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Background
Let Xn,1,Xn,2, . . . ; n = 1, 2, . . . be a row-wise triangular array of independent negative-
binomial distributed random variables with probabilities

where pn,i ∈ (0, 1); rn,i = 1, 2, . . . ; i = 1, 2, . . . ; k = 0, 1, . . . . It is worth pointing out that 
if all rn,1 = rn,2 = · · · = 1; n = 1, 2, . . . , then we have the sequence of independent geo-
metric distributed random variables with success probabilities pn,1, pn,2, . . . ; n = 1, 2, . . . . 
Write Wn =

∑n
i=1 Xn,i and �n = E(Wn) =

∑n
i=1 rn,i

(

1− pn,i
)

p−1
n,i . We will denote by Z�n

 
the Poisson random variable with positive mean �n.

The main aim of this paper is to establish some upper bounds in Poisson approxima-
tion for 

∑∞
k=1 | P(Wn = k)− P(Z�n

= k) | for the sequence Xn,1,Xn,2, . . . ; n = 1, 2, . . . 
by the well-known Stein–Chen method.

It has long been known that the remarkable Le Cam’s inequality in Pois-
son approximation for the row-wise triangular array of independent Ber-
noulli distributed random variables Yn,1,Yn,2, . . . ; n = 1, 2, . . . with probabilities 
P(Yn,i = 1) = pn,i = 1− P(Yn,i = 0), i = 1, 2, . . . is defined as follows:

where Sn =
∑n

i=1 Yn,i and βn = E(Sn) =
∑n

i=1 pn,i [see Le Cam (1960), Neammanee 
(2003) for more details]. Moreover, a shape inequality has been established as follows:

(1)P
(

Xn,i = k
)

= Ck
rn,i+k−1

(

1− pn,i
)k
p
rn,i
n,i ,

(2)

∞
∑

k=1

| P(Sn = k)− P(Zβn = k) | ≤ 2

n
∑

i=1

p2n,i,
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[We refer the reader to Barbour et al. (1992) and Chen (1975)]. As far as we know the 
Stein–Chen method is the well-known method have been used in Poisson approximation 
problems and it can be applied to a wide class of discrete random variables as geomet-
ric distributed random variables and negative-binomial distributed random variables. In 
recent years, using the Stein–Chen method, many results related to Poisson approxima-
tion for various discrete random variables are established in Teerapabolarn and Wong-
kasem (2007), Teerapabolarn (2009, 2013). These results are included here for the sake 
of completeness. Let Z1,Z2, . . . be a sequence of independent geometric distributed 
random variables with probabilities P(Zi = k) = (1− pi)

kpi, k = 0, 1, 2, . . . ; i = 1, 2, . . . 
Then, for A ⊆ Z+ := {0, 1, 2, . . .},

and for A ⊆ Z+,w0 ∈ Z+

where Vn =
∑n

i=1 Zi, γn = E(Vn) =
∑n

i=1(1− pi)p
−1
i  [see Teerapabolarn and Wong-

kasem (2007), for more details]. It should be noted that in case when the mean 
γn = E(Vn) will be replaced by a parameter γ̄n =

∑n
i=1(1− pi), another results will be 

established as follows:

and

for A ⊆ Z+ [results of this nature may be found in Teerapabolarn (2013)]. It is easy to 
check that when the values rn,1 = rn,2 = · · · = 1; n = 1, 2, . . . the desired sequence 
(Xn, n ≥ 1) will become the sequence Z1,Z2, . . . . Therefore, it makes sense to consider 
the results in (4), (5), (6), and (7) for negative-binomial random variables with probabili-
ties in term of (1).

It should be noted that in recent years the same problem was tackled in Upadhye and 
Vellaisamy (2014) and Vellaisamy and Upadhye (2009) by using Kerstans method (1964) 
and the method of exponents [see Upadhye and Vellaisamy (2013, 2014) and Vellaisamy 

(3)

∞
∑

k=1

| P(Sn = k)− P(Zβn = k) | ≤
2(1− e−βn)

βn

n
∑

i=1

p2n,i.

