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New building blocks or dendritic 
pseudopeptides for metal chelating
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Abstract 

Dendritic oligopeptides have been reported as useful building blocks for many interactions. Starting from hydra‑
zine, we described an approach to create new dendritic pseudopeptides linked with biological systems, such as cell 
membrane, as chelate metal, Ni2+‑nitrilotriacetic acid moieties which could target histidine rich peptides or proteins. 
Depending on the nature of these new chemical recognition units, they could be integrated into a peptide by cou‑
pling in C or N‑termini.
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Background
Unnatural amino acids constitute attractive targets for 
drug design. Disposing of a wide variety of unnatural 
amino acids allows the modulation of physical and chem-
ical properties of the resulting peptide depending on the 
selected side chains (Gentilucci et al. 2010). The aza-β3-
amino acids represent an exciting type of analogs of β3-
amino acids in which the CHβ is replaced by a nitrogen 
stereocenter conferring a better flexibility to the pseudo-
peptide due to the side chain borne on a chiral nitrogen 
atom with non-fixed configuration (Busnel et  al. 2005). 
Moreover, the backbone modification makes these mol-
ecules more stable towards proteolytic degradation (Dali 
et al. 2007; Laurencin et al. 2012).

Transition metals chelated by nitrilotriacetic acid 
(NTA) have been successfully applied for purification 
(Hochuli et  al. 1987; Ueda et  al. 2003) and detection of 
oligohistidine-tagged proteins (Hart et al. 2003; Lata et al. 
2005), as well as for immobilization on surfaces (Sigal 
et al. 1996; Gershon and Khilko 1995; Schmid et al. 1997; 
Xu et al. 2004; Schmitt et al. 2000). The hexahistidine tag 
provides binding sites for three NTA moieties, indeed, 
multiple NTA moieties into single entities increase the 
affinity adaptors for oligohistidine-tagged proteins (Lata 
et al. 2005).

Herein we aimed to design new amino acid analogues 
or building blocks that can be incorporated into any 
polypeptide by solid-phase peptide synthesis. Poten-
tial applications of these metal-chelating units will be as 
metal sensors for synthetic receptors that interact specifi-
cally with histidine-tagged peptides.

Results and discussion
As part of our research program we develop new peptide 
analogues with potentially useful biological properties. 
For this purpose, we have developed synthetic strategy 
for aza-β3-aspartic acid (Busnel and Baudy-Floc’h 2007; 
Abbour and Baudy-Floc’h 2013). We observed that dur-
ing this process a double substitution of benzyl carbaz-
ate 1 occurred to afford Z-aza-β3-Asp(Ot-Bu)-Ot-Bu 4 
in 19 % yield. By using tert-butyl bromoacetate (3 eq) 2 
and N,N-Diisopropyl ethylamine (DIPEA) (2  eq) 3 was 
obtained in 80 % yield (Scheme 1). The hydrogenolysis of 
3 over 10  % Pd/C gave our precursor 4. A nucleophilic 
substitution of 4 by tert-butyl bromoacetate (1 eq) in the 
presence of N,N-Diisopropyl ethylamine (DIPEA) (1 eq) 
afforded the expected building block 5 with one azani-
trilotriacetic acid which could be coupled in C-termini 
(Scheme  1) with 20  % yield, we observed the formation 
of a secondary product 5′. To increase the yield of com-
pound 5, we tried different solvents and different bases. 
The yield of 5 with acetonitrile/DIPEA or NEt3 was 18 %, 
with Toluene/potassium carbonate K2CO3 in suspension 
20 %, and with μWaves (150 W, 90 °C, 45 min) 5 %.
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Reductive amination of trisubstituted hydrazine 5 with 
glyoxylic acid in the presence of NaBH3CN led to the tet-
rasubstituted hydrazine 6 as new building block with one 
aza-NTA, which could be coupled in N-termini.

