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Background
Twitter is an online social networking service that enables users to send and read short 
140-character messages called “tweets”. The service has gained worldwide popularity 
rapidly since it launched in 2006 (Dijck 2011; Elsweiler and Harvey 2015; Dugue and 
Perez 2014). Roughly speaking, the site is largely used to daily chatter, conversation, and 
debate about information, or to allow ones to understand the world by Daily News (Java 
et al. 2007). Twitter’s users who are increasingly diverse in age, ethnicity and gender may 
see the messages of other followers and go along with these users (Sanderson 2014). 
Reciprocally, nicknames that follow a user have the ability to see the messages posted by 
other users (Dugue and Perez 2014). By doing this, it is fairly easy to make up a following 
of 20–30 people quickly (Launer 2013). At the same time, these companions who make 
full use of Twitter are strongly influenced by minority status, party leadership efforts, 
chamber, and member age (Lassen and Brown 2011). Twitter becomes so popular nowa-
days not only because of it can provide positive information (Tiernan 2014; Fu and Shen 
2014; Roshanaei and Mishra 2015) but also the negative information (Jin et  al. 2014; 
Dugue and Perez 2014; Alowibdi et al. 2015; Roshanaei and Mishra 2015) it still can be 
provided. As of June 2013, Twitter had 218 million monthly active users who collectively 
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expressed around 500 million tweets a day (Elsweiler and Harvey 2015). Undoubtedly, 
Twitter has become a more and more powerful tool for spreading and mining messages 
in our daily life (Fu and Shen 2014).

Social networking sites play a vital role in medicine and other walks of modern life. 
Public Health Organizations (WHO), Centers for Disease Control and Prevention 
(CDC), the Food and Drug Administration (FDA), and the American Red Cross always 
increasingly advocate public to take advantage of social media programs included Twit-
ter, Facebook, and similar internet sites to disseminate important health information. 
For example, the CDC made full use of Twitter to post messages for preventing flu to 
help slow the spread of H1N1 influenza in 2009, growing from 2500 followers to 370,000 
followers during the 2009 outbreak (Currie 2009). It is observed that information that 
users of Twitter shared took advantages or disadvantages for spreading of infectious dis-
eases by reminding them to stay at home when they are sick, teaching users the effec-
tiveness of regular hand-washing, and raising awareness about vaccines or misleading 
their do some irrational things.

Influenza has always a far-reaching influence on our lives, and many attempts have 
been made to investigate realistic mathematical models for researching the trans-
mission dynamics of infectious diseases (Cui et  al. 2008b; Xiao et  al. 2013; Sahua and 
Dhara 2015; Wang et al. 2015; Kaur et al. 2014; Misra et al. 2011; Liu and Cui 2008; Cui 
et al. 2008a; Pawelek et al. 2014; Liu et al. 2007). Cui et al. (2008) proposed a SIS-type 
model to explore the influence of media coverage on the dissemination of emerging or 
reemerging infectious disease, and used a standard incidence βSIS+I between susceptible 
individuals and infected individuals. Their results indicated that media coverage was 
critical for educating people in understanding the possibility of being infected by the 
disease. Xiao et al. (2013) developed a model with media coverage by including a piece-
wise smooth incidence rate to show that the reduction factor due to media coverage 
relies on both the number of cases and the rate of changes in case number. They dem-
onstrated that the media impact resulted in a lower size of outbreak and delayed the 
epidemic peak. Liu and Cui (2008) considered a epidemic model with non-linear contact 
rate, β(I) = β1 − β2

I
m+I , where β1 is the contact rate before media alert, and β(I) is the 

contact rate after media alert, and studied the basic reproductive number, the existence 
and stability of two equilibria. They showed that media and education played a crucial 
role in mounting infection awareness among the residents. An exponential incidence 
β(I) = µe−mI was applied to develop a three dimensional compartmental model Cui 
et al. (2008a). They analyzed dynamical behavior of the model; permanent oscillations 
are generated by a Hopf bifurcation. Pawelek et al. (2014) developed a simple mathemat-
ical model including the dynamics of “tweets”, and studied dynamics of the model. They 
showed that Twitter may serve as a good indicator of seasonal influenza epidemics. Liu 
et al. (2007) assumed that the total number of susceptible remains relatively unchanged 
as a result of the outbreak duration is extremely short, and incorporated a simple nonlin-
ear incidence function β0 = βe−α1E−α2I−α3H, where H denotes hospitalized individuals. 
They illustrated the multiple outbreaks or the sustained periodic oscillations of emerg-
ing infectious diseases owing to the psychological impact.