(4)sup
A

| P(Vn ∈ A)−
∑

k∈A

γn
ke−γn

k!
| ≤

n
∑

i=1

min

{

γn
−1(1− e−γn)

pi
, 1

}

(1− pi)
2p−1

i ,

(5)| P(Vn ≤ w0)−
w0
∑

k=0

γn
ke−γn

k!
|≤ γn

−1(e−γn−1)

n
∑

i=1

min

{

1

pi(w0 + 1)
, 1

}

(1−pi)
2p−1

i ,

(6)−γ̄n
−1(e−γ̄n−1)

n
∑

i=1

min

{

1

pi(w0 + 1)
, 1

}

(1−pi)
2 ≤ P(Vn ≤ w0)−

w0
∑

k=0

γ̄n
ke−γ̄n

k!
≤ 0,

(7)

| P(Vn ≤ w0)−
w0
∑

k=0

e−γ̄n γ̄n
k

k!
|

≤
∑w0

k=0
e−γ̄n γ̄n

k

k! (1−
∑w0

k=0
e−γ̄n γ̄n

k

k! )

eγ̄n γ̄n
w0+1

(w0+1)!

n
∑

i=1

min

{

1

pi(w0 + 1)
, 1

}

(1− pi)
2,



Page 3 of 12Hung and Giang ﻿SpringerPlus  (2016) 5:79 

and Upadhye (2009), for more details]. The compound negative binomial and compound 
Poisson approximations to the generalized Poisson binomial distribution are studied 
and applications are also discussed [see Upadhye and Vellaisamy (2013, 2014), for more 
details]. Specifically, using Kerstans method (1964) and the method of exponents, Vel-
laisamy and Upadhye (2009) have established the bounds in Poisson approximation as 
following inequality:

where � =
∑n

i=1 αiqi = αq, for X1,X2, . . . ,Xn are independent negative binomial distrib-
uted random variables with parameters αj and qj , j = 1, 2, . . . , n and Z� is a Poisson ran-
dom variable with mean �.

It is worth pointing out that comparison of bounds in negative binomial approxima-
tion and Poisson approximation is showing that an negative binomial approximation is 
better than Poisson approximation in the case Xj , j = 1, 2, . . . are independent negative 
binomial random variables [see Theorem 2.2 and Theorem 2.4 in Vellaisamy and Upad-
hye (2009)].

Besides, Poisson approximation is also considered for a wide class of discrete random 
variables via operator method and method of probability distance [see Hung and Thao 
(2013) and Hung and Giang (2014), for more details].

The main purpose of this paper is to use the Stein–Chen method for providing the 
bounds of Le Cam-type inequality (2) and (3) in Poisson approximation for row-wise 
arrays of independent negative-binomial distributed random variables. The results 
obtained in this paper are extensions and generalizations of some results in Teerapab-
olarn and Wongkasem (2007), Teerapabolarn (2009, 2013).

Preliminaries
During the last several decades the Stein–Chen method has risen to become one of the 
most important tools available for studying in Poisson approximation problems. The 
Stein–Chen method has been dealt with in detail in many articles [the reader is referred 
to Stein (1972), Chen (1975), Chen and Röllin (2013), Barbour et al. (1992) and Barbour 
and Chen (2004) for fuller development]. The Stein–Chen method can be summarized 
as follows:

Let us denote by FX (A) the probability distribution function of a discrete random vari-

able X ∈ A and we will denoted by Pαn(A) =
∑

k∈A
e−αn

αn
k

k!
 the Poisson distribution 

function, defined on the set A ⊆ Z+. The best known method for estimating

is basing on the following arguments [see Chen (1975) for more details]:
Assume that h(u) is a real-valued bounded function and Pαnh = e−αn

∑∞
k=0 h(k)

αn
k

k! . 
Consider the function f(.) which is a solution of the differential equation

dTV (Sn,Z�) ≤
n

∑

j=1

αjq
2
j

pj
min

{

1,
1

√
2�e

}

,

� = sup
x

∣

∣FX (A)− Pαn(A)
∣

∣

αnf (x + 1)− xf (x) = h(x)− Pαnh.
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Setting