To create more flexibility to the aza-NTA, we first pre-
pared the substituted aza-β3-glutamic ester 9. Compound 
8 was obtain by nucleophilic substitution of methyl 
3-bromopropanoate 7 and benzyl carbazate 1 in the pres-
ence of DIPEA with only 17 % yield. The same reaction 
without solvent realized under microwaves activation 
provided 8 with 35  % yield. Then a second nucleophilic 
substitution of tert-butyl bromoacetate 2 with compound 
8 and DIPEA led to Z-aza-β3Glu(OMe)-Ot-Bu 9 with 
96 % yield after stirring at 80 °C for 5 days. Then hydrog-
enolysis of 9 over 10 % Pd/C gave the monomer H-aza-
β3Glu(OMe)-Ot-Bu 10. Nucleophilic substitution with 
two equivalents of tert-butyl bromoacetate 2, H-aza-
β3Glu(OMe)-Ot-Bu 10 and DIPEA gave 11 (94 % yield). 
Methyl ester of 11 could be saponified (Pascal and Sol 
1998) by sodium hydroxide in MeOH in the presence of 
CaCl2 affording the expected aza-NTA 12, which could 
be coupled in N-termini of a peptide (Scheme 2).

To obtain a new ligand with an amine function, which 
could be coupled on C-termini peptide we choose to 
work on ornithine analogue. The 1-amino-3,3-dieth-
oxypropane precursor 13 was first N-protected with 
a benzyl group by reaction with benzylchloroformate 
under the presence of sodium hydroxide to afford ben-
zyl 3,3-diethoxypropylcarbamate 14 with excellent yield 
(99  %). The acetal 14 was then treated with acetic acid 
and water (2/1) to give benzyl 2-formylethylcarbamate 
15. The condensation of 15 with our precursor 4 led to 
the hydrazone 16. Reduction with sodium cyanoborohy-
dride (NaBH3CN) gave the hydrazine 17. Nucleophilic 
substitution of tert-butyl bromoacetate by hydrazine 17 
afforded substituted aza-NTA 18. Hydrogenolysis of 18 

under 10 % Pd/C, gave a new ligand aza-NTA 19, bearing 
a long amino chain with more flexibility (Scheme 3).

Our goal was to get multimeric aza-NTA in order to 
increase the affinity to histidine tag proteins. Thus we 
built the dendritic pseudopeptides starting from our two 
building blocks 18 and 19. Deprotection of acid func-
tions of 18 with TFA afforded 20. Then dendritic pseu-
dopeptides or Z-aza-tris-NTA-tBu 21 were synthesized 
via standard EDCI coupling of one equivalent of the 
C-deprotected intermediate 18 with three equivalent of 
the N-deprotected one 19. We showed that it is possible 
to deprotect 21 either on C-ter to give Z-aza-tris-NTA-
OH 22, or on N-ter to lead to H-aza tris-NTA-tBu 23. 
NMR and HMRS mass spectrometry were used to ver-
ify the structure and purity of the amphiphilic dendritic 
peptides (Scheme 4).

Conclusion
In summary, depending on the nature of our new chemi-
cal recognition units, these could be introduced by cou-
pling in a peptide in C or N-termini as well as on peptidic 
chain. These new Ψ-NTA could open new ways to con-
trol protein–protein interactions, to design peptide-
based interaction pairs or to generate switchable protein 
functions. Moreover it would be interesting to look at the 
self-assembly of our new dendric pseudopeptides.

Methods
1H and 13C NMR spectra were recorded at 200 or 
300 MHz and 75.5 MHz. 1H chemical shifts are reported 
in δ values in ppm relative to CHCl3 (7.24 ppm) as inter-
nal standard and 13C chemical shifts are reported in ppm 
relative to CDCl3 (77.0  ppm). Multiplicities in 1H NMR 
are reported as (br) broad, (s) singlet, (d) doublet, (t) tri-
plet, (q) quartet, and (m) multiplet. The analytical labo-
ratory from the Centre Régional de Mesures Physiques 
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de l’Ouest performed electrospray mass spectrometry 
(HRMS, ESI) studies using MS/MS Mass spectrometer 
ZAB Spec TOF. Thin layer chromatography was per-
formed on silica gel 60 F254 plates (Merck). Flash chro-
matography was performed on SP silica gel 60 (230–600) 
mesh ASTM. DCM was distilled from CaH2 under 
nitrogen.