It is well known that everything has two sides in reality. Massive media coverage is 
no exception. Alowibdi et al. (2015) focused specifically on the detection of inconsistent 
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information involving user gender and user location; they shown that lying contained 
misleading, inconsistent, or false and deceptive information in online social networks 
is quite widespread. Roshanaei and Mishra (2015) compared the patterns of tweeting, 
replying and following by analysis of social engagement and psychological process in 
the positive and negative networks; their findings not only predicted positive and nega-
tive users but also provided the best recommendation for negative users through online 
social media. Unfortunately, most of the aforementioned model (Cui et al. 2008b; Sahua 
and Dhara 2015; Wang et al. 2015; Kaur et al. 2014; Misra et al. 2011; Liu and Cui 2008; 
Cui et  al. 2008a; Pawelek et  al. 2014; Liu et  al. 2007) ignored the negative role of the 
media coverage. It has been observed that communications that people received or send 
through Twitter mislead the public to do some irrational things as well as benefited 
some people (Tiernan 2014; Fu and Shen 2014; Jin et al. 2014; Dugue and Perez 2014). 
Inspired by the documents (Cui et al. 2008a; Liu and Cui 2008; Liu et al. 2007; Pawelek 
et al. 2014), we introduce a more realistic mathematical influenza model, which incorpo-
rates the effects of Twitter in reducing and increasing the spread of influenza epidemics.

The rest of the paper is organized as follows: In “Basic properties” section, a more 
realistic SEIT1T2 model is formulated, the basic reproductive number and stability of 
equilibria are also obtained. In “Analysis of the model” section, the Hopf bifurcation is 
studied. Numerical simulations are carried out in “Numerical simulation” section. Sen-
sitivity analysis is conducted in “Sensitivity analysis” section. Some discussions and con-
clusions are given in the last section.

Basic properties
System description

The total population is divided into three compartments: S(t), the number of suscepti-
ble individuals; E(t), the number of individuals exposed to the infected but not infec-
tious; I(t), the infected who are infectious. All of them may tweet about influenza at the 
rates µ1, µ2, and µ3, respectively, during an epidemic season. T1(t) and T2(t) represent 
the number of tweets that all of them provide positive and negative information about 
influenza at time t, respectively. Our model is governed by the following system of five 
differential equations. A transfer diagram of our model is shown in Fig. 1 and the param-
eters description of our model are presented in Table 1.

The transfer diagram leads to the following system of ordinary differential equations:

where all the parameters are positive constants and ρ is the transmission coefficient 
from the exposed individuals to the infectious individuals, γ is the recover rate that 

dS(t)

dt
= −βSIe−αT1+δT2 ,

dE(t)

dt
= βSIe−αT1+δT2 − ρE,

dI(t)

dt
= ρE − γ I ,

dT1(t)

dt
= pµ1S + pµ2E + pµ3I − τT1,

dT2(t)