Putting x = X and taking the expectation of both sides of the above differential equa-
tion, we have

Thus, the problem of estimating � can be reduced to that of estimating the difference 
of the expectations

Before starting the main results in the next section we first recall the following remark-
able lemmas:

Lemma 1  (Barbour et al. 1992) Let VfA(w) = fA(w + 1)− fA(w). Then, for A ⊆ Z+ and 
k ∈ Z+ \ {0},

Lemma 2  (Teerapabolarn and Wongkasem 2007) Let w0 ∈ Z+ and k ∈ Z+ \ {0}, we 
have

Lemma 3  (Teerapabolarn 2009) Let w0 ∈ Z+ and k ∈ Z+ \ {0, 1}. Then, we have

Lemma 4  (Teerapabolarn 2013) For w0 ∈ Z+ and k ∈ Z+ \ {0, 1}, let 

pγ̄n(w0) =
e−γ̄n γ̄n

w0

w0!
 and Pγ̄n(w0) =

∑w0

k=0

γ̄n
ke−γ̄n

k!
. Then the following inequality is true

Results
Throughout the forthcoming, unless otherwise specified, we shall denote by 
Xn,1,Xn,2, . . . ; n = 1, 2, . . . a row-wise triangular array of independent negative-binomial 
distributed random variables with probabilities

h(x) = hA(x) =
{

1, if x ∈ A,
0, if x /∈ A.

FX (A)− Pαn(A) = E[αnf (X + 1)− Xf (X)].

∣

∣Eαnf (X + 1)− EXf (X)
∣

∣.

sup
w≥k

∣

∣V fA(w)
∣

∣ ≤ min

{

αn
−1

(

1− e−αn
)

,
1

k

}

.

sup
w≥k

∣

∣

∣V fCw0
(w)

∣

∣

∣ ≤ γn
−1

(

eγn − 1
)

min

{

1

w0 + 1
,
1

k

}

.

0 < sup
w≥k

f (w) ≤ γ̄n
−1

(

eγ̄n − 1
)

min

{

1

k
,

1

w0 + 1

}

.

sup
w≥k

fCw0
(w) ≤

Pγ̄n(w0)
(

1− Pγ̄n(w0)
)

pγ̄n(w0 + 1)
min

{

1

w0 + 1
,
1

k

}

.

P
(

Xn,i = k
)

= Ck
rn,i+k−1

(

1− pn,i
)k
p
rn,i
n,i ,
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where pn,i ∈ (0, 1); rn,i = 1, 2, . . . ; i = 1, 2, . . . ; k = 0, 1, . . . . Let Wn =
∑n

i=1 Xn,i and set 
�n = E(Wn) =

∑n
i=1 rn,i

(

1− pn,i
)

p−1
n,i . Then, for rn,i ∈ {1, 2, . . . .} we have the following 

theorems:

Theorem 1  For A ⊆ Z+,

Proof  Let f and h are bounded real-valued functions defined on Z+. For w = 0, 1, . . . we 
have the Stein’s equation for Poisson distribution with a mean �n

where P�n(h) = e−�n
∑∞

k=0
h(k)

�n
k

k!
.

For A ⊆ Z+, let us denote by hA : Z+ → R and by fA(w) the functions defined by

and

where Cw = {0, 1, · · · ,w}.
Given f = fA and h = hA, We have the following Stein’s equation:

where

Therefore, the Stein’s equation can be written as follows:

Taking expectations of both sides of above equation, we have

It follows that

sup
A

∣

∣

∣

∣

∣

P(Wn ∈ A)−
∑

k∈A

�
k
ne

−�n

k!

∣

∣

∣

∣

∣

≤
n

∑

i=1

min
{

�
−1
n

(

1− e−�n

)

rn,i
(

1− pn,i
)

p−1
n,i , 1− p

rn,i
n,i

}

(

1− pn,i
)

p−1
n,i .