Nucleophilic substitution procedure
A mixture of hydrazine (4 mmol), DIPEA (1.1 g, 8 mmol) 
and tert-butyl bromoacetate 2 (1.87 g, 12 mmol) in tolu-
ene (20 mL) was stirred at 80 °C for 4 days. The solid was 

filtered and the filtrate was evaporated. The residue was 
purified by flash column chromatography on silica gel 
with DCM/EtOAc (9/1).

Compound 3.
Yield: 88 %.
1H NMR (200  MHz, CDCl3): δ =  1.49 (s, 18H, t-Bu), 

3.73 (s, 4H, N-CH2), 5.15 (s, 2H, CH2), 7.31 (m, 5H, 
C6H5).

13C NMR (75 MHz, CDCl3): δ = 28.1, 53.3, 66.9, 81.7, 
128.1, 128.2, 128.5, 136.1, 156.8, 170.6.

HRMS (ESI): m/z [M +Na]+ calcd for C20H30N2O6Na: 
417.2002; found 417.2002.

Compound 5.
Yield: 20 %.
1H NMR (200  MHz, CDCl3): δ =  1.49 (s, 27H, t-Bu), 

3.61 (s, 4H, N-CH2), 3.63 (s, 2H, N-CH2).
13C NMR (75 MHz, CDCl3): δ = 27.5, 56.0, 62.5, 63.5, 

80.2, 173.9.
HRMS (ESI): m/z [M  +  H]+ calcd for C18H35N2O6: 

375.2495; found 375.2495.
Compound Z-Aza-β3Glu(OtBu)-OMe 9.
Yield: 94 %.
1H NMR (200  MHz, CDCl3): δ =  1.67 (s, 9H, t-Bu), 

2.54 (m, 2H, CH2), 3.22 (m, 2H, N-CH2), 3.62 (m, 5H, 
CH3 + N-CH2), 5.12 (s, 2H, CH2), 7.40 (m, 5H, C6H5).

13C NMR (75 MHz, CDCl3): δ = 26.6, 31.2, 41.7, 48.6, 
60.3, 66.4, 128.6, 128.7, 128.8, 128.9, 129.0, 172.4, 173.4, 
173.8.

HRMS (ESI): m/z [M  +  H]+ calcd for C18H27N2O6: 
367.18691; found 367.1898.

HRMS (ESI): m/z [M + Na]+ calcd for C18H26N2O6Na: 
389.16886; found 389.1694.

Compound 11.
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Yield: 99 %.
1H NMR (200 MHz, CDCl3): δ = 1.42 (s, 9H, t-Bu), 2.47 

(m, 2H, CH2), 3.01 (m, 2H, N-CH2), 3.41 (s, 4H, N-CH2), 
3.51 (s, 2H, N-CH2), 3.64 (s, 3H, CH3).

13C NMR (75 MHz, CDCl3): δ = 28.6, 33.2, 52.1, 52.4, 
57.4, 80.1, 169.6, 173.2.

HRMS (ESI): m/z [M  +  H]+ calcd for C22H41N2O8: 
461.2863; found 461.2856.

Compound 18.
Yield: 50 %.
1H NMR (200  MHz, CDCl3): δ =  1.47 (s br, 27H, t-

Bu), 1.77 (m, 2H, CH2), 2.75 (m, 2H, CH2), 3.38 (m, 2H, 
N-CH2), 3.48 (s, 2H, N-CH2), 3.61 (s, 4H, N-CH2), 5.15 (s, 
2H, CH2), 7.31 (m, 5H, C6H5).

13C NMR (75 MHz, CDCl3): δ = 24.2, 28.6, 33.2, 52.1, 
56.4, 57.4, 66.7, 80.1, 127.2, 127.5, 128.4, 135.8, 157.8, 
169.6.

HRMS (ESI): m/z [M  +  H]+ calcd for C29H48N3O8: 
566.3441; found 566. 3221.

