:

Theorem 7  Let f be Mellin transformable defined on R+, then

By the same way as in Theorem 5, the next result follows:

Example 1  Solve the problem:

By applying the Mellin transform to both side and on using the Theorem 7 we have

M

[

f
1
2 (x); s

]

=

∫ ∞

0
xs−1f

1
2 (x)dx =

∫ ∞

0
f (x)D

1
2 xs−1dx

=
Ŵ(s)

Ŵ(s − 1
2 )
M

[

f (x); s −
1

2

]

M

[

f
3
2 (x); s

]

=

∫ ∞

0
xs−1f

3
2 (x)dx =

∫ ∞

0
f (x)D

3
2 xs−1dx

=
Ŵ(s)

Ŵ(s − 3
2 )
M

[

f (x); s −
3

2

]

.

M[f α(x); s] =
Ŵ(s)

Ŵ(s − α)
M[f (x); s − α].

M[Iα f (x); s] =
Ŵ(s)

Ŵ(s + α)
M[f (x); s + α].

(1) M
[

x
1
2 f

1
2 (x); s

]

=

∫ ∞

0
f

1
2 (x)xs−

1
2 dx =

Ŵ(s + 1
2 )

Ŵ(s)
M[f (x); s].

(2) M
[

x
3
2 f

3
2 (x); s

]

=

∫ ∞

0
f

3
2 (x)xs+

1
2 dx =

Ŵ(s + 3
2 )

Ŵ(s)
M[f (x); s].

M[xα f α(x); s] =
Ŵ(s + α)

Ŵ(s)
M[f (x); s].

x
1
2 f

1
2 (x)+ x

3
2 f

3
2 (x) = δ(x − a)

Ŵ

(

s + 1
2

)

Ŵ(s)
M[f (x); s]+

Ŵ

(

s + 3
2

)

Ŵ(s)
M[f (x); s] = as−1.
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By solving the equation and applying the inverse Mellin transform by using complex 
inversion integral in order to cover the f(x) explicitly as the solution

Theorem 8  Let f ∈ X(a,b) and holomorphic on the strip St(a, b). In addition f is Mellin 
transformable function, then

where s ∈ St(a, b), and 0 ≤ α ≤ 1.

Proof  We set ϕ(x) = s + δeix, where St(a, b) contains the circle Cδ(s) of radius δ with s.
First of all, for u > 0, let us consider

Secondly, we apply fractional Cauchy’s integral formula when n = 1 for fractional 
derivatives

By another application of fractional Cauchy’s integral formula, we obtain

Therefore, the proof of Theorem 8 is fulfilled. � �

Example 2  Let f (x) = e−x we apply Theorem 8 then we have

So,

f (x) =
1

2π i

∫ c+i∞

c−i∞

Ŵ(s)

Ŵ

(

s + 1
2

)

+ Ŵ

(

s + 3
2

)as−1x−sds.

(3)

(

d

ds

)α

M[f (u); s] =
1

(1− α)!
M[(log u)α f (u); s],

(

d

ds

)α

us−1 =
1

(1− α)!

(

us−1
)1−α(

us−1 log u
)α

=
1

(1− α)!
us−1(log u)α .

1

(1− α)!
us−1(log u)α =

(

d

ds

)α

us−1 =
(α)!

(2π i)αNα

∮

Cδ(s)

uz−1

(z − s)2α
dz

=
(α)!

(2π i)αNα

∫ 2π

0

uϕ(x)−1

(ϕ(x)− s)2α
ϕ′(x)dx

∫ ∞

0

1

(1− α)!
us−1(log u)α f (u)du =

(α)!

(2π i)αNα

∫ 2π

0

ϕ′(x)

(ϕ(x)− s)2α

∫ ∞

0

{

uϕ(x)−1f (u)du
}

dx

1

(1− α)!
M[(log u)α f (u); s] =

(α)!

(2π i)αNα

∫ 2π

0

M[ϕ(x); s]ϕ′(x)

(ϕ(x)− s)2α
dx

1

(1− α)!
M[(log u)α f (u); s] =

(

d

ds

)α

M[f (u); s]

1

(1− α)!
M

[

(log x)αe−x; s
]

=

(

d

ds

)α

M
[

e−x; s
]

=

(

d

ds

)α

Ŵ(s).

M
[

(log x)αe−x; s
]

= (1− α)!

(

d

ds

)α

Ŵ(s), Re(s) > 0.
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Example 3  Let f(x) be Delta function, f (x) = δ(x − a), a > 0 and by Theorem 8, then 
we get

Thus, M[(log x)αδ(x − a); s] = as−1(log a)α .

Remark 5  For special cases we have the following:

(1)	 If α = 1 then the formula (3) turns to [part (3) in Theorem 2] when n = 1,

(2)	 In the Example 2,

(i)	 if α = 0 then M[e−x; s] = Ŵ(s),

(ii)	 if α = 1 then we get the result

(3)	 In the Example 3,

(i)	 if α = 0 then we obtain M[δ(x − a); s] = as−1, see Oberhettinger (1974),
(ii)	 if α = 1 then we obtain the same result in Graf (2010) when n = 1

Theorem  9  Let M[f (x); s] be Mellin transform of the function f(x) in (0,∞), where 
0 < 3α < 1, then

(1)	� M
[

D3α f (x); s
]

=
Ŵ(s)

Ŵ(s)− 3α
M[f (x); s − 3α],

(2)	� M[DαDαDα f (x); s] =
(Ŵ(s))3

(Ŵ(s − α))3
M[f (x); s − 3α].

Proof 
(1)	The result is given directly from Theorem 6 then we obtain 

(2)	Also we apply the formula in Theorem 6 part by part as the following: 

1

(1− α)!
M[(log x)αδ(x − a); s] =

(

d

ds

)α

M[δ(x − a); s]

=

(

d

ds

)α

as−1 =
1

(1− α)!
as−1(log a)α

M
[

(log x)e−x; s
]

=

(

d

ds

)

Ŵ(s) where Re(s) > 0, see Oberhettinger (1974),

M[(log x)δ(x − a); s] = as−1(log a),

M

[

D3α f (x); s
]

=
Ŵ(s)

Ŵ(s)− 3α
M[f (x); s − 3α], where 0 < 3α < 1.

M[DαDαDα f (x); s] =
Ŵ(s)

Ŵ(s − α)
M[DαDα f (x); s − α]

=
Ŵ(s)

Ŵ(s − α)

Ŵ(s)

Ŵ(s − α)
M[Dα f (x); s − 2α]

=
Ŵ(s)

Ŵ(s − α)

Ŵ(s)

Ŵ(s − α)

Ŵ(s)

Ŵ(s − α)
M[f (x); s − 3α]

=
(Ŵ(s))3

(Ŵ(s − α))3
M[f (x); s − 3α].
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	 From (1) and (2) we observe that 

Conclusion
In this paper, some properties of fractional calculus are proposed by applying Mellin 
integral transform, and some applications are also given. Further, the results in fractional 
sense by using Mellin transform are in agreement with ordinary way in the existing liter-
ature. In fact, Mellin integral transform and its inverse are powerful to solve some kinds 
of fractional equations with variable coefficients, that will be a future study.
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