�nf (w + 1)− wf (w) = h(w)− P�n(h),

hA(w) =
{

1, if w ∈ A,
0, if w /∈ A.

fA(w) =
{

(w − 1)!�n−we�n
[

P�n
(

hA∩Cw−1

)

− P�n(hA)P�n
(

hCw−1

)]

, if w ≥ 1,
0, if w = 0,

�nf (w + 1)− wf (w) = hA(w)− P�n(hA),

P�n(hA) = e−�n

∞
∑

k=0

hA(k)
�
k
n

k!
=

∑

k∈A
e−�n

�
k
n

k!
.

hA(w)−
∑

k∈A
e−�n

�
k
n

k!
= �nf (w + 1)− wf (w).

P(Wn ∈ A)−
∑

k∈A

�
k
ne

−�n

k!
= E[�nf (Wn + 1)−Wnf (Wn)].
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Let Wi = Wn − Xn,i. Then, for each i,  we get

(8)

| P(Wn ∈ A)−
∑

k∈A

�
k
ne

−�n

k!
| = E[�nf (Wn + 1)−Wnf (Wn)] |

≤
n

∑

i=1

| E[rn,i(p−1
n,i − 1)f (Wn + 1)− Xn,if (Wn)] | .

E[rn,i(p−1
n,i − 1)f (Wn + 1)− Xn,if (Wn)]

= E[rn,i(p−1
n,i − 1)f (Wi + Xn,i + 1)− Xn,if (Wi + Xn,i)]

= E[E[(rn,i(p−1
n,i − 1)f (Wi + Xn,i + 1)− Xn,if (Wi + Xn,i))|Xn,i]]

= E[(rn,i(p−1
n,i − 1)f (Wi + Xn,i + 1)− Xn,if (Wi + Xn,i))|Xn,i = 0]prn,in,i

+ E[(rn,i(p−1
n,i − 1)f (Wi + Xn,i + 1)− Xn,if (Wi + Xn,i))|Xn,i = 1]rn,ip

rn,i
n,i (1− pn,i)

+
∑

k≥2

E[
(

rn,i(p
−1
n,i − 1)f (Wi + Xn,i + 1)

−Xn,if (Wi + Xn,i)
)

|Xn,i = k]Ck
rn,i+k−1

p
rn,i
n,i (1− pn,i)

k

= E[rn,i(p−1
n,i − 1)p

rn,i
n,i f (Wi + 1)]

+ E[r2n,i
(

1− pn,i
)2
p
rn,i−1

n,i f (Wi + 2)− rn,ip
rn,i
n,i (1− pn,i)f (Wi + 1)]

+
∑

k≥2

E[Ck
rn,i+k−1

rn,i(1− pn,i)
k+1p

rn,i−1

n,i f (Wi + k + 1)

− kCk
rn,i+k−1

p
rn,i
n,i (1− pn,i)

k f (Wi + k)]

= rn,i
(

1− pn,i
)2
p
rn,i−1

n,i E[f (Wi + 1)] + E[r2n,i(1− pn,i)
2p

rn,i−1

n,i f (Wi + 2)]

+
∑

k≥2

E[Ck
rn,i+k−1

rn,i(1− pn,i)
k+1p

rn,i−1

n,i f (Wi + k + 1)

− kCk
rn,i+k−1

p
rn,i
n,i (1− pn,i)

k f (Wi + k)]

= rn,i
(

1− pn,i
)2
p
rn,i−1

n,i E[f (Wi + 1)]

+
∑

k≥2

E[Ck−1

rn,i+k−2
rn,i(1− pn,i)

kp
rn,i−1

n,i f (Wi + k)− kCk
rn,i+k−1

p
rn,i
n,i (1− pn,i)

k f (Wi + k)]

= rn,i
(

1− pn,i
)2
p
rn,i−1

n,i E[f (Wi + 1)]

+
∑

k≥2

E[Ck−1

rn,i+k−2
rn,i(1− pn,i)

kp
rn,i−1

n,i f (Wi + k)

−
(

rn,i + k − 1
)

Ck−1

rn,i+k−2
p
rn,i
n,i (1− pn,i)

k f (Wi + k)]
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By using Lemma 1, we have

= rn,i
(

1− pn,i
)2
p
rn,i−1

n,i E[f (Wi + 1)]