Compound 8: A mixture of Z-carbazate 1 (2  g, 
12 mmol), methyl 3- bromopropanoate 7 (2 g, 12 mmol), 
DIPEA (1.56 g, 12 mmol), NaI (1.2 g, 12 mmol) in tolu-
ene (20  mL) was stirred at 80  °C for 7  days. The solid 
was filtered and the filtrate was evaporated under 
reduced pressure. The residue was purified by column 

chromatography on silica gel with DCM/EtOAc (9/1) to 
afford 8.

Yield: 0.5 g (17 %).
The same reaction was realized without solvent by 

microwave activation (SYNTHEWAVE 402: 150  W, 
45 min, 90 °C) to get 8.

Yield: 1.1 g (35 %).
1H NMR (200  MHz, CDCl3): δ =  2.55 (t, 2H, CH2), 

3.21(t, 2H, N-CH2), 3.72(s, 3H, CH3), 5.19 (s, 2H, CH2), 
7.40 (s, 5H, C6H5).

13C NMR (75 MHz, CDCl3): δ = 31.2, 38.8, 41.5, 47.8, 
128.6, 128.7, 128.8 128.9, 129.0, 134.6, 172.5, 173.9.

HRMS (ESI): m/z [M  +  H]+ calcd for C12H16N2O4: 
252.1110; found 252.1111.

Compound aza-NTA 6.
To a solution of substituted hydrazine 5 (1.9 g, 5 mmol) 

in DCM/MeOH (10/25 mL), glyoxylic acid monohydrate 
(0.44  g, 1.2 equiv) was added. Then NaBH3CN (0.46  g, 
1.5  eq) was added fractionally into the above mixture, 
which was maintained under stirring for 1 h, and the pH 
was maintain at 3 by addition of 2 N HCl. Then HCl was 
added until pH 1 over 10 min and finally increased to 4-5 
with a saturated NaHCO3 solution. The mixture was fil-
tered, concentrated, taken up with EtOAc (10  mL) and 
washed with 2  N HCl solution and brine. The organic 
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layer was dried over anhydrous Na2SO4 and concentrated 
to give a crude foam, which was triturated in Et2O to give 
6, which was purified by chromatography on silica gel 
(DCM/MeOH: 9/1).

Yield: 1.8 g (81 %).
1H NMR (200  MHz, CDCl3): δ =  1.50 (s, 27H, t-Bu), 

3.64 (s, 2H, N-CH2), 3.66 (s, 6H, N-CH2).
13C NMR (75 MHz, CDCl3): δ = 26.5, 56.8, 61.0, 63.5, 

63.9, 79.8, 174.9, 180.9.
HRMS (ESI): m/z [M  +  H]+ calcd for C20H37N2O8: 

433.25499; found 433.256.
Compound Aza NTA 12.
11 (1.2 g, 6 mmol) was dissolved in MeOH (14 mL) and 

CaCl2 (2.6 g, 0.4 M), NaOH (0.125 g, 3.1 mmol) was dis-
solved in H2O (6  mL). These two solutions were mixed 
and stirred at room temperature for 6 h. Then, 2 N HCl 
solution was added to get a neutral pH. Evaporation of 
methanol under vacuum and extraction with EtOAc 
(20 mL × 2) led to an organic phase, which was washed 
with 2  N HCl solution (20  mL) and brine (20  mL). The 
solvent was evaporated under vacuum and the residue 
was purified by column chromatography on silica gel 
with DCM/EtOAc (8/1) to afford the triester 12.

Yield: 0.65 g (55 %).
1H NMR (200  MHz, CDCl3): δ =  1.53 (s, 27H, t-Bu), 

2.55 (m, 2H, CH2), 3.11 (m, 2H, N-CH2), 3.57 (s, 4H, 
N-CH2), 3.62 (s, 2H, CH2, N-CH2).

13C NMR (75 MHz, CDCl3): δ = 28.0, 28.1, 28.3, 33.6, 
49.9, 51.5, 51.7, 53.7, 80.5, 80.9, 81.1, 163.6, 165.6, 167.1, 
172.2.