dt
= qµ1S + qµ2E + qµ3I − τT2,
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infectious individuals gain permanent immunity to that strain of influenza, p is the ratio 
that individuals may provide positive information about influenza during an epidemic 
season. q is the ratio that individuals may provide negative information about influenza 
during an epidemic season. For simplicity, we assume that the ratio of positive/nega-
tive information for all three groups is same, that is, p and q. µi, i = 1, 2, 3 is the rate 
that susceptible individuals, exposed individuals, and infectious individuals may tweet 
about influenza during an epidemic season, respectively. τ is the rate that tweets become 
outdated in consequence of tweets that appeared earlier are less visible and have less 
effect on the public, and β is the disease transmission coefficient. The transmission coef-
ficient β is reduced by a factor e−αT1 owing to the behavior change of the public after 
reading positive tweets about influenza, where α determines how effective the disease 
positive twitter information can reduce the transmission coefficient, and is increased by 
a factor eδT2 due to the behavior change of the public after reading negative tweets about 
influenza, where δ determines how effective the disease negative twitter information can 
increase the transmission coefficient. Since we only consider the disease outbreak during 
extremely short time, we neglect the natural death and birth rates and further assume 

Fig. 1 Transfer diagram for the dynamics of flu model

Table 1 The parameters description of the flu model

Parameter Description

β Transmission coefficient from the susceptible compartment to the exposed compartment

α The coefficient that determines how effective the positive flu information can reduce the 
transmission rate

δ The coefficient that determines how effective the negative flu information can increase the 
transmission rate

ρ Transmission coefficient from the exposed compartment to the infected compartment

γ The permanently recover rate

µi , i = 1, 2, 3 The rate that susceptible individuals, exposed individuals, and infectious individuals may tweet 
about influenza during an epidemic season respectively

p The ratio that individuals may provide positive information about influenza during an epidemic 
season

q The ratio that individuals may provide negative information about influenza during an epi‑
demic season

τ The rate that tweets become outdated
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that the number of susceptible people is relatively constant (Liu et al. 2007). Therefore, 
the above system can be reduced as follows:

The basic reproductive number

According to system (1), we can easily obtain the basic reproductive number R0 by using 
the the next-generation method (Driessche and Watmough 2002). Here, we have the fol-
lowing matrix of new infection F(x), and the matrix of transfer V(x).

Let x = (E, I , T1, T2)
T , then system (1) can be written as

where

The Jacobian matrices of F(x) and V(x) at the disease-free equilibrium E0 are, 
respectively,

The basic reproductive number, denoted by R0 is thus given by

(1)

dE(t)

dt
= βSIe−αT1+δT2 − ρE,

dI(t)

dt
= ρE − γ I ,

dT1(t)

dt
= pµ1S + pµ2E + pµ3I − τT1,

dT2(t)

dt
= qµ1S + qµ2E + qµ3I − τT2.

(2)E0 = (0, 0,T1
0,T1

0) =

(

0, 0,
pµ1S

τ
,
qµ1S

τ

)

.

dx

dt
= F(x)− V(x),

F(x) =







βSIe−αT1+δT2

0
0
0






,

V(x) =







ρE
γ I − ρE

τT1 − pµ1S − pµ2E − pµ3I
τT2 − qµ1S − qµ2E − qµ3I






.

DF(E0) =









0 βSe−αT1
0+δT2

0
0 0

0 0 0 0
0 0 0 0
0 0 0 0









, DV(E0) =







ρ 0 0 0
−ρ γ 0 0

−pµ2 −pµ3 τ 0
−qµ2 −qµ3 0 τ






,

DV(E0)
−1 =











1
ρ

0 0 0
1
γ

1
γ

0 0
pµ2
τρ

+
pµ3
τγ

pµ3
τγ

1
τ

0
qµ2
τρ

+
qµ3
τγ

qµ3
τγ

0 1
τ











.

(3)R0 =
βS

γ
e−αT1

0+δT2
0
,
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where

The existence of equilibria

Theorem 1 For the system (1), there exist the following two equilibria:

1. System (1) always exists the disease-free equilibrium E0 = (0, 0,T1
0,T2

0), where T1
0 

and T2
0 are given by (4).