+
∑

k≥2

E

[

rn,i + k − 1

rn,i
Ck−1

rn,i+k−2
rn,i

(

1− pn,i
)k
p
rn,i−1

n,i f (Wi + k)

−
(

rn,i + k − 1
)

Ck−1

rn,i+k−2
p
rn,i
i

(

1− pn,i
)k
f (Wi + k)

]

−
∑

k≥2

(

rn,i + k − 1

rn,i
− 1

)

Ck−1

rn,i+k−2
rn,i

(

1− pn,i
)k
p
rn,i−1

n,i E[f (Wi + k)]

= rn,i
(

1− pn,i
)2
p
rn,i−1

n,i E[f (Wi + 1)]

+
∑

k≥2

(

rn,i + k − 1
)

Ck−1

rn,i+k−2
(1− pn,i)

k+1p
rn,i−1

n,i E[f (Wi + k)]

−
∑

k≥2

(

rn,i + k

rn,i
− 1

)

Ck
rn,i+k−1

rn,i(1− pn,i)
k+1p

rn,i−1

n,i E[f (Wi + k + 1)]

− rn,i
(

1− pn,i
)2
p
rn,i−1

n,i E[f (Wi + 2)]

= rn,i
(

1− pn,i
)2
p
rn,i−1

n,i E[f (Wi + 1)] − rn,i
(

1− pn,i
)2
p
rn,i−1

n,i E[f (Wi + 2)]

+
∑

k≥2

kCk
rn,i+k−1

(1− pn,i)
k+1p

rn,i−1

n,i E[f (Wi + k)]

−
∑

k≥2

kCk
rn,i+k−1

(1− pn,i)
k+1p

rn,i−1

n,i E[f (Wi + k + 1)]

= rn,i
(

1− pn,i
)2
p
rn,i−1

n,i E[f (Wi + 1)− f (Wi + 2)]

+
∑

k≥2

kCk
rn,i+k−1

(1− pn,i)
k+1p

rn,i−1

n,i E[f (Wi + k)− f (Wi + k + 1)]

=
∑

k≥1

kCk
rn,i+k−1

(1− pn,i)
k+1p

rn,i−1

n,i E[f (Wi + k)− f (Wi + k + 1)].

(9)

|E[rn,i(p−1
n,i − 1)f (Wn + 1)− Xn,if (Wn)]|

≤
�

k≥1

kCk
rn,i+k−1(1− pn,i)

k+1p
rn,i−1
n,i E|f (Wi + k)− f (Wi + k + 1)|

≤
�

k≥1

kCk
rn,i+k−1(1− pn,i)

k+1p
rn,i−1
n,i sup

w≥k

|Vf (w)|

≤ min







�n
−1(1− e−�n )p

rn,i−1
n,i

�

k≥1

kCk
rn,i+k−1(1− pn,i)

k+1,

p
rn,i−1
n,i

�

k≥1

Ck
rn,i+k−1(1− pn,i)

k+1







= min







�n
−1(1− e−�n )p

rn,i−1
n,i

�

1− pn,i
�

�

k≥1

kCk
rn,i+k−1(1− pn,i)

k ,

p
rn,i−1
n,i

�

1− pn,i
�

�

p
−rn,i
n,i − 1

��

= min
�

�
−1
n

�

1− e−�n

�

p
rn,i−1
n,i

�

1− pn,i
�

rn,i
�

1− pn,i
�

p
−rn,i−1
n,i , p−1

n.i

�

1− pn,i
��

1− p
rn,i
n,i

�

�

= min
�

�
−1
n

�

1− e−�n

�

rn,i
�

1− pn,i
�

p−1
n,i , 1− p

rn,i
n,i

�

�

1− pn,i
�

p−1
n,i .
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To combine (8) and (9), we have

The proof is complete.� �

Remark 1  It is easily seen that the (4) is a special case of the Theorem  1 with 
rn,i = 1; n = 1, 2, . . . ; i = 1, 2, . . . n

Theorem 2  Let Wn and �n be defined as in Theorem 1. Then, for w0 ∈ N,

Proof  For Cw = {0, . . . ,w} and w0 ∈ N , let hw0 : Z+ → R, fCw0
(w0) be defined by

Given f = fCw0
 and h = hCw0

. We have the Stein’s equation

Taking expectations of both sides and arguing similarly to the proof of Theorem 1 we 
prove that

According to the Theorem 1, we have

sup
A

∣

∣

∣

∣

∣

P(Wn ∈ A)−
∑

k∈A

�
k
ne

−�n

k!

