
Evolutionary approach to violating 
group anonymity using third‑party data
Dan Tavrov*   and Oleg Chertov

Background
A son of Dmitrii Mendeleyev, the world-renowned chemist and creator of the periodic 
table, recalls (Tishchenko and Mladientsev 1993, pp.  353–354) an interesting fact. In 
1890, his father came up with a formula of the smokeless pirokollody gunpowder (Gor-
din 2003), which at the time was thoroughly protected by French manufacturers. As it 
turned out, Mendeleyev’s findings were based on analyzing public statistical data from 
the railroad company annual report on freight traffic. A separate branch line supplied 
the gunpowder factory. Annual statistics provided all the necessary information to easily 
retrieve the gunpowder composition ratios.

One hundred and twenty five years later, in the era of Big Data, various statistical data 
are publicly available. The task of ensuring that security intensive information does not 
leak out becomes much more challenging. A modern man lives and works in a society 
oriented toward collecting and storing data on each and every person. Statistics ser-
vices do that (census forms), taxing services do that (tax declarations), medical facilities 
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do that (patient’s medical records), law enforcement agencies do that (person’s IDs), 
employers do that (CVs), retail stores do that (personal discount cards), security does 
that (security cameras files), and so on and so forth. Problems of preserving privacy in 
such data are widely discussed within the field of privacy-preserving data publishing 
(Fung et al. 2010; Wong and Fu 2010). To great extent, appropriate protection implies 
removing identifiers (passport data, full name etc.), and distorting the data (e.g., values 
of certain characteristics are swapped between respondents or get noised) or suppress-
ing them (e.g., data on elder people are grouped in a category of senior citizens).

At the same time, problems of protecting group distributions for certain categories of 
respondents remain unsolved. Let us consider a case when abnormal concentration of 
nuclear physicists on a specific territory reveals the site of a secret nuclear research facil-
ity. Of course, removing such attributes as Occupation or Industry seems to be a first 
choice. However, the risk of privacy violation remains high if there is information about 
where respondents pursued their higher education (e.g., National Institute for Nuclear 
Science and Technology for academic training in atomic energetics is situated in Saclay 
commune, France), or about where they lived (for instance, Dubna, Russian Federation, 
is a home to Joint Institute for Nuclear Research). Therefore, the task of protecting dis-
tributions for a certain group of respondents (which can be persons, households, enter-
prises etc.) with minimal distortion of primary statistical data is a pressing one.

There are numerous practical cases when we do not have attributes at our disposal that 
classify a respondent as belonging to a certain group (either because they were deliber-
ately removed by the data publisher, or because they were not present in the first place). 
However, we can try to restore group distributions by analyzing publicly available data 
such as statistical surveys, polls etc. (Chertov and Tavrov 2015). Using expert judgments 
about these data, we can build a fuzzy model of a group in a form of a fuzzy inference 
system (FIS) that, for each respondent, gives her membership grade in the group under 
consideration. A distribution constructed this way can violate group anonymity as dis-
cussed above.

Expert judgments often are not a reliable source of fuzzy rules that constitute the main 
part of any FIS. Sometimes, it is hard even to properly identify attributes necessary to 
include into a model of a group, let alone determine particular fuzzy rules. In this work, 
we propose an evolutionary based method of building the fuzzy model using third-party 
data. We also describe a memetic algorithm for solving the task of anonymizing the 
obtained distribution. This algorithm seeks minimal distortion in the microfile, and at 
the same time ensures that group anonymity cannot be violated.

Related work
Data anonymity

Anonymity of a subject means (Pfitzmann and Hansen 2010) that it is not identifiable 
(uniquely characterized) within a set of subjects. There can be distinguished two kinds of 
anonymity:

• • individual anonymity means that a single respondent is unidentifiable within a given 
dataset;
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• • group anonymity means that information about a group of respondents cannot be 
used to violate sensitive features of appropriate distributions.

Methods for providing individual anonymity are discussed in the field of privacy-pre-
serving data publishing (Fung et al. 2010; Wong and Fu 2010). A plenty of methods have 
been proposed over the years, some of which are randomization (Evfimievski 2002), 
microaggregation (Domingo-Ferrer and Mateo-Sanz 2002), data swapping (Fienberg and 
McIntyre 2005), differential privacy (Dwork 2006), etc. A comprehensive overview of 
recent developments in the field can be found in Sowmyarani and Srinivasan (2012) and 
Rashid and Yasin (2015).

For the first time, the problem of violating data group anonymity, i.e., anonymity not of 
individual respondents, but of groups thereof, was introduced in the context of provid-
ing group anonymity in Chertov and Tavrov (2010). It was shown that group anonymity 
can be violated by analyzing outliers of a so called quantity signal q =

(

q1, q2, . . . , qlp

)

, 
where each qk, k = 1, 2, . . . , lp, stands for a number of respondents belonging to a given 
group (e.g., group of military personnel, or group of nuclear scientists) in a given submi-
crofile, whose total number is lp. A submicrofile is a subset of microfile records sharing 
the same property, such as region of work. In Chertov and Tavrov (2010), it was argued 
that outliers in a quantity signal that corresponds to the regional distribution of military 
personnel can be used to disclose locations of (potentially classified) military bases.

In Chertov and Tavrov (2012), the concept of a quantity signal has been taken further 
by introducing a concentration signal c =

(

c1, c2, . . . , clp

)

, where each ck, k = 1, 2, . . . , lp , 
is obtained by dividing the corresponding qk by a total number of records in a corre-
sponding submicrofile. The concentration signal can be used to violate anonymity of 
groups when absolute numbers of respondents are not sufficient. For instance, as was 
argued in Chertov and Tavrov (2012) using scientists as an example, extreme ratios of 
scientists working in a given region could potentially give away the location of a classi-
fied research center.

In general, group anonymity can be violated by analyzing such sensitive properties 
of quantity and concentration signals as (Chertov 2010, p. 77) outliers (almost always a 
sensitive feature of any distribution), certain statistical features and trends (especially in 
the case when the quantity signal represents an ordered sequence of numbers), cycles 
or periods (especially when the quantity signal represents a time series), or frequency 
spectrum.

In certain practical applications, when the groups are defined in terms of specific 
attributes (such as a group of military personnel, which is defined by a special attribute 
uniquely identifying a respondent as a military enlisted), it is possible to protect group 
anonymity by removing this attribute from the original dataset before publishing. Being 
a crude solution by itself, it is still not applicable in a number of cases, when it is possible 
to build an approximation of a group, i.e., define a set of records in the dataset such that 
its quantity or concentration signal is sufficiently similar to the original one so that it is 
possible to violate anonymity of the group in question.

Taking into consideration uncertain and imprecise nature of statistical datasets, it was 
proposed in Chertov and Tavrov (2015) to violate group anonymity with the help of a 
fuzzy model of a group.
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In Chertov and Tavrov (2014), a method for providing group anonymity based on 
memetic computing was proposed. This method enables us to modify the quantity (or 
concentration) signal in order to mask its outliers, and at the same time tries to mini-
mize distortion introduced in the dataset. In Tavrov (2015), this algorithm was adapted 
to work with the fuzzy models proposed in Chertov and Tavrov (2015).

In the next subsection, we will briefly review the concept of fuzzy inference, which is 
necessary for discussing fuzzy models of groups of respondents.

Fuzzy inference

The concept of a fuzzy set was first introduced in Zadeh (1965). A fuzzy set A in a univer-
sal set X is a class, in which a point x ∈ X may have a grade of membership in the inter-
val [0, 1]. Each fuzzy set A is characterized by a membership function µA : X → [0, 1] , 
which associates with each x ∈ X a real number in the interval [0, 1] considered as the 
“grade of membership” of x in A.

Fuzzy sets constitute a core of linguistic variables (Zadeh 1975). An ordinary variable 
is characterized by a triple (X ,U ,R(X ,u)), in which X is the name of the variable, U is the 
universe of discourse, u is a generic name for the elements of U, and R(X ,u) is a subset 
of U, which represents a restriction on the values of u imposed by X. A fuzzy variable 
differs from the ordinary one in that R is a fuzzy subset of U, which represents a fuzzy 
restriction on the values of u imposed by X.

A linguistic variable differs from an ordinary numerical variable in that its values are 
not numbers but words or sentences in a natural or artificial language. It is formally 
characterized by a quintuple (X ,T (X ),U ,G,M), in which X  is the name of the vari-
able; T (X ) denotes the term-set of X—the set of names of linguistic values of X , with 
each value being a fuzzy variable denoted generically by X and ranging over a universe 
of discourse U, which is associated with the base variable u; G is a syntactic rule for gen-
erating the names, X, of values of X ; and M is a semantic rule for associating with each 
X its meaning, M(X), which is a fuzzy subset of U. The meaning, M(X), of a term X is 
defined to be the restriction, R(X), on the base variable u, which is imposed by the fuzzy 
variable named X. For example, we can consider a linguistic variable named Number, 
which is associated with the finite term-set T (Number) = few+ several+many, where 
+ denotes union, and in which each term represents a restriction on the values of u in 
the universe of discourse U = 1+ 2+ · · · + 10.

Linguistic variables can be used to formalize knowledge in form of fuzzy propositions. 
While each classical proposition (i.e., a sentence in some language) is required to be 
either true or false, the truth of fuzzy propositions is a matter of degree. The canonical 
form of the fuzzy proposition, p, is expressed (Klir and Yuan 1995) by the sentence

where V is a linguistic variable with the base variable v defined on some universal set V, 
and F is a fuzzy set on V that represents a fuzzy predicate. Given a particular value of v, 
this value belongs to F with membership grade µF (v). This membership grade is then 
interpreted as the degree of truth, T (p), of proposition p.