HRMS (ESI): m/z [M + Na]+ calcd for C21H38N2O8Na: 
469.25259; found 469.2489.

Hydrogenolysis procedure
Hydrazine (18  mmol) was dissolved in MeOH (50  mL) 
and 10 % Pd/C (0.7 g) was added. The mixture was stirred 
under hydrogen atmosphere at room temperature for 
6  h. The catalyst was eliminated by filtration through a 
Celite® pad and the solvent removed under vacuum to 
obtain colorless product 4, 10, 19 and 23 enough pure.

Compound 4.
Yield: 96 %.
1H NMR (200  MHz, CDCl3): δ =  1.51 (s, 18H, t-Bu), 

3.15 (br, 2H, NH2), 3.66 (s, 4H, CH2).
13C NMR (75 MHz, CDCl3): δ = 27.6, 62.6, 79.9, 170.6.
HRMS (ESI): m/z [M  +  H]+ calcd for C12H25N2O4: 

261.18143; found 261.1815.
Compound 10.
Yield: 99 %.
1H NMR (200  MHz, CDCl3): δ =  1.47 (s, 9H, t-Bu), 

2.74 (m, 2H, CH2), 3.24 (m, 2H, N-CH2), 3.50 (br, 2H, 
NH2), 3.62 (s, 3H, CH3), 4.25 (s, 2H, N-CH2).

13C NMR (75 MHz, CDCl3): δ = 26.9, 31.1, 50.3, 54.3, 
65.3, 81.6, 169.4, 173.4.

HRMS (ESI): m/z [M  +  H]+ calcd for C10H21N2O4: 
233.15013; found 233.1498.

Compound Aza NTA 19.
Yield: 99 %.
1H NMR (200 MHz, CDCl3): δ = 1.50 (s br, 27H, t-Bu), 

2.14 (m, 2H, CH2), 2.73 (m, 2H, N-CH2), 3.31(m, 2H, 
N-CH2), 3.40 (s, 2H, N-CH2), 3.48 (br, 2H, NH2), 3.53(s, 
4H, N-CH2).

13C NMR (75 MHz, CDCl3): δ = 27.1, 27.9, 38.1, 50.3, 
54.3, 55.3, 81.6, 169.4.

HRMS (ESI): m/z [M  +  H]+ calcd for C21H42N3O6: 
432.30736; found 432.2978.

Compound 23.
Yield: 95 %.
1H NMR (300 MHz, CDCl3): δ = 1.53 (br, 81H, t-Bu), 

1.75 (m, 8H, CH2), 2.58-2.72 (m, 10H, N-CH2), 3.41-3.58 
(m, 30H, N-CH2).

13C NMR (75 MHz, CDCl3): δ = 26.8, 27.2, 37.3, 39.1, 
51.4, 52.3, 57.5, 58.3, 169.7, 170.4.

HRMS (ESI): m/z [M + H]+ calcd for C72H135N12O21: 
1503.9865; found: 1503.9764 (1 ppm).

Compound 14.
A solution of 1-Amino-3,3-diethoxypropane 13 (2  g, 

13.6 mmol) was added into a solution of NaOH (0.55 g, 
13.6  mmol) in water (20  mL) and cooled at 0  °C. The 
solution of benzylchloride (2.32  g, 13.6  mmol) in DCM 
(20 mL) was slowly added into the cooled solution. The 
mixture was stirred at room temperature for 12 h. After 
washing with H2O, the organic phase was dried and con-
centrated under vacuum to give benzyl 3,3-diethoxy pro-
pyl carbamate 14.

Yield: 3.9 g (99 %).
1H NMR (200 MHz, CDCl3): δ = 1.24 (t, 6H, J = 7 Hz, 

OCH2CH3), 1.85 (m, 2H, CH2), 3.33 (m, 2H, CH2), 3.53 
(m, 4H, OCH2CH3), 4.59 (t, 1H, J = 5.4 Hz, CH), 5.14 (s, 
2H, CH2), 7.39 (m, 5H, C6H5).