∣

∣

∣

∣

∣

≤
n

∑

i=1

min
{

�
−1
n

(

1− e−�n

)

rn,i
(

1− pn,i
)

p−1
n,i , 1− p

rn,i
n,i

}

(

1− pn,i
)

p−1
n,i .

∣

∣

∣

∣

∣

∣

P(Wn ≤ w0)−
∑

k≤w0

�
k
ne

−�n

k!

∣

∣

∣

∣

∣

∣

≤ �n
−1

(

e�n − 1
)

n
∑

i=1

min

{

rn,i
(

1− pn,i
)

pn,i(w0 + 1)
, 1− p

rn,i
n,i

}

(

1− pn,i
)

p−1
n,i .

hCw0
(w) =

{

1 if w ≤ w0,
0 if w > w0.

fCw0
(w) =















(w − 1)!�n−we�n
�

P�n
�

hCw0

�

P�n
�

1− hCw−1

��

if w0 < w,

(w − 1)!�n−we�n
�

P�n
�

hCw−1

�

P�n

�

1− hCw0

��

if w0 ≥ w,

0 if w = 0.

hCw0
(w)−

∑

k≤w0

e−�n
�
k
n

k!
= �nf (w + 1)− wf (w).

(10)

∣

∣

∣

∣

∣

∣

P(Wn ≤ w0)−
∑

k≤w0

�
k
ne

−�n

k!

∣

∣

∣

∣

∣

∣

≤
n

∑

i=1

|E[rn,i(p−1
n,i − 1)f (Wn + 1)− Xn,if (Wn)]|.

(11)

E[rn,i(p−1
n,i − 1)f (Wn + 1)− Xn,if (Wn)]

=
∑

k≥1

kCk
rn,i+k−1(1− pn,i)

k+1p
rn,i−1
n,i E[f (Wi + k)− f (Wi + k + 1)].
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Hence, by (10), (11) and Lemma 2, we have

Thus

This finishes the proof.� �

Remark 2  It is easy to check that the (5) is a special case of Theorem  2 with 
rn,i = 1; n = 1, 2, . . . ; i = 1, 2, . . . n.

Theorem  3  Let Wn =
∑n

i=1 Xi and �̄n =
∑n

i=1 rn,iqn,i with qn,i = 1− pn,i. Then, we 
have

With αi = 1− p
rn,i
n,i − rn,iqn,ip

rn,i
n,i , βi = rn,i

(

p
−rn,i
n,i − 1− rn,iqn,ip

rn,i
n,i

)

.

Proof  Arguing as in theorem (3), we have the Stein’s equation

�

�

�

�

�

�

P(Wn ≤ w0)−
�

k≤w0

�
k
ne

−�n

k!

�

�

�

�

�

�

≤
n

�

i=1

|E[rn,i(p−1
n,i − 1)f (Wn + 1)− Xn,if (Wn)]|

≤
n

�

i=1





�

k≥1

kCk
rn,i+k−1(1− pn,i)

k+1p
rn,i−1
n,i sup

w≥k

|Vf (w)|





≤
n

�

i=1



�n
−1

�

e�n − 1
�

min







p
rn,i−1
n,i

w0 + 1

�

k≥1

kCk
rn,i+k−1(1− pn,i)

k+1,

p
rn,i−1
n,i

�

k≥1

Ck
rn,i+k−1(1− pn,i)

k+1











≤
n

�

i=1



�n
−1

�

e�n − 1
�

min







p
rn,i−1
n,i

�

1− pn,i
�

w0 + 1

�

k≥1

kCk
rn,i+k−1(1− pn,i)