Of particular interest for the task of building fuzzy models of groups are conditional 
propositions (fuzzy rules), expressed by the canonical form (Klir and Yuan 1995)

(1)p : V is F ,
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where X  and Y are linguistic variables with the base variables x and y whose values are in 
sets X and Y, respectively; A and B are fuzzy sets on X and Y, respectively. Antecedents 
(left parts) of fuzzy rules can contain more than one linguistic variable:

where logical connective and can be interpreted as a proper fuzzy intersection (Zadeh 
1965).

In Chertov and Tavrov (2015), there has been proposed an expert-based procedure for 
building fuzzy model of a given group to be protected in a form of a fuzzy inference sys-
tem (Klir and Yuan 1995), i.e., a system which employs expert knowledge in the form of 
fuzzy rules for making inferences. Such a fuzzy model can be then thought of as a fuzzy 
classifier that assigns to a given respondent a certain grade of membership in the group.

One of the biggest challenges in creating a fuzzy model of a group is coming up with 
a comprehensive and complete set of rules. When the number of input variables is rela-
tively big, the total number of consistent fuzzy rules can grow beyond a point when it is 
all but impossible to use subjective expert knowledge to formalize them.

In some cases, the problem is not only that of defining proper fuzzy rules, but of defin-
ing, which variables to account for in the antecedents. For instance, in the case of build-
ing a fuzzy model of a group of military personnel, the choice needs to be made as to 
what microfile attributes need to be considered to make an accurate classification of a 
given respondent as a military person. In many practical tasks, there is no way of know-
ing this beforehand, so appropriate efficient search algorithms should be applied, such as 
evolutionary algorithms.

Evolutionary approach to building fuzzy rules

Evolutionary algorithms are heuristic generate-and-test algorithms that mimic biological 
evolution by natural selection (Eiben and Smith 2015, p. 5). The task of creating a fuzzy 
rule set that enables us to violate group anonymity is a complex one, therefore utilizing 
evolutionary algorithms is a suitable approach to solving this problem.

Historically, application of evolutionary and, in particular, genetic algorithms to evolv-
ing rule-based systems was first proposed in Holland (1976) in the context of learning 
classifier systems. Such systems were described (Eiben and Smith 2015, p.  108) as a 
framework for studying learning in condition:action rule based systems, using genetic 
algorithms as the method for the discovery of new rules.

Over the years, evolutionary algorithms have been proposed for evolving fuzzy rules 
as well. For instance, in Ishibuchi et al. (1995, 1999), there was proposed an evolution-
ary algorithm for evolving fuzzy classifiers, i.e., rule based systems with fuzzy rules for 
solving classification tasks. In such systems, consequents (right parts) of the rules in the 
form (3) are labels of classes of interest rather than linguistic variables.

The task of evolving fuzzy rules for violating group anonymity can be viewed as a task 
of subgroup discovery, which is defined (Wrobel 1997) as the task of finding interest-
ing subgroups in a population of individuals, where interestingness is defined as distri-
butional unusualness with respect to a certain property of interest. Subgroup discovery 

(2)p : If X is A, then Y is B,

(3)p : If X1 is A1, and X2 is A2, . . . , and Xn is An, then Y is B,
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represents (Jesus et al. 2007) a form of supervised inductive learning, in which, given a 
set of data and a property of interest to the user, an attempt is made to locate subgroups 
that are statistically most interesting for the user.

Since the subgroups discovered in data need to be of a more explanatory nature (inter-
pretability of the extracted knowledge for the final user is a crucial aspect), a fuzzy 
approach (Jesus et al. 2007) for a subgroup discovery process, which considers linguistic 
variables in descriptive fuzzy rules, is a good approach to take.

It is important to make a distinction between subgroup discovery and the task of 
classification, because Carmona et  al. (2014) subgroup discovery attempts to describe 
knowledge by data while a classifier attempts to predict the target value for new data 
to incorporate in the model. In the context of a fuzzy model of a group of respondents, 
whose anonymity needs to be violated, we are more interested in the classification side. 
However, many ideas from the field of subgroup discovery can provide useful insight, as 
will be shown in the paper. An overview of recent developments in the field of subgroup 
discovery can be found in Atzmueller (2015). Evolutionary algorithms for subgroup dis-
covery are discussed in Carmona et al. (2014).

In general, there can be distinguished two approaches to evolving rule-based systems: 
Michigan approach (Valenzuela-Rendón 1991) and Pittsburgh approach (Smith 1980). 
In the first case, each individual in the evolutionary algorithm population corresponds 
to a single rule. In the second case, each individual is a complete model, i.e., the whole 
set of rules.

In the extraction of rules for the subgroup discovery task, the Michigan approach is 
more suited because (Jesus et al. 2007) the objective is to find a reduced set of rules, in 
which the quality of each rule is evaluated independently of the rest, and it is not neces-
sary to evaluate jointly the set of rules. Moreover, the computation load of the Pittsburgh 
approach is typically much higher (Ishibuchi et al. 1999, p. 616).

Rules used for describing a subgroup differ in their ability to describe an interesting 
subgroup, which is measured by a certain quality measure. In general, quality measures 
can be grouped (Freitas 1999) into objective and subjective measures. Since subjective 
measures involve experts for evaluating rules, we will focus only on objective measures 
that are data-driven, and don’t involve expert judgment. A comprehensive overview of 
quality measures can be found in Lavrač et al. (1999).

However, for the task of violating anonymity of a group of respondents with the help 
of fuzzy rules in terms of disclosing outliers in the quantity signal, quality measures 
described in the literature are not suitable. We are interested in cumulative classifica-
tion properties of fuzzy rules. In other words, we allow ourselves for a certain degree of 
misclassifications, as long as outliers in the quantity signal obtained with the help of the 
fuzzy rules correspond to the ones in the original quantity signal. In this work, we pro-
pose a novel quality measure that takes this into account.

We also propose a version of an evolutionary algorithm for building a fuzzy model of 
a group as a set of fuzzy rules, which differs from the ones described in the literature in 
the quality measure used for evaluating fuzzy rule. The fuzzy model evolved using such 
an algorithm can be used for violating group anonymity in terms of disclosing outliers in 
the quantity signal.
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Group anonymity basics
To set a stage for discussing the fuzzy model of a group, we will first introduce some 
basic notation.

General group anonymity definitions

Let us define microdata as the data about certain respondents presented in a form of 
a depersonalized microfile M (i.e., a microfile without identifiers). Each record r(i), 
i = 1, 2, . . . , ρ, in this microfile contains values of several attributes wj, j = 1, 2, . . . , η. Let 
us denote by wj the set of all the values of wj.

There are two types of attributes of the microfile necessary to define a group. 
Let wvj, j = 1, 2, . . . , l, denote vital microfile attributes. These attributes represent 
those characteristics of records that enable us to determine whether they belong to 
a group or not. Let us define a vital value combination V as an element of the Carte-
sian product wv1 × wv2 × · · · × wvl. Let us denote a set of vital value combinations by 
V =

{

V1, . . . ,Vlv

}

. We will call records whose attribute values belong to V vital records. 
We will denote vital records by r(i)v , i = 1, 2, . . . , ρv.

Let wp, p �= vj∀j denote a parameter microfile attribute. This attribute determines val-
ues, over which we should take the distribution of a group defined by the vital attributes. 
A parameter value P can be defined as a value of the parameter attribute, i.e., P ∈ wp. Let 
us denote a set of parameter values by P =

{

P1, . . . ,Plp

}

. By their nature, parameter val-
ues enable us to divide M into several submicrofiles M1, . . . ,Mlp. Each submicrofile Mk 
contains ρk records, k = 1, 2, . . . , lp, 

∑

k ρk = ρ. All the records in a certain submicrofile 
Mk share the same parameter value Pk.

A word of caution is in order. Throughout this paper, we will assume that if M contains 
several attributes that can be concatenated to form a single parameter attribute, they will 
be concatenated.

We will call all the other attributes wbj, j = 1, 2, . . . , 1, t, bj �= p, bj �= vi∀i, j, basic 
attributes. Obviously, t = η − l − 1.

The group of records G(V,P), whose distribution needs to be masked when providing 
group anonymity, can be determined by the values of the vital and parameter attributes. 
We will denote the distribution of G, whose sensitive features need to be protected, by 
�(M,G). In consistency with existing literature, we will call this distribution the goal 
representation of a group. Throughout this paper, we will limit ourselves to a particular 
goal representation most widely used in practice called the quantity signal. This signal is 
denoted by q =

(

q1, q2, . . . , qlp

)

, where each qk, k = 1, 2, . . . , lp, stands for a number of 
records in Mk that belong to G, i.e., whose vital attribute values belong to V.

Quantity signal and its sensitive features

As pointed out before, when providing group anonymity, it is necessary to protect sensi-
tive features of the goal representation under consideration. In this work, we will con-
sider such sensitive features of a quantity signal as its outliers. Outliers of a quantity 
signal might attract attention to parameter submicrofiles that are supposed to be indis-
tinguishable (sites of military bases, classified research centers etc.).

By outliers of a quantity signal, we will understand its values that are statistically 
inconsistent with the rest of the signal. There have been proposed several approaches to 
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determining outliers in a given dataset. According to the American National Standard 
of the American Society of Mechanical Engineers ASME PTC 19.1 (ASME 2013, p. 78), 
two tests are in common usage, the Thompson τ Technique (Thompson 1935) and the 
Grubbs Method (Grubbs 1969). In this work, we propose to use the Modified Thompson 
τ Technique (MTTT) as the method recommended by ASME (2013,  p.  79) for identi-
fying suspected outliers. This method is based on the Student’s t-distribution (Student 
1908), which is most applicable in situations when the sample size is small, which is typi-
cally the case with the quantity signals.

Let the values of the quantity signal q be arranged in increasing order. To determine 
outliers in this signal, one needs to carry out the following steps:

1.	 Calculate sample mean and sample standard deviation: 

 where mq is the number of elements in q.
2.	 For each signal value qi, i = 1, 2, . . . ,mq, calculate absolute value of its deviation 

from σq as 

3.	 Calculate τ according to 

 where tα/2 is the critical Student’s t value (Student 1908) based on significance level α 
and mq − 2 degrees of freedom.