13C NMR (75 MHz, CDCl3): δ = 16.5, 30.3, 32.8, 63.6, 
66.9, 127.5, 127.7, 128.7, 136.5, 157.1.

HRMS (ESI): m/z [M  +  H]+ calcd for C15H24NO4: 
282.1834; found 282.1836.

Compound 15.
Benzyl 3, 3-diethoxypropyl carbamate 14 (3.9  g, 

13.6 mmol) was dissolved into a solution of CH3CO2H/
H2O (7  mL/3.5  mL), and stirred for 5  h. NaHCO3 was 
added into the solution until basic pH. The product was 
extracted with Et2O (20 mL × 2) and dried over Na2SO4. 
The solvent was removed under vacuum to afford benzyl 
(3-oxopropyl) carbamate 15, which was used immedi-
ately without purification.

Yield: 2.6 g, (92 %).
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1H NMR (200  MHz, CDCl3): δ =  2.78 (m, 2H, CH2), 
3.53 (m, 2H, N-CH2), 5.13 (s, 2H, CH2), 7.39 (m, 5H, 
C6H5), 9.84 (m, 1H, CHO).

13C NMR (75 MHz, CDCl3): δ = 34.2, 40.8, 65.8, 127.6, 
128.7, 128.8, 137.6, 152.5, 193.9.

Compound 16.
Benzyl (3-oxopropyl) carbamate 15 (2.6 g, 12.6 mmol) 

and 5 (3.25  g, 12.6  mmol) were dissolved into DCM 
(30  mL), Na2SO4 was added to absorb the water and 
accelerated the reaction. The solution was stirred over-
night at room temperature and filtrated to remove 
Na2SO4. The filtrate was concentrated and purified by 
chromatography over silica gel with PE/EtOAc (7/3) first 
and then (6/4) to give pure hydrazone 16.

Yield: 5.63 g (99 %).
1H NMR (CDCl3): δ = 1.47 (s, 18H, t-Bu), 2.45 (m, 2H, 

CH2), 3.48 (m, 2H, CH2), 3.95 (s, 4H, N-CH2), 5.09 (s, 2H, 
CH2), 5.31(s, 1H, NH), 6.52 (t, 1H, J = 4.2 Hz, CH), 7.38 
(m, 5H, C6H5).

13C NMR (CDCl3): δ = 28.0, 32.6, 38.1, 56.6, 66.6, 79.4, 
127.9, 128.1, 128.4, 154.9, 173.6.

HRMS (ESI) m/z [M  +  H]+ calcd for C23H36N3O6: 
450.2604; found 450.2559.

Compound 17.
The hydrazone 16 (2.1 g, 4.68 mmol) was dissolved in 

MeOH (30 mL), NaBH3CN (0.35 g, 1.2 eq) was added by 
portions. 2 N HCl solution was used to maintain a pH 3 
and then the mixture was stirred for 2  h. HCl 2  N was 
added until pH 1, and after 10 min, the pH was increased 
to 7-8 by adding NaHCO3. The solid was filtrated after 
2 min, and the solvent was removed under vacuum and 
the crude product was dissolved into EtOAc (30  mL) 
and washed by H2O (2 × 20 mL). The organic phase was 
dried under Na2SO4 and the solvent was removed under 
vacuum to afford hydrazine 17.

Yield: 2 g (97 %).
1H NMR (200  MHz, CDCl3): δ =  1.49 (s, 18H, t-Bu), 

2.23 (m, 2H, CH2), 2.86 (m, 2H, CH2), 3.36 (m, 2H, 
N-CH2), 3.59 (s, 4H, N-CH2), 5.11 (s, 2H, CH2), 7.37 (m, 
5H, C6H5).

13C NMR (75 MHz, CDCl3): δ = 25.9, 28.2, 36.6, 42.1, 
56.6, 66.8, 81.4, 128.2, 128.4, 132.9, 158.9, 164.8.

HRMS (ESI): m/z [M  +  H]+ calcd. for C23H38N3O6: 
452.2761; found 452.2754.