k ,

p
rn,i−1
n,i

�

1− pn,i
�

�

p
−rn,i
n,i − 1

���

=
n

�

i=1

�

�
−1
n

�

e�n − 1
�

min

�

p
rn,i−1
n,i

�

1− pn,i
�

rn,i
�

1− pn,i
�

(w0 + 1)p
rn,i+1
n,i

,
�

1− pn,i
�

p−1
n,i

�

1− p
rn,i
n,i

�

��

=
n

�

i=1

�

�
−1
n

�

e�n − 1
�

min

�

rn,i
�

1− pn,i
�

pn,i(w0 + 1)
, 1− p

rn,i
n,i

�

�

1− pn,i
�

p−1
n,i

�

.

∣

∣

∣

∣

∣

∣

P(Wn ≤ w0)−
∑

k≤w0

�
k
ne

−�n

k!

∣

∣

∣

∣

∣

∣

≤ �n
−1

(

e�n − 1
)

n
∑

i=1

min

{

rn,i
(

1− pn,i
)

pn,i(w0 + 1)
, 1− p

rn,i
n,i

}

(

1− pn,i
)

p−1
n,i .

−�̄n
−1

(

e�̄n − 1
)

n
∑

i=1

min

{

αi,
βi − αi

w0 + 1

}

≤ P(Wn ≤ w0)−
w0
∑

k=0

�̄n
k
e−�̄n

k!
≤ 0,

hw0(w)−
w0
∑

k=0

e−�̄n
�̄n

k

k!
= �̄nf (w + 1)− wf (w).
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Taking expectations of both sides, we get

Let Wi = Wn − Xn,i. Then, for each i, we deduce

By using Lemma 3, then we have

Moreover, we have

and

(12)

P(Wn ≤ w0)−
w0
∑

k=0

�̄n
k
e−�̄n

k!

= E
[

�̄nf (Wn + 1)−Wnf (Wn)

]

=
n

∑

i=1

E[rn,iqn,if (Wn + 1)− Xn,if (Wn)].

E[rn,iqn,if (Wn + 1)− Xn,if (Wn)]
= E[E[(rn,iqn,if (Wi + Xn,i + 1)− Xn,if (Wi + Xn,i))|Xn,i]]
= E

[

rn,iqn,ip
rn,i
n,i f (Wi + 1)

]

+ E[r2n,iq
2
n,ip

rn,i
n,i f (Wi + 2)− rn,iqn,ip

rn,i
n,i f (Wi + Xn,i)]

+
∑

k≥2

E[rn,iCk
rn,i+k−1q

k+1
n,i p

rn,i
n,i f (Wi + k + 1)− kCk

rn,i+k−1q
k
n,ip

rn,i
n,i f (Wi + k)]

=
∑

k≥2

E[rn,iCk−1
rn,i+k−2q

k
n,ip

rn,i
n,i f (Wi + k)− kCk

rn,i+k−1q
k
n,ip

rn,i
n,i f (Wi + k)]

=
∑

k≥2

E[
rn,ik

rn,i + k − 1
Ck
rn,i+k−1q

k
n,ip

rn,i
n,i f (Wi + k)− kCk

rn,i+k−1q
k
n,ip

rn,i
n,i f (Wi + k)]

=
∑

k

k(1− k)

rn,i + k − 1
Ck
rn,i+k−1q

k
n,ip

rn,i
n,i f (Wi + k)

≥ −
∑

k

k(k − 1)

rn,i + k − 1
Ck
rn,i+k−1q

k
n,ip

rn,i
n,i sup

w≥k

f (w).

(13)

−
∑

k

k(k − 1)

rn,i + k − 1
Ck
rn,i+k−1q

k
n,ip

rn,i
n,i sup

w≥k

f (w)

≥ −�̄n
−1

(

e�̄n − 1
)

p
rn,i
n,i min

{

∑

k

k − 1

rn,i + k − 1
Ck
rn,i+k−1q

k
n,i,

1

w0 + 1

∑

k

k(k − 1)

rn,i + k − 1
Ck
rn,i+k−1q

k
n,i

}

.