4.	 If there is such i that di > τσq, then qi is the outlier. In this case, we need to remove 
qi from the signal and return to step 1. If di ≤ τσq for all i, the algorithm stops.

Statistical characteristics (4) are not robust to the presence of outliers in a signal, so 
there have been proposed (Lanzante 1996) other characteristics:

• • the median, which can be interpreted as the “middle” value of a signal and is esti-
mated by 

• • the pseudo-standard deviation, which can be defined based on the interquartile 
range (IQR): 

(4)q =
1

mq

mq
∑

i=1

qi, σq =

√

∑mq

i=1 (qi − q)2

mq − 1
,

(5)di = |qi − q|.

(6)τ =
tα/2 ·

(

mq − 1
)

√
mq

√

mq − 2+ t2α/2

,

(7)Mq =

{

q(mq+1)/2, mq is odd

qmq/2+qmq/2+1

2
, mq is even

(8)spsq =
q0.75 − q0.25

1.349
,
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 where q0.75 (q0.25) is the upper (lower) quartile. If mq is even, the upper (lower) quar-
tile is the median of the largest (smallest) mq

2  observations. If the mq is odd, the upper 
(lower) quartile is the median of the largest (smallest) mq+1

2  observations.

In this work, we will use the MTTT as described above, where estimates (7) and (8) 
are used in place of estimates (4).

Typically, a set of outliers yielded by MTTT contains signal elements that typically 
would not be considered as outliers by an expert. Moreover, in some practical cases, not 
all outliers need to be masked. E.g., when there is a well known military base associated 
with a particular signal element, masking a corresponding outlier will distort the data 
and make it obvious that the primary data have been tampered with. Therefore, in the 
context of providing group anonymity, it is necessary for an expert to revise the set of 
outliers as determined by MTTT.

Let us denote by OUT (q) the set of indexes of q that correspond to outliers yielded 
by MTTT. Let us denote by OUTe(q) ⊆ OUT (q) the subset of indexes of q obtained by 
excluding from OUT (q) those indexes, which an expert considers as not important for 
the task at hand. For brevity, we will also denote by OUT ′

e(q) the relative complement of 
OUTe(q) with respect to 

{

1, 2, . . . , lp
}

.

The task of providing group anonymity

To solve the task of providing group anonymity (TPGA), we need to modify the original 
microfile M in order obtain a new, protected one M∗. Such modification needs to meet 
three conditions (Chertov and Pilipyuk 2011, p. 339):

• • disclosure risk is low or at least adequate to importance of information being pro-
tected;

• • both original and protected microfile data, when analyzed, yield sufficiently similar 
results;

• • the cost of transforming the data is acceptable.

In this paper, by the TPGA, we will understand the task of modifying the microfile in 
such a way that it is no longer possible to determine outliers in the quantity signal, and at 
the same time introduce as little distortion as possible in the process.

The easiest “solution” to the TPGA is to recode vital values or remove some of the 
vital attributes, so that it is impossible to restore the original quantity signal. However, 
this approach satisfies only one out of three properties stated above, namely, it is easy to 
carry out. At the same time, this simplistic approach only gives an impression of reduc-
ing the disclosure risk. As we will demonstrate later, if an adversary has access to appro-
priate third-party data, sensitive features of the group distribution can be violated under 
several conditions.

Therefore, even if we choose to remove the vital attributes (or otherwise modify them), 
we will still need to perform additional microfile modifications in order to properly pro-
tect anonymity of a given group.
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Auxiliary microfiles

Let us further on assume that all the vital attributes are removed from M. Let us denote 
by MH the harmonized version of M, which can be obtained from by means of two basic 
transformations:

• • attributes wj1 , . . . ,wjn are replaced by a single harmonized attribute wH
j1

;
• • several values of the jth attribute w

(i1)
j , . . . ,w

(in)
j ∈ wj, j ∈ {vk}|k=1,2,...,l∪

{

bk
}
∣

∣

k=1,2,...,t
, are replaced by a single value wH(i1)

j  of the jth harmonized attribute, 
which may or may not be equal to any of the values in wj.

Let us denote by M̃ the auxiliary microfile with ρ̃ records denoted by r̃, which has the 
following properties:

• • records in M̃ and in M are drawn from sufficiently similar distributions;
• • M̃ contains auxiliary vital attributes that have the same values and interpretation as 

the vital attributes in M. Auxiliary vital attributes can be used to determine auxiliary 
vital records, whose total number is ρ̃v. In addition, vital and auxiliary vital records 
(as well as the records that are not vital or auxiliary vital, respectively) are drawn 
from sufficiently similar distributions;

• • M and M̃ can be transformed into their harmonized versions MH and M̃H, so 
that their basic attributes are identical both in terms of values and their interpre-
tation. More precisely, MH and M̃H contain harmonized basic attributes wH

bj
, 

j = 1, 2, . . . , tH ;
• • value combinations of attributes wH

bj
, j = 1, 2, . . . , tH, can be used to determine 

membership grades µG

(

rH(i)
)

 of each record rH(i) ∈ MH, i = 1, 2, . . . , ρ, in a group 
G, whose anonymity needs to be violated;

• • an adversary has access to M̃.

It is worth noting that it is not required to harmonize parameter attribute wp in the 
original microfile or its analogy w̃p in the auxiliary one. Throughout this paper, we will 
without loss of generality assume that wp and w̃p remain intact during the harmonization 
process.

If the conditions given above are met, it is possible to build a set of fuzzy rules to 
determine membership grades µG

(

rH(i)
)

, i = 1, 2, . . . , ρ, of each record in a group. 
This set of rules can be interpreted as a fuzzy model of the group whose anonymity 
needs to be violated. This model enables us to construct an auxiliary quantity signal 
qaux =

(

qaux1 , . . . , qauxlp

)

, where qauxj , j = 1, 2, . . . , lp, are defined by

where MH
j  is the parameter submicrofile of MH, whose records share the same parame-

ter value Pj; α is the group membership threshold used to cut off records that don’t belong 
to G with a sufficiently high grade. Throughout this paper, we will use α = 0.5.

(9)qauxj =
∑

rH∈MH
j |µG(rH)≥α

µG

(

rH
)

,
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The auxiliary quantity signal qaux doesn’t have to be close in a numerical sense to the 
original quantity signal q—it is only required that outliers in qaux correspond to those 
ones in q.

Fuzzy rules in a fuzzy model of a group

In order to construct the auxiliary quantity signal as defined by (9), we need to calcu-
late membership grades µG

(

rH(i)
)

 of each microfile record rH(i) ∈ MH, i = 1, 2, . . . , ρ. In 
general, this can be done using appropriate fuzzy rules.

For the case of a fuzzy model of a group, such fuzzy rules can be presented in the fol-
lowing form:

where Ri, i = 1, 2, . . . ,m, denotes the ith fuzzy rule, Aij denotes the value of the jth lin-
guistic variable Lj used in the ith fuzzy rule, G denotes the class of records that belong to 
a group.

Each linguistic variable Lj in the fuzzy rules, j = 1, 2, . . . , tH, corresponds to the attrib-
ute wH

bj
, j = 1, 2, . . . , tH, in the harmonized microfile (M̃H or MH). It has several values 

LLkj , k = 1, 2, . . . , lLj, with their membership functions denoted by µLLkj
. In addition, each 

linguistic variable by default has a value LL0j  with the membership function µLL0j
≡ 1. If 

Aij = LL0j  is present in a fuzzy rule Ri, it means that the actual value of attribute wH
bj

 is 
discarded. As pointed out in Ishibuchi et al. (1999), in this way we can obtain fuzzy rules 
of different generalization capacity.

For each linguistic variable, we can define a range 
[

l
(

Lj
)

,u
(

Lj
)]

 of acceptable values 
of a corresponding base variable. All the records from MH and M̃H, whose values of 
attributes wH

bj
 lie outside the specified ranges, j = 1, 2, . . . , tH, need to be removed. In 

order not to complicate the notation, we will further on assume that MH and M̃H denote 
microfiles that contain only those records, whose attribute values lie inside correspond-
ing ranges, unless specified otherwise. Similarly, we will further on assume that values 
ρ and ρ̃ denote the total number of records in MH and M̃H, respectively, where MH and 
M̃H denote either original microfiles or microfiles with records whose attribute values 
belong to specified ranges, depending on the context.

In what follows, we will make use of notation accepted in the subgroup discovery field. 
Let us define the antecedent part compatibility (Jesus et al. 2007) as the degree of com-
patibility between a record r and the antecedent part of Ri as

where µAij is the membership function of the fuzzy set Aij, 
∏

 denotes a proper fuzzy 
intersection. Throughout this paper, we will use arithmetic product as the fuzzy 
intersection.

To account for the group membership threshold alpha introduced in (9), we will fur-
ther on use the following modification of (11):

(10)Ri : If L1 is Ai1, and L2 is Ai2, . . . , and LtH is AitH then G,

(11)APC(r,Ri) =
∏

j

µAij

(

rbj

)

,

(12)APCα(r,Ri) =
{

APC(r,Ri), APC(r,Ri) ≥ α

0, otherwise
.
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Then, we can say that

where 
⋃

 denotes fuzzy union (Zadeh 1965). In this work, we will use maximum function 
as the fuzzy union.

We say that a record r verifies the antecedent part of Ri if APCα(r,Ri) > 0, and that it 
is covered by Ri if additionally r ∈ G.

In the context of violating group anonymity in terms of disclosing outliers in the aux-
iliary quantity signal, we are interesting in cumulative classification properties of the 
fuzzy rules. In other words, we allow ourselves for a certain degree of misclassifications, 
as long as outliers in the auxiliary quantity signal obtained with the help of the fuzzy 
rules correspond to the ones in the original quantity signal.