Cleavage of t‑Bu protection
2  mmol of protected compound were dissolved in the 
solution of DCM (5  mL)/TFA (5  mL), and stirred for 
5 h. The solvent was removed under vacuum to get com-
pounds 20 and 22.

Compound 20.
Yield: 87 %.

1H NMR (200  MHz, CDCl3): δ =  2.12 (m, 2H, CH2), 
2.78 (m, 2H, N-CH2), 3.42 (m, 2H, N-CH2), 3.49 (s, 2H, 
N-CH2), 3.53(s, 4H, N-CH2), 4.88 (s, 2H, CH2), 7.11(m, 
5H, C6H5).

13C NMR (75 MHz, CDCl3): δ = 24.4, 37.5, 51.2, 52.1, 
57.9, 58.9, 66.8, 127.2, 127.6, 128.9, 134.9, 156.9, 172.8.

HRMS (ESI): m/z [M  +  H]+ calcd for C17H24N3O8: 
398.1564; found 398.1498.

Compound 22.
Yield: 59 %.
1H NMR (300  MHz, CDCl3): δ =  1.75 (m, 8H, CH2), 

2.65 (m, 8H, N-CH2), 3.12-3.68 (m, 32H, N-CH2), 5.05 (s, 
2H, CH2), 7.23 (m, 5H, C6H5).

13C NMR (75 MHz, CDCl3): δ = 24.9, 28.7, 37.6, 52.1, 
52.3, 56.6, 58.6, 59.1, 56.3, 66.6, 127.1, 127.7, 128.9, 136.0, 
155.9, 170.8, 171.4.

HRMS (ESI): m/z [M +  H]+ calcd for C44H68N12O23: 
1133.4599; found: 1133.4567 (1 ppm).

Compound Z-aza-NTA-t-Bu 21.
A mixture of 18 (0.13  g, 0.30  mmol), 20 (0.43  g, 

1  mmol), HOBt (0.18  g, 1.16  mmol), EDCI (0.23  g, 
1.16 mmol), DIPEA (0.52 g, 4 mmol) in dry DCM (20 mL) 
was stirred at room temperature for 2  weeks. The solu-
tion was washed with 0.5  N HCl solution (10  mL), and 
then with H2O (20 mL), and brine (10 mL). The organic 
solution was dried over anhydrous Na2SO4 and evapo-
rated under vacuum and purified by flash chromatogra-
phy with DCM/EtOAc (9/1) to afford multimaric 21.

Yield: 0.11 g (21 %).
1H NMR (300 MHz, CDCl3): δ = 1.45 (m, 81H, t-Bu), 

1.77 (m, 8H, CH2), 2.75 (m, 8H, N-CH2), 3.12-3.68 (m, 
32H, N-CH2), 5.09 (s, 2H, CH2), 7.33(m, 5H, C6H5).

13C NMR (75 MHz, CDCl3): 24.9, 28.7, 37.6, 52.1, 52.3, 
56.6, 58.6, 59.1, 56.3, 66.6, 81.4, 127.2, 127.7, 128.6, 135.9, 
156.9, 168.9, 169.8.

HRMS (ESI) m/z [M +  H]+ calcd for C80H141N12O23: 
1638.0233; found: 1638.0250 (1 ppm).

Abbreviations
t‑Bu: tertio‑butyl; CHCl3: chloroform; DCM: dichloromethane; DIPEA: N,N‑
diisopropylethylamine; EDCI: 1‑(3‑dimethylaminopropyl)‑3‑ethylcarbodiimide; 
EtOAc: ethylacetate; Et2O: diethyl ether; HOBt: 1‑hydroxy‑benzotriazole; MeOH: 
methanol; MW: microwaves; NaBH3CN: sodium cyanoborohydride; NaOH: 
sodium hydroxide; Na2SO4: sodium sulfate; PE: petroleum ether; rt: room tem‑
perature; TEA: triethyl amine; TFA: trifluoro acetic acid; THF: tetrahydrofuran; Z: 
benzyloxycarbonyl.
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