(14)p
rn,i
n,i

∑

k

k − 1

rn,i + k − 1
Ck
rn,i+k−1q

k
n,i ≤ 1− p

rn,i
n,i − rn,iqn,ip

rn,i
n,i

(15)

p
rn,i
n,i

∑

k

k(k − 1)

rn,i + k − 1
Ck
rn,i+k−1q

k
n,i

≤ rn,i

(

p
−rn,i
n,i − 1− rn,iqn,ip

rn,i
n,i

)

−
(

1− p
rn,i
n,i − rn,iqn,ip

rn,i
n,i

)

.
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Hence, by (12), (13), (14) and (15), we can assert that

The proof is complete.� �

Remark 3  When rn,i = 1, we have

It is clear that the (6) is a special case of Theorem  3 with 
rn,i = 1; n = 1, 2, . . . ; i = 1, 2, . . . n.

Theorem  4  Let Wn =
∑n

i=1 Xn,i and �n =
∑n

i=1 rn,iqi with qn,i = 1− pn,i. Then, for 
w0 ∈ N we have

where

Proof  According to Theorem 3 we obtain the following inequality

By using Lemma 4, then we have

with αi = 1− p
rn,i
n,i − rn,iqn,ip

rn,i
n,i , βi = rn,i

(

p
−rn,i
n,i − 1− rn,iqn,ip

rn,i
n,i

)

.

Hence, the theorem is proved.� �

−�̄n
−1

(

e�̄n − 1
)

n
∑

i=1

min

{

αi,
βi − αi

w0 + 1

}

≤ P(Wn ≤ w0)−
w0
∑

k=0

�̄n
k
e−�̄n

k!
≤ 0.

αi = 1− pn,i − qn,ipn,i =
(

1− pn,i
)(

1− pn,i
)

= q2n,i,

βi = p−1
n,i − 1− qn,ipn,i =

1− pn,i

pn,i
−

(

1− pn,i
)

pn,i =
(

1− pn,i
)(

1− p2n,i
)

pn,i
= q2n,i

1+ pn,i

pn,i
,

βi − αi = q2n,i

(

1+ pn,i

pn,i
− 1

)

=
q2n,i

pn,i
.

∣

∣

∣P(Wn ≤ w0)− P
�n
(w0)

∣

∣

∣ ≤
P
�n
(w0)

(

1− P
�n
(w0)

)

p
�n
(w0 + 1)

n
∑

i=1

min

{

αi,
βi − αi

w0 + 1

}

,

αi = 1− p
rn,i
n,i − rn,iqn,ip

rn,i
n,i and βi = rn,i

(

p
−rn,i
n,i − 1− rn,iqn,ip

rn,i
n,i

)

.

∣

∣

∣P(Wn ≤ w0)− P
�̄n
(w0)

∣

∣

∣ ≤
n

∑

i=1

∑

k

k(k − 1)

rn,i + k − 1
Ck
rn,i+k−1q

k
n,ip

rn,i
n,i sup

w≥k

fCw0
(w).

∣

∣

∣P(Wn ≤ w0)− P
�̄n
(w0)

∣

∣

∣

≤
P
�̄n
(w0)

(

1− P
�̄n
(w0)

)

p
�̄n
(w0 + 1)

n
∑

i=1

∑

k

k(k − 1)

rn,i + k − 1
Ck
rn,i+k−1q

k
n,ip

rn,i
n,i min

{

1

w0 + 1
,
1

k

}

≤
P
�̄n
(w0)

(

1− P
�̄n
(w0)

)

p
�̄n
(w0 + 1)

n
∑

i=1

min

{

αi,
βi − αi

w0 + 1

}

,
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Remark 4  In the same way as in Remarks 3, we notice that (7) is a special case of 
Theorem 4 with rn,i = 1; n = 1, 2, . . . ; i = 1, 2, . . . n.

Conclusions
 We conclude this paper with the following comments. The received results in this paper 
are extensions and generalizations of results in Teerapabolarn and Wongkasem (2007), 
Teerapabolarn (2009, 2013). The results would be more interesting and valuable if the 
discussed negative-binomial random variables in this paper are dependent. We shall 
take this up in the next study.
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