Therefore, we need to introduce quality measures that are different from the ones 
described in the literature:

• • a fuzzy rule should have reasonable discriminative capability: 

 which means that rule Ri classifies as belonging to the group G a disproportionally 
bigger number of auxiliary vital records than auxiliary records in general. We will 
introduce a discriminative factor defined by 

• • a fuzzy rule should have reasonable relative confidence: 

which means that Ri incorrectly classifies no more than 
∑

r̃∈G APCα(r̃,Ri)
γ

 records as 
belonging to G, where γ will be called the relative confidence threshold. We will intro-
duce the relative confidence factor defined by 

It can be recognized that the minuend from (14) is a fuzzy version of a well-known 
quality measure called support, and the subtrahend is a fuzzy version of another quality 
measure called coverage (Lavrač et al. 2004). Support considers the number of examples 
satisfying both the antecedent and the consequent parts of the rule, whereas coverage 
measures the percentage of examples covered on average by one rule.

It can also be recognized that (16) resembles the quality measure called confidence 
introduced in Jesus et al. (2007). However, our version differs in the denominator. Clas-
sically, the division is performed over the sum of the degree of membership of all the 

µG(r) =
m
⋃

i=1

APCα(r,Ri),

(13)

∑

r̃∈G APCα(r̃,Ri)

ρ̃v
>

∑

r̃∈M̃H APCα(r̃,Ri)

ρ̃
,

(14)DF(Ri) =
∑

r̃∈G APCα(r̃,Ri)

ρ̃v
−

∑

r̃∈M̃H APCα(r̃,Ri)

ρ̃
,

(15)

∑

r̃∈G APCα(r̃,Ri)
∑

r̃∈G APCα(r̃,Ri)
≥ γ ,

(16)RCF(Ri) =
∑

r̃∈G APCα(r̃,Ri)
∑

r̃∈G APCα(r̃,Ri)
.
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records that verify the antecedent part of this rule, whereas in our version we consider 
only those records that verify the antecedent part of the rule and don’t belong to G. In 
our view, this makes interpretation of this quality measure more tractable, because it can 
be easily assessed how many respondents the rule classifies incorrectly, in relative terms.

In a fuzzy model of a group, each rule Ri needs to have quality measures with the fol-
lowing properties: DF(Ri) > 0, RCF(Ri) ≥ γ. In this case, we will reduce misclassifica-
tions, and thereby obtain a more suitable auxiliary quantity signal.

Auxiliary quantity signal contains all the information necessary to violate group ano-
nymity. On the other hand, to protect group anonymity, we need to use a signal that 
consists of crisp values representing numbers of respondents, not fuzzy degrees. Let us 
introduce a crisp auxiliary quantity signal:

Values of (17) correspond to quantities of records in a corresponding microfile, which 
are assigned a membership grade greater than α. We will make use of the signal defined 
in this way when we will discuss the method for protecting group anonymity in one of 
the subsequent sections.

As it was mentioned earlier, due to complicated interrelations between different rules 
in the rule base, it is virtually impossible to construct the rule base from scratch using 
only expert knowledge. In sections to follow, we will present an appropriately tailored 
evolutionary algorithm for solving this task.

Adequacy of the fuzzy model of a group

In this section, we will briefly discuss possible tests for evaluating adequacy of the fuzzy 
model of the group described above. By adequacy of the fuzzy model we will consider its 
ability to correctly determine outliers in the quantity signal, i.e., how similar are the out-
liers in the original and auxiliary quantity signals. It therefore seems natural to evaluate 
model adequacy using tests designed to evaluate accuracy of classifiers.

Let X = R
n be the multidimensional pattern space under investigation, each element 

x ∈ X of which belongs to one of the two classes from the set Y = {C1,C2}. Let PXY  be 
the unknown joint distribution over X × Y . Let us be given a classifier f : X → Y  that 
maps each pattern x ∈ X to a certain class. Let ǫ = EXY [f (x) �= y] be the classifier error, 
where E is the expectation operator.

Since in practical cases X is typically a set of finite size, ǫ can only be estimated. Let 
S =

{(

x1, y1
)

, . . . ,
(

xm, ym,
)}

 be the set of pairs drawn from PXY . Let us introduce the 
confusion matrix (Olivetti et al. 2012)

where TP (true positive) is the number of patterns from S that belong to class C1, and for 
which f (x) = C1; FP (false positive) is the number of patterns from S that belong to class 
C1, and for which f (x) = C2; FN (false negative) is the number of patterns from S that 
belong to class C2, and for which f (x) = C1; TN (true negative) is the number of pat-
terns from S that belong to class C2, and for which f (x) = C2.

(17)qauxcrispj
=

∣

∣

∣
rH ∈ MH

j |µG

(

rH
)

≥ α

∣

∣

∣
.

(18)Z =
(

TP FP
FN TN

)

,
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The sum of values of (18) is m. Let us denote by e the number of incorrectly classified 
patterns. Then, 

∑

i Zii = m− e.
The prediction accuracy is defined as

When the number of patterns per class is not equal, a setting is called unbalanced. As 
was shown in Olivetti et al. (2012), test (19) is not suitable for unbalanced data. One of 
the tests suitable for unbalanced data is Youden’s J statistic (Youden 1950):

This test explicitly captures the type I and type II errors.
In Olivetti et al. (2015), there was proposed a Bayesian test of statistical independence 

between the results given by the classifier, on the one hand, and the true distribution 
PXY  , on the other hand. This test also takes into account the unbalanced nature of the 
data and the size of the data set. Let us denote by H0 the hypothesis that the results 
given by the classifier are statistically independent of the true distribution PXY . Let us 
also denote by H1 the hypothesis that such results are statistically dependent. Then, let 
us denote by B the Bayes factor that measures the evidence of the data in favor of H1 
with respect to H0:

where 
(

i
j

)

= i!
j!(i−j)!; t1 and t2 are non-negative integer parameters.

The test for evaluating the classifier based on (21) is calculated by

Guidelines for the interpretation of this test are given in Table  1 (Kass and Raftery 
1995).

In the context of evaluating the adequacy of the fuzzy model of a given group, the pat-
tern space has to be taken as a set of parameter values: X = P. Class C1 contains those 

(19)PA =
m− e

m
.

(20)J = TP

TP + FN
+ TN

FP + TN
− 1.

(21)

B(t1, t2) =
[

TP + FP + FN + TN + 1

(TP + FP + t1 + 1)(FN + TN + t2 + 1)

]

×
[

(t1 + 1)(t2 + 1)

t1 + t2 + 1

]

·
(

TP + FP + FN + TN
TP + FN

)

×
t1
∑

i=0

t2
∑

j=0

(

t1
i

)2(
t2
j

)2

(

t1 + t2
i + j

)(

TP + FP + t1
TP + i

)(

FN + TN + t2
FN + j

) ,

(22)
MB = min

0≤t1≤m

0≤t2≤m

log B(t1, t2).

Table 1  Guidelines for  the interpretation of  MB in  terms of  the strength of  evidence 
in favor of H1 against H0

MB <0 0–1 1–3 3–5 >5

H1 strength Negative Bare mention Positive Strong Decisive
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parameter values that correspond to outliers in q, C2 contains all the other parameter 
values.

The auxiliary quantity signal qaux can differ from q in two ways:

• • some of the outliers in q don’t have a correspondence in qaux, i.e., we cannot violate 
anonymity of some of the outliers (type II errors). We will call such outliers undis-
closed outliers;

• • some of the outliers in qaux don’t have a correspondence in q, i.e., the fuzzy rules 
introduce additional outliers not supported by real data (type I errors). We will call 
such outliers false outliers.

Taking into consideration notation introduced earlier, elements of the confusion 
matrix (18) can be defined as follows:

• • TP =
∣

∣OUTe(q) ∩OUTe

(

qaux
)∣

∣;
• • FP =

∣

∣OUTe(q) ∩ OUT ′
e

(

qaux
)∣

∣;
• • FN =

∣

∣OUT ′
e(q) ∩OUTe

(

qaux
)∣

∣;
• • TN =

∣

∣OUT ′
e(q) ∩ OUT ′

e

(

qaux
)∣

∣.

General approach to applying fuzzy rules to violating group anonymity

In general, to violate anonymity of a certain group G in a microfile M in terms of disclos-
ing outliers in its quantity signal, we need to proceed along the following steps:

1.	 Harmonization Choose a microfile M and determine a group G of records, whose 
distribution should be disclosed. Choose an auxiliary microfile M̃ that satisfies all the 
conditions given earlier. Perform harmonization of M and M̃ and obtain harmonized 
microfiles MH and M̃H that have identical attributes with two exceptions: parameter 
attributes in both harmonized microfiles may not be identical, and M̃H contains aux-
iliary vital attributes, whereas MH has vital attributes removed.

2.	 Input Variables Identification For each linguistic variable Lj corresponding to a basic 
harmonized attribute wH

bj
, j = 1, 2, . . . , tH, define a range of values of its base vari-

able 
[

l
(

Lj
)

,u
(

Lj
)]

. Remove from MH and M̃H records whose values of attributes wH
bj

 
lie outside the specified ranges, j = 1, 2, . . . , tH. Use expert judgment to determine 
the fuzzy values LLkj  for each linguistic variable Lj, j = 1, 2, . . . , tH, k = 1, 2, . . . , lLj, 
defined by appropriate membership functions denoted by µLLkj

.
3.	 Evolution Use the evolutionary algorithm to evolve fuzzy rules for violating anonym-

ity of G in MH based on the data from M̃H. To reduce the number of undisclosed 
and false outliers, select only those rules R, for which DF(R) > 0 and RCF(R) ≥ γ , 
and whose support is greater than a predefined value κ. To reduce computational 
overhead, remove rules that are more specific versions of other rules in the set, i.e., 
for each pair of rules Ri and Rj, if ∀k Aik �= Ajk → Aik = LL0k, remove Aj. Using the 
fuzzy rules obtained, assign membership grades to all the records in MH, uniting the 
results in the fuzzy sense.

4.	 Disclosing Outliers Construct the auxiliary quantity signal (9) and determine outliers 
in it.
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Evolutionary algorithm for building the fuzzy model of a group
Outline of the evolutionary algorithm

In the proposed algorithm, whose outline corresponds to the outline presented in Ishibu-
chi et al. (1995), we perform evolution only at the level of fuzzy rules. This means that we 
do not perform any fine-tuning of membership functions of input variables. We choose 
this approach to preserve comprehensibility for humans of the fuzzy rules in the system.

The outline of the algorithm is as follows:

1.	 Randomly generate initial population R = {Ri} of µ individuals, i = 1, 2, . . . ,µ.
2.	 Calculate values of the fitness function for each individual: f (Ri), i = 1, 2, . . . ,µ.
3.	 Check termination condition: if it is satisfied, stop; continue otherwise.
4.	 Select � pairs of individuals and put them into set R′.
5.	 Recombine pairs of individuals from R′ with a recombination operator REC

(

Ri,Rj

)

, 
i = 1, 2, . . . , �, j = �+ 1, . . . , 2 · �. Put the offspring into set R′′.

6.	 Mutate individuals from R′′ with a mutation operator MUT
(

Rj

)

, j = 1, 2, . . . , �.
7.	 Replace � individuals from R that have the lowest fitness values with the mutated off-

spring.
8.	 Go to step 3.

Representation and fitness function

In this work, we treat each individual Ri ∈ R, i = 1, 2, . . . ,µ, as a single rule in the fuzzy 
rule set being evolved. I.e., the whole population constitutes the whole fuzzy rule set, in 
full concordance with the Michigan approach.

We propose to represent each rule Ri, i = 1, 2, . . . ,µ, as a vector of integer values

where Rij is a certain index of the fuzzy value of a linguistic variable Lj.
Availability of values LL0j , j = 1, 2, . . . , tH, in Ri enables us to evolve rules that don’t 

take into account values of the attribute wH
bj

. In other words, the evolutionary process 
can lead to obtaining more generalized rules.

In this work, we evaluate fitness of each individual Ri in terms of its quality measures 
introduced earlier:

Other algorithm parameters

Operator REC
(

Ri1 ,Ri2

)

 should be a proper recombination operator for integer represen-
tation applied with a high probability pc to two individuals Ri1 and Ri2 that yields two off-
spring individuals Rj1 and Rj2. Operator MUT (R) should be a proper mutation operator 
for integer representation applied with a low probability pm to a single individual R that 
yields the mutated one R′.

In this paper, we will use uniform crossover (Syswerda 1989) as a recombination opera-
tor and random resetting mutation (Eiben and Smith 2015, p. 43) as a mutation operator. 
We will also choose the following algorithm parameters:

(23)Ri =
(

Ri1,Ri2, . . . ,RitH
)

,

(24)f (Ri) =
{

DF(Ri) · RCF(Ri), DF(Ri) > 0
0, DF(Ri) ≤ 0

, i = 1, 2, . . . ,µ.
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• • we will choose tournament selection (Brindle 1981) as an efficient and easy to imple-
ment selection operator, with the tournament size 10;

• • we will create initial populations by randomly generating values of each fuzzy rule 
element Rij, i = 1, 2, . . . ,µ, j = 1, 2, . . . , tH, from a uniform distribution on 

[

0, lLj

]

;
• • we will choose the number of generations N as a termination condition, i.e., we will 

terminate the algorithm after having obtained N consequent populations.

Memetic algorithm for protecting group distributions
General information

In previous sections, we have shown that the TPGA is a pressing one, and group distri-
butions need to be protected even when vital attributes are removed from the microfile. 
In this section, we will discuss the memetic algorithm (MA) for solving the task of pro-
viding group anonymity. This algorithm was introduced in Chertov and Tavrov (2014), 
and we will heavily rely on that publication when presenting the algorithm here.

We will assume that the data publisher decides to remove vital attributes from the 
microfile. As pointed out before, to provide group anonymity, we need to mask outliers 
in an auxiliary quantity signal obtained using appropriate fuzzy rules.

The general outline of a single-stage approach to solving the TPGA is as follows:

1.	 Prepare a (depersonalized) microfile M representing data to be anonymized.
2.	 Define groups of respondents Gi(Vi,Pi), whose quantity signals need to be masked, 

i = 1, 2, . . . , k.
3.	 For each i from 1 to k:

(a)	 Build the quantity signal qi for Gi.
(b)	 Obtain fuzzy models of Gi using the evolutionary algorithm.
(c)	 Build the auxiliary quantity signal qaux

i  for Gi using the obtained fuzzy models, 
and the corresponding crisp auxiliary quantity signal qaux

crispi
.

(d)	 Compare two signals and determine whether there is risk of violating group 
anonymity in terms of disclosing their outliers.

(e)	 If there is such risk, define the modifying transformation 
A : qaux

crispi
(M,Gi) → qaux∗

crispi
(M∗,Gi), obtain the modified crisp auxiliary quan-

tity signal qaux∗
crispi

, and hence the modified microfile M∗.

4.	 Prepare the modified microfile M∗ for publishing.

In order to modify the auxiliary quantity signal for a given group in a given micro-
file, we need to physically alter some of the values in the microfile, more precisely, alter 
parameter values for certain records. To preserve the number of records with a particu-
lar parameter value, the records have to be altered in pairs, which can be interpreted as 
swapping the records between submicrofiles. One record needs to belong to the fuzzy 
model of a group, and another needs not to.

As mentioned before, to solve the TPGA means not only to modify the auxiliary quan-
tity signal, but also to introduce as little distortion into the microfile as possible. To this 
end, the records being swapped have to be close to each other is some sense. In this work, 
we will apply the influential metric (Chertov 2010) to determine the degree of similarity 



Page 18 of 32Tavrov and Chertov ﻿SpringerPlus  (2016) 5:78 

between two microfile records. This metric is defined in terms of so called influential 
attributes, i.e., those ones whose distribution is important for further researches using 
microfile data. In this work, we will assume that influential attributes are the same as the 
basic harmonized attributes.

The influential metric is defined as

where Ip is the pth ordinal basic attribute (their overall number is nord), Jk is the kth cat-
egorical basic attribute (their overall number is ncat), χ(v1, v2) denotes the operator that 
equals to χ1 if values v1 and v2 fall into one category, and equals to χ2 otherwise, ωp and 
γk are non-negative weighting coefficients (the bigger the coefficient, the more impor-
tant is the attribute for the researches).

Preserving data utility from the minimal data distortion point of view is a task of high 
complexity and dimensionality, therefore, it is a good idea to use MAs (Moscato 1989) to 
solve the TPGA. MAs are typically implemented as evolutionary algorithms with local 
search procedures (Eiben and Smith 2015, p. 173). New applications of MAs to solving 
complex optimization tasks can be found in Kumar et al. (2014).

Outline of the algorithm

An outline of a memetic algorithm for modifying the microfile M in order to protect 
outliers in corresponding quantity signal is as follows:

	 1.	 Create population P of µ individuals, apply to them local search operator S.
	 2.	 Calculate fitness function f (x) for each individual x ∈ P.
	 3.	 Check termination condition. It if holds, stop, otherwise, go to 4.
	 4.	 Select � pairs of parents.
	 5.	 Apply recombination operator R to each parent pair.
	 6.	 Apply mutation operator M to each of offspring. Put the offspring into P′.
	 7.	 Apply local search operator S to each individual x ∈ P′.
	 8.	 Calculate fitness function f (x) for each individual x ∈ P′.
	 9.	 Select µ individuals from P ∪ P′, put them into P in place of current ones.
	10.	 Go to 3.

In the algorithm outline above, we made use of several symbols introduced earlier, 
but with a different meaning. We hope it will be understandable from the context, what 
symbols mean in each particular case.

Each individual is a matrix U with Q rows and four columns with the following 
elements:

1.	 The first column contains indexes ui1 ∀i = 1, 2, . . . ,Q of submicrofiles to remove 
vital records from. The user has to define the set of such submicrofiles.

2.	 The third column contains indexes ui3 ∀i = 1, 2, . . . ,Q of submicrofiles to add vital 
records to. The user has to define the set of such submicrofiles.

(25)InfM(r, r∗) =
nord
∑

p=1

ωp

(

rIp − r∗Ip
rIp + r∗Ip

)2

+
ncat
∑

k=1

γkχ
2
(

rJk , r
∗
Jk

)

,
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3.	 The second column contains indexes ui2 ∀i = 1, 2, . . . ,Q of the records from Mui1 to 
be removed.

4.	 The fourth column contains indexes ui4 ∀i = 1, 2, . . . ,Q of the records from Mui3 to 
be swapped with the ones defined by ui2.

By its nature, each individual U uniquely defines the modified quantity signal q∗, and 
also determines the particular way of obtaining it, because each row in U defines a par-
ticular pair of respondents to be swapped. Thereby, each U defines a complete solution 
to the TPGA at hand.

Two restrictions are imposed on each individual U:

• • a submicrofile index i can occur in the first column of U not more than qi times;
• • each pair 〈ui1,ui2〉 or �ui3,ui4� ∀i = 1, 2, . . . ,Q cannot occur in U more than once.
• • These restrictions cannot be violated throughout the algorithm run.

In this work, we propose to use the fitness function as the product

where ϒ(U) gives estimation of the solution quality in terms of minimizing microfile 
distortion, �(U) gives estimation the solution quality in terms of protecting outliers in 
the quantity signal, and �(U) is a penalty term against obtaining individuals with too 
many rows.

We propose to use the following expression for the first term of (26):

where Cmax is the greatest possible value of the cumulative influential metric (25), Mi

(

j
)

 
is the operator yielding the jth record of the submicrofile Mi, i = 1, 2, . . . , lp.

Other terms of the fitness function can be chosen depending on the TPGA at hand.
In this work, we use the following recombination operator R

(

Ui1 ,Ui2

)

. It generates two 
random crossover points k1 ∈

[

0,Qi1

]

 and k2 ∈
[

0,Qi2

]

, splits each parent at appropriate 
points, exchanges the tails between them, and thus creates the offspring. This operator 
has to be applied with a high probability pc.

We also use the mutation operator that is a superposition M = M4 ◦M3 ◦M2 ◦M1 of 
the following operators:

1.	 M1 is a swap mutation operator (Syswerda 1991) applied with a small probability pm1 
to the first column of U. Each pair 〈ui1,ui2〉 needs to be preserved ∀i = 1, 2, . . . ,Q.

2.	 M2 is also a swap mutation operator applied with a small probability pm2 to the third 
column of U. Each pair 〈ui3,ui4〉 needs to be preserved ∀i = 1, 2, . . . ,Q.

3.	 M3 is a random resetting mutation operator (Eiben and Smith 2015, p. 43) applied 
with a small probability pm3 to the second column of U.

4.	 M4 is a random resetting mutation operator applied with a small probability pm4 to 
the fourth column of U.

(26)f (U) = ϒ(U) ·�(U) ·�(U),

(27)ϒ(U) =
Cmax −

∑Q
i=1 InfM

(

Mui1(ui2),Mui3(ui4)
)

Cmax
,
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In this work, we use the following local search memetic operator S(U):

1.	 Carry out steps 2–4 ∀i = 1, 2, . . . ,Q.
2.	 Generate a uniformly distributed number r ∈ [0, 1].
3.	 If r ≤ pmem, assign to ui4 the index of a record from Mui3 closest to the record defined 

by ui2 from Mui1 in terms of (25). Otherwise, assign to ui2 the index of a record from 
Mui1 closest to the record defined by ui4 from Mui3 in terms of (25).

4.	 Go to step 2.

Other MA components, such as selection, initialization, termination, population size 
etc. should be chosen individually for each TPGA to be solved.

Results
Problem definition and microfile harmonization

To illustrate ideas developed in this work, we decided to set a task of violating anonym-
ity of a group of regionally distributed military personnel in the U.S. Outliers in quantity 
signals representing such a distribution might point to sites of military facilities, some of 
which might potentially be classified.

We decided to choose the 1 % sample microfile of the American Community Survey 
(ACS) conducted in 2013 available from the IPUMS-International Project (Ruggles et al. 
2010) as the microfile M we would like to violate group anonymity in. This microfile con-
tains ρ = 1,380,924 records.

The microfile contains attributes Place of work: state, 1980 onward and Place of work: 
PUMA, 2000 onward (where PUMA stands for Public Use Microdata Area), that, if con-
catenated, give a unique code of a PUMA where a respondent works. We decided to 
replace these attributes with a single one called Place of work by concatenating the val-
ues of the attributes for each microfile record. The newly obtained attribute plays the 
role of the parameter attribute for our task.

The microfile also contains l = 1 vital attribute Occupation, SOC classification (where 
SOC stands for the 2010 Standard Occupational Classification system), which enables us 
to uniquely identify all the military personnel Mv in the microfile, ρv = 5,519.

We decided to choose the 5 % sample microfile of the 2000 U.S. Census also available 
from the IPUMS-International Project (Ruggles et al. 2010) as the auxiliary microfile M̃. 
This microfile contains ρ̃ = 6,309,848 records. Since this microfile also contains attributes 
Place of work: state, 1980 onward and Place of work: PUMA, 2000 onward, we decided to 
replace them with the Place of work attribute in the same way as described above.

This auxiliary microfile satisfies all the necessary requirements:

• • records in M̃ and in M are drawn from sufficiently similar distributions under 
assumption that demographics of respondents in both microfiles haven’t changed 
much over 13 years;

• • M̃ contains an auxiliary vital attribute Occupation, SOC classification, identical to the 
vital attribute in M in terms of military occupations. Vital records in M and auxiliary 
vital ones in M̃ are drawn from sufficiently similar distributions under assumption 
that demographics of military personnel haven’t changed much over 13 years. There 
are ρ̃ = 19,149 auxiliary vital records in M̃v;
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• • M and M̃ contain almost identical attributes, with the exception of several technical 
ones. In our example, we performed the following harmonization:

•	 we replaced the Occupation, SOC classification attribute in both microfiles with a 
new one Military Personnel, which has only two values, 0 and 1. The value 1 was 
assigned only to those records that had one of the values of attribute Occupation, 
SOC classification presented in Table 2;

•	 we removed all attributes from both microfiles except for Military Personnel, Place 
of work, and tH = 13 basic harmonized attributes, which we consider to be useful 
for building a fuzzy model of a group.

Information about each basic harmonized attribute wH
bi

, i = 1, 2, . . . , 13, is given in 
Table 3, where C stands for a categorical attribute, O stands for an ordinal one.

Input variables identification

In this section, we will discuss linguistic variables Lj corresponding to basic harmonized 
attributes wH

bj
, j = 1, 2, . . . , 13. Each Lj bares the name of the corresponding attribute wbj . 

Ranges 
[

l
(

Lj
)

,u
(

Lj
)]

 of acceptable values of base variables for each Lj, j = 1, 2, . . . , 13, 
are given in Table 4.

After having removed all the records, whose basic harmonized attribute values 
don’t belong to the specified ranges, we obtained the microfiles MH with ρ = 565, 243, 
ρv = 3, 992, and M̃H with ρ̃ = 3, 205, 478, ρ̃v = 14, 263.

Let us introduce several generic membership functions of one argument x and several 
parameters:

GAUSSMF(x, a, b) = e
− (x−b)2

2a2 ,

TRAPMF(x, a, b, c, d) =



























0, x ≤ a
x−a
b−a

, a ≤ x ≤ b

1, b ≤ x ≤ c
d−x
d−c

, c ≤ x ≤ d

0, x ≥ d

,

PIMF(x, a, b, c, d) =































































0, x ≤ a

2

�

x−a
b−a

�2

, a ≤ x ≤ a+b
2

1− 2

�

x−b
b−a

�2

,
a+b
2

≤ x ≤ b

1, b ≤ x ≤ c

1− 2

�

x−c
d−c

�2

, c ≤ x ≤ c+d
2

2

�

x−d
d−c

�2

,
c+d
2

≤ x ≤ d

0, x ≥ d

.

Table 2  Values of the Occupation, SOC classification attribute that correspond to the value 
1 of the harmonized attribute Military Personnel

Attribute value Interpretation

551,010 Military Officer Special and Tactical Operations Leaders

552,010 First-Line Enlisted Military Supervisors

553,010 Military Enlisted Tactical Operations and

Air/Weapons Specialists and Crew Members

559,830 Military, Rank Not Specified
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Then, the fuzzy values of all linguistic variables are as follows:

	 1.	 Variable L1 has 5 fuzzy values:

•	 Young, with the membership function 

• 	 Middle Aged 1, with µA1,2(x) = GAUSSMF(x, 2.0, 27.5);
• 	 Middle Aged 2, with µA1,3(x) = GAUSSMF(x, 2.0, 32.5);
• 	 Middle Aged 3, with µA1,4 (x) = GAUSSMF(x, 2.0, 37.5);
•	 Old, with µA1,5(x) = PIMF(x, 37.85, 42.50, 47.51, 54.84).

µA1,1(x) = PIMF(x, 7.05, 15.40, 22.50, 27.18);

Table 3  Basic harmonized attributes used in the practical example

Index Name Type Values

b1 Age O 000—Less than 1 year old, 1 . . . 130—1 to 130 years, 
135—135

b2 Educational attainment [general version] C 00—N/A or no schooling, 01—Nursery school to grade 
4, 02—Grade 5, 6, 7, or 8, 03—Grade 9, 04—Grade 
10, 05—Grade 11, 06—Grade 12, 07—1 year of col-
lege, 08—2 years of college, 09—3 years of college, 
10—4 years of college, 11—5+ years of college

b3 Sex C 1—Male, 2—Female

b4 Race [general version] C 1—White, 2—Black/Negro, 3—American Indian or 
Alaska Native, 4—Chinese, 5—Japanese, 6—Other 
Asian or Pacific Islander, 7—Other race, nec, 8—Two 
major races, 9—Three or more major races

b5 Usual hours worked per week O 00—N/A, 01 . . . 98—1 to 98 h worked per week, 
99—99 (Topcode)

b6 Hispanic origin [general version] C 0—Not Hispanic, 1—Mexican, 2—Puerto Rican, 3 
—Cuban, 4—Other, 9—Not Reported

b7 Marital status C 1—Married, spouse present, 2—Married, spouse absent, 
3—Separated, 4—Divorced, 5—Widowed, 6—Never 
married/single

b8 Means of transportation to work C 00—N/A, 10—Auto, truck, or van, 11—Auto, 12—Driver, 
13—Passenger, 14—Truck, 15—Van, 20—Motor-
cycle, 30—Bus or streetcar, 31—Bus or trolley bus, 
32—Streetcar or trolley car, 33—Subway or elevated, 
34—Railroad, 35—Taxicab, 36—Ferryboat, 40—Bicy-
cle, 50—Walked only, 60—Other, 70—Worked at 
home

b9 Time of departure for work O 0000—N/A, other values report the time usually leav-
ing for work last week (12:01 a.m. is coded as 0001, 
and 11:59 p.m. is coded as 2359)

b10 Travel time to work O 000—N/A, other values are amounts of time, in min-
utes, it took to get to work last week

b11 Weeks worked last year, intervalled C 0—N/A, 1—1–13 weeks, 2—14–26 weeks, 3—27–
39 weeks, 4—40–47 weeks, 5—48–49 weeks, 
6—50–52 weeks

b12 Total personal income O A 7-digit numeric code reporting each respondent’s 
total pre-tax personal income or losses from all 
sources for the previous year

b13 Speaks English C 0—N/A (Blank), 1 —Does not speak English, 2—Yes, 
speaks English..., 3—Yes, speaks only English, 4—Yes, 
speaks very well, 5—Yes, speaks well, 6 —Yes, but not 
well, 7—Unknown, 8—Illegible
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	 2.	 Variable L2 has 2 fuzzy values:

•	 Low, with µA2,1(x) = TRAPMF(x, 1, 1, 8, 10);
•	 High, with µA2,2(x) = TRAPMF(x, 8, 10, 11, 11).

	 3.	 Variable L3 has 2 fuzzy values:

•	 Male, with µA3,1(x) =
{

1, x = 1
0, otherwise

•	 Female, with µA3,2(x) =
{

1, x = 2
0, otherwise

	 4.	 Variable L4 has 2 fuzzy values:

•	 White, with µA4,1(x) =
{

1, x = 1
0, otherwise

•	 Black, with µA4,2(x) =
{

1, x = 2
0, otherwise

	 5.	 Variable L5 has 3 fuzzy values:

•	 Low, with µA5,1(x) = PIMF(x, 0.0, 0.0, 29.9, 40.3);
• 	 Medium, with µA5,2(x) = GAUSSMF(x, 2.5, 40.0);
•	 High, with µA5,3(x) = PIMF(x, 40.2, 50.1, 100.0, 100.0).

	 6.	 Variable L6 has 2 fuzzy values:

•	 No, with µA6,1(x) =
{

1, x = 0
0, otherwise

•	 Yes, with µA6,2(x) =
{

1, 1 ≤ x ≤ 9
0, otherwise

Table 4  Ranges of acceptable for each linguistic variable in the practical example

Name of Lj l
(

Lj
)

u
(

Lj
)

Age 18 45

Educational attainment [general version] 1 11

Sex 1 2

Race [general version] 1 2

Usual hours worked per week 0 100

Hispanic origin [general version] 0 9

Marital status 1 6

Means of transportation to work 0 70

Time of departure for work 1 2359

Travel time to work 1 119

Weeks worked last year, intervalled 1 6

Total personal income 0 200,000

Speaks English 2 5
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	 7.	 Variable L7 has 2 fuzzy values:

•	 Married, with µA7,1(x) =
{

1, 1 ≤ x ≤ 2
0, otherwise

•	 Not married, with µA7,2(x) =
{

1, 3 ≤ x ≤ 6
0, otherwise

	 8.	 Variable L8 has 3 fuzzy values:

•	 Car, with µA8,1(x) =
{

1, 0 ≤ x ≤ 20
0, otherwise

• 	 Public, with µA8,2(x) =
{

1, 30 ≤ x ≤ 36
0, otherwise

•	 Walked, with µA8,3(x) =
{

1, 40 ≤ x ≤ 50
0, otherwise

	 9.	 Variable L9 has 3 fuzzy values:

•	 Night, with µA9,1(x) = PIMF(x, 1, 1, 530, 630);
• 	 Morning, with µA9,2(x) = PIMF(x, 530, 630, 800, 900);
•	 Day, with µA9,3(x) = PIMF(x, 800, 900, 2359, 2359).

	10.	 Variable L10 has 3 fuzzy values:

•	 Little, with µA10,1(x) = PIMF(x, 1, 1, 10, 15);
• 	 Medium, with µA10,2(x) = PIMF(x, 10, 15, 30, 45);
•	 Much, with µA10,3(x) = PIMF(x, 35, 45, 120, 120).

	11.	 Variable L11 has 2 fuzzy values:

•	 Abnormal, with µA11,1(x) = TRAMPF(x, 1, 1, 5, 6);
•	 Normal, with µA11,2(x) = TRAMPF(x, 5, 6, 6, 6).

	12.	 Variable L12 has 3 fuzzy values:

•	 Low, with µA12,1(x) = PIMF(x, 0, 0, 9000, 12000);
• 	 Medium, with µA12,2(x) = PIMF(x, 9000, 12000, 70000, 90000);
•	 High, with µA12,3(x) = PIMF(x, 70000, 90000, 200000, 200000).

We decided not to define values for variable L13. Its range of acceptable values was 
used to remove unacceptable records from the microfiles, but the attribute itself was not 
involved in the fuzzy rules evolved using the evolutionary algorithm.

Generating fuzzy rules by the evolutionary algorithm

In order to evolve fuzzy rules to obtain the auxiliary quantity signal for the practical 
example, we applied the evolutionary algorithm with the following parameters:

• • the population size µ was fixed at 100;
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• • on each iteration, we replaced � = 40 worst fit individuals with the newly obtained 
by applying recombination and mutation operators;

• • we applied recombination operator with the probability pc = 1.00, and mutation 
operator with probability pm = 0.05;

• • we performed 10 separate runs of the evolutionary algorithm, each of which lasted 
for N = 100 generations.

Of all the fuzzy rules obtained in all generations, we selected the fuzzy rules, whose 
RCF was greater than γ = 0.750 and support was greater than κ = 0.001. After that, we 
removed those rules that are more specific versions of the more general ones in the set, 
as described previously. In Table 5, we presented all of the resultant rules. For each fuzzy 
rule from the rule base, we specified its discriminative factor, relative confidence factor, 
and support. We present all the numerical values with 3 significant numbers, although 
the calculations were carried out with a much higher precision.

As we can see, all of these rules share one common characteristic, i.e., their value of 
variable L8 is Walked, which means that all the respondents considered by the fuzzy 
rules as military personnel walked to their work rather than used a car or other means of 
transportation. Judging from the values of other variables, we can make general conclu-
sions that these respondents typically are young males with medium yearly income.

Disclosing outliers in the group distribution using evolved fuzzy rules

To demonstrate how the evolved fuzzy rules can be used to violate outliers in the quan-
tity signal, we will first apply them to the auxiliary microfile, and then proceed to dis-
closing outliers in quantity signals obtained for the main microfile.

Table 5  Fuzzy rules used in the example

R DF RCF Support

(1, 0, 0, 0, 0, 0, 2, 3, 1, 1, 0, 2) 0.032 0.755 0.032

(1, 0, 0, 0, 3, 0, 0, 3, 1, 0, 0, 0) 0.031 0.787 0.031

(1, 0, 0, 0, 3, 1, 0, 3, 0, 0, 2, 1) 0.012 0.801 0.012

(1, 0, 0, 1, 0, 1, 0, 3, 1, 1, 1, 2) 0.010 0.781 0.010

(1, 0, 0, 1, 3, 0, 0, 3, 0, 0, 2, 1) 0.012 0.851 0.012

(1, 0, 1, 0, 0, 0, 0, 3, 1, 1, 0, 2) 0.034 0.840 0.034

(1, 0, 1, 0, 0, 0, 2, 3, 1, 1, 2, 0) 0.025 0.765 0.025

(1, 0, 1, 0, 3, 0, 2, 3, 2, 0, 0, 1) 0.018 0.931 0.018

(1, 0, 1, 0, 3, 1, 0, 3, 2, 0, 0, 1) 0.017 0.915 0.018

(1, 0, 1, 1, 0, 0, 0, 3, 1, 1, 2, 0) 0.025 0.754 0.026

(1, 0, 1, 1, 0, 0, 2, 3, 1, 0, 0, 2) 0.032 0.751 0.032

(1, 1, 0, 0, 3, 0, 2, 3, 2, 1, 0, 1) 0.018 0.951 0.018

(1, 1, 0, 0, 3, 1, 0, 3, 2, 0, 0, 1) 0.019 0.767 0.019

(1, 1, 1, 0, 3, 0, 0, 3, 2, 0, 2, 1) 0.009 1.876 0.009

(1, 1, 1, 0, 3, 0, 0, 3, 2, 1, 1, 1) 0.008 0.761 0.009

(1, 1, 1, 0, 3, 0, 2, 3, 0, 1, 2, 1) 0.010 1.325 0.010

(1, 1, 1, 0, 3, 0, 2, 3, 2, 1, 2, 0) 0.026 0.767 0.026

(1, 2, 1, 0, 0, 0, 0, 3, 1, 0, 0, 2) 0.002 0.914 0.002
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Since it would be impractical to try to analyze the auxiliary quantity signal constructed 
for all the PUMAs as a whole (there were 1238 different PUMAs circa 2000 in the U.S.), 
we will present appropriate results state by state.

Let us consider for illustration purposes the state of New York. In Fig. 1, we presented 
both the quantity signal (solid line) and the auxiliary quantity signal (dashed line). Val-
ues i = 1, 2, . . . , 61 over the x axis stand for the ith PUMA of the state of New York. The 
list of PUMAs can be found on the IPUMS-International website (PUMAs and Super-
PUMAs 2000). The values over the y axis stand for:

• • in case of the quantity signal, the number of military personnel working in a corre-
sponding PUMA;

• • in case of the auxiliary quantity signal, the sum of all membership grades assigned to 
the respondents in a corresponding PUMA by the evolved fuzzy rules.

Applying MTTT with α = 0.01 to the quantity signal, we can obtain the following 
index set:

Analysis of the Report of the Deputy Under Secretary of Defense (2000) permits us to 
conclude that most of the indexes obtained by MTTT do not correspond to sites of mili-
tary bases. Further on, we will assume that OUTe(qNY 2000) = {5, 42}, because:

• • the outlier in PUMA 5 corresponds to Fort Drum (Deputy Under Secretary of 
Defense 2000, p. ARMY-9);

• • the outlier in PUMA 42 corresponds to West Point Military Reservation (Deputy 
Under Secretary of Defense 2000, p. ARMY-10).

Applying MTTT with α = 0.01 to the auxiliary quantity signal, we can obtain the fol-
lowing index set:

Taking into account previous discussion, we can assume that OUTe

(

qaux
NY 2000

)

= {5, 42} . 
Equality OUTe(qNY 2000) = OUTe

(

qaux
NY 2000

)

 indicates that the sites of military facilities 
can be easily disclosed even if the vital attributes are removed from the microfile.

OUT (qNY 2000) = {3, 4, 5, 7, 8, 16, 24, 28, 29, 30, 42, 44, 49, 51, . . . , 55, 59, 60}.

OUT
(

qaux
NY 2000

)

= {1, 5, 8, 26, 36, 42, 52, 54, 58}.

Fig. 1  Quantity signal (solid line) and auxiliary quantity signal (dashed line) obtained for the state of New York 
by applying the fuzzy rules from the example to the 2000 U.S. census microfile
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In a similar fashion, we can analyze all the other states and determine undisclosed 
and false outliers. The overall figures are given in Table  6. We included in the table 
only those states, where the number of working military personnel exceeds 0.5  % of 
all the military personnel in original harmonized auxiliary microfile M̃H, i.e., the value 
95.245 = 00.005 · 19, 049.

The confusion matrix (18) for this example is

The tests (19), (20), and (22) based on the values of Z are as follows: PA = 0.953 , 
J = 0.891, MB = 98.047. These figures indicate the high effectiveness of the evolved 
fuzzy rules in disclosing sensitive data features.

Let us now discuss the results of the application of the evolved fuzzy rules to the origi-
nal microfile MH. In Fig. 2, we presented both quantity signal (solid line) and auxiliary 
quantity signal (dashed line) for the state of New York. Values i = 1, 2, . . . , 38 over the x 

Z =
(

60 38
4 785

)

.

Table 6  Results of applying the evolved fuzzy rules to the 2000 census microfile

State Number of outliers  
in the quantity signal

Number of undis-
closed outliers

Number of outliers 
in the auxiliary  
quantity Signal

Number of false 
outliers

Alabama 4 3 1 0

Alaska 2 0 2 0

Arizona 4 1 3 0

California 4 0 4 0

Colorado 2 0 2 0

Connecticut 1 0 1 0

Florida 7 4 4 1

Georgia 5 1 5 1

Hawaii 1 0 1 0

Illinois 2 1 1 0

Kansas 3 2 1 0

Kentucky 2 0 2 0

Louisiana 4 2 2 0

Maryland 2 1 1 0

Mississippi 2 1 1 0

Missouri 2 1 1 0

New Jersey 3 1 2 0

New York 2 0 2 0

North Carolina 4 2 2 0

Ohio 4 3 1 0

Oklahoma 3 2 1 0

Pennsylvania 4 2 4 2

Rhode Island 1 0 1 0

South Carolina 6 1 5 0

Tennessee 3 3 0 0

Texas 7 2 5 0

Virginia 9 3 6 0

Washington 5 2 3 0

Total 98 38 64 4
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axis stand for the ith PUMA of the state of New York. The list of PUMAs circa 2013 can 
be found on the IPUMS-International website (PUMAs 2010).

Applying MTTT with α = 0.01 to the quantity signal, we can obtain the following 
index set:

As pointed out before, analysis of (Deputy Under Secretary of Defense 2000) permits 
us to conclude that most of the indexes obtained by MTTT do not correspond to sites of 
military bases. Further on, we will assume that OUTe(qNY 2013) = {5, 29}, because:

• • the outlier in PUMA 5 corresponds to Fort Drum (Deputy Under Secretary of 
Defense 2000, p. ARMY-9);

• • the outlier in PUMA 42 corresponds to West Point Military Reservation (Deputy 
Under Secretary of Defense 2000, p. ARMY-10).

Applying MTTT with α = 0.01 to the auxiliary quantity signal, we can obtain the fol-
lowing index set:

Taking into account previous discussion, we can assume that OUTe

(

qaux
NY 2013

)

= {5, 29}. 
I.e., both outliers are clearly visible in the auxiliary quantity signal as well.

Analogous results for other states are given in Table  7. We once again included in 
the table only those states, where the number of working military personnel exceeds 
0.5 % of all the military personnel in original harmonized microfile MH, i.e., the value 
27.595 = 0.005 · 5, 519.

The confusion matrix (18) for this example is

The tests (19), (20), and (22) based on the values of Z are as follows: PA = 0.930 , 
J = 0.775, MB = 55.067. The values of all the tests are lower than their counterparts 
calculated for the 2000 census data. The matter is that the fuzzy rules were evolved 
using 2000 census data. Nevertheless, presented values indicate high effectiveness of the 
evolved fuzzy rules and their good generalization abilities.

OUT (qNY 2013) = {5, 7, 9, 11, 12, 17, 18, 20, 29, 31, 35, 36, 37}.

OUT
(

qaux
NY 2013

)

= {4, 5, 9, 12, 14, 15, 20, 22, 25, 27, 29, 35, 37, 38}.

Z =
(

42 39
8 564

)

.

Fig. 2  Quantity signal (solid line) and auxiliary quantity signal (dashed line) obtained for the state of New York 
by applying the fuzzy rules from the example to the 2013 U.S. ACS microfile
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Results of protecting group distributions using memetic algorithm

To illustrate the application of the MA for protecting outliers in the auxiliary quantity 
signal for the task discussed above, we will limit ourselves to the state of New York. 
There is a total of 91,398 respondents that work in this state. The auxiliary quantity 

Table 7  Results of applying the evolved fuzzy rules to the 2013 ACS microfile

State Number of outliers  
in the quantity signal

Number of undis-
closed outliers

Number of outliers 
in the auxiliary  
quantity signal

Number of false 
outliers

Alabama 2 2 1 1

Alaska 2 0 2 0

Arizona 4 1 4 1

California 3 1 2 0

Colorado 2 0 2 0

Connecticut 1 0 2 1

Florida 7 5 3 1

Georgia 7 3 4 0

Hawaii 1 0 1 0

Illinois 2 1 2 1

Kansas 2 2 0 0

Kentucky 2 1 1 0

Louisiana 4 4 0 0

Maryland 3 2 1 0

Mississippi 1 0 1 0

Missouri 2 2 0 0

Nevada 1 0 1 0

New Jersey 2 2 0 0

New Mexico 2 2 0 0

New York 2 0 2 0

North Carolina 3 1 2 0

Ohio 2 1 3 2

Oklahoma 3 2 1 0

South Carolina 4 1 3 0

Texas 6 1 5 0

Virginia 7 4 4 1

Washington 4 1 3 0

Total 81 39 50 8

Fig. 3  Initial (solid line) and modified (dashed line) auxiliary quantity signals for the state of New York (2013 
U.S. ACS microfile)
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signal corresponding to this state is shown in Fig. 2 (dashed line), and the corresponding 
crisp auxiliary quantity signal is shown in Fig. 3 (solid line).

As we’ve already discussed earlier, to mask the outliers in the signal, we need to reduce 
the values of the 5th and the 29th signal elements. We can achieve this task by imposing 
such fuzzy restrictions that lead the evolutionary process in the direction of obtaining 
signals, whose 5th and 29th signal values will not be greater than 2.

This leads to the following fitness function:

where Cmax = 299; Wk, k = 1, 2, . . . , 13, is the kth basic attribute; Mj(i,Wk) returns the 
value of the attribute Wk of the ith record in Mj; ZMF(x, a, b) is a function defined as

Each row in (28) corresponds to a single part of the fitness function (26).
To simplify the matters, we considered all the basic attributes to be categorical ones 

with following parameters of (25): γk = 1 ∀k = 1, 2, . . . , 13, χ1 = 1, χ2 = 0. The metric 
(25) defined this way shows the number of attribute values that need to be physically 
altered during one swap of the records between the submicrofiles.

We decided to apply tournament selection (Brindle 1981) as an efficient and easy to 
implement selection operator, with the tournament size 5. Other algorithm parameters 
were chosen as follows: µ = 100, � = 40, pc = 1, pm1 = pm2 = pm3 = pm4 = 0.001 , 
pmem = 0.75. We terminated the algorithm after having obtained 1000 consequent 
populations.

The population was initialized by randomly generating matrices with different num-
bers of rows. Elements of the first column were generated with probabilities propor-
tional to the values of the corresponding elements of q. Elements of the third column 
were generated with probabilities proportional to the total numbers of records in cor-
responding submicrofiles.

During the MA run, we applied linear fitness scaling in the form presented in Gold-
berg (1989, p. 79) to prevent premature convergence. We also multiplied the mutation 
probabilities by the factor of 10 whenever the standard deviation of the population fit-
ness values dropped below 0.03.

We performed 10 runs of the MA. Among 1000 individuals obtained in the last 
generations of each run, 983 correspond to valid solutions of the TPGA in terms of 
masking outliers in the auxiliary quantity signal. In Fig.  3 (dashed line), we presented 
the solution with the lowest cumulative influential metric (25), namely, 53. This solu-
tion is valid because applying MTTT to it yields OUT

(
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)

= {12, 35}. Since 
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OUTe

(

qaux
NY 2013

)

∩ OUT
(

qaux∗
NY 2013

)

= ∅, we can conclude that the memetic algorithm 
managed to successfully modify the auxiliary quantity signal by creating new outliers in 
the 35th and 12th signal elements and eliminating the real ones.

The mean cumulative metric (25) over all solutions that can be in a similar fashion 
viewed as valid is 62.518, i.e., we need to alter only 62.518

13·1,380,924 ≈ 0.0003 % of microfile 
attribute values in order to provide group anonymity.

Conclusions
In this work, we demonstrated that even if vital attributes are removed from the micro-
file, it does not necessarily follow that group anonymity is fully provided. Using an 
appropriately tailored evolutionary algorithm, it is possible to build up the fuzzy model 
of a group in the form of fuzzy rules that can violate group anonymity. We also discussed 
how memetic algorithms can be used to really provide group anonymity in a microfile at 
the cost of introducing only a small amount of distortion into the micro data.

Much work remains to be done. Several directions for future research include: enhanc-
ing the classification accuracy of the fuzzy rules and enhancing the memetic algorithm 
efficiency by choosing appropriate operators.
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