2. If R0 > 1 and αp− δq > 0, there exists the endemic equilibrium 
E∗ = (E∗, I∗,T1

∗,T2
∗). Where E∗ = (E∗, I∗,T1

∗,T2
∗) satisfies the following equali-

ties: 

Proof 1. It is easy to know that system (1) always exists the disease-free equilib-
rium E0 = (0, 0,

pµ1S
τ

,
qµ1S
τ

).
2. By letting the right-hand sides of (1) equal zero, namely, 

let (E, I ,T1,T2) = (E∗, I∗,T1
∗,T2

∗) satisfy the equality (6), that is,

From the first and the second equation of (7), we obtain

By adding the third and the fourth equation of (7), we get

(4)T1
0 =

pµ1S

τ
, T2

0 =
qµ1S

τ
.

(5)

E∗ =
γρ ln(R0)

(αp− δq)(γµ2 + ρµ3)
,

I∗ =
τρ ln(R0)

(αp− δq)(γµ2 + ρµ3)
,

T1
∗ =

p ln(R0)

(αp− δq)
+ T1

0,

T2
∗ =

q ln(R0)

(αp− δq)
+ T2

0.

(6)

βSIe−αT1+δT2 − ρE = 0,

ρE − γ I = 0,

pµ1S + pµ2E + pµ3I − τT1 = 0,

qµ1S + qµ2E + qµ3I − τT2 = 0.

(7)

βSI∗e−αT1
∗+δT2

∗

− ρE∗ = 0,

ρE∗ − γ I∗ = 0,

pµ1S + pµ2E
∗ + pµ3I

∗ − τT1
∗ = 0,

qµ1S + qµ2E
∗ + qµ3I

∗ − τT2
∗ = 0.

(8)αT1
∗ − δT2

∗ = ln

(

βS

γ

)

.

(9)α
p

τ

(

µ1S + µ2E
∗ + µ3

ρ

γ
E∗

)

− δ
q

τ

(

µ1S + µ2E
∗ + µ3

ρ

γ
E∗

)

= ln

(

βS

γ

)

.
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From this we have

At the same time, we obtain

By substituting (10) and (11) into the third and the fourth equation of (7), we have

Simplifying the above equations, we can yield

So we can obtain endemic equilibrium E∗ = (E∗, I∗,T1
∗,T2

∗). It is clear that the 
endemic equilibrium exists if and only if R0 > 1 and αp− δq > 0. This completes the 
proof of Theorem 1.  �

Analysis of the model
In this section we will discuss the stability of equilibria of the system (1).

Stability of the disease‑free equilibrium

Theorem 2 If R0 < 1 and αp− δq ≥ 0, then the disease-free equilibrium E0 is globally 
asymptotically stable.

Proof The characteristic equation of the linearization of system (1) at the disease-free 
equilibrium E0 is

where � is the eigenvalue. Two eigenvalues are −τ and the other are determined by

According to (3), the above equation can be rewritten as

(10)E∗ =
ln(R0)

µ2
τ
(αp− δq)+ ρµ3

τγ
(αp− δq)

=
τγ ln(R0)

(αp− δq)(γµ2 + ρµ3)
.

(11)I∗ =
ρ

γ
E∗ =

τρ ln(R0)

(αp− δq)(γµ2 + ρµ3)
.

p

[

µ1S + µ2
τγ ln(R0)

(αp− δq)(γµ2 + ρµ3)
+ µ3

ρ

γ

τγ ln(R0)

(αp− δq)(γµ2 + ρµ3)

]

= τT1
∗,

q

[

µ1S + µ2
τγ ln(R0)

(αp− δq)(γµ2 + ρµ3)
+ µ3

ρ

γ

τγ ln(R0)

(αp− δq)(γµ2 + ρµ3)

]

= τT2
∗.

T1
∗ =

p

τ

[

µ1S + µ2

τ ln(R0)(γµ2 + ρµ3)

(αp− δq)(γµ2 + ρµ3)

]

=
p

τ

[

µ1S + µ2

τ ln(R0)

(αp− δq)

]

=
p ln(R0)

(αp− δq)
+ T1

0
,

T2
∗ =

q

τ

[

µ1S + µ2

τ ln(R0)(γµ2 + ρµ3)

(αp− δq)(γµ2 + ρµ3)

]

=
q

τ

[

µ1S + µ2

τ ln(R0)

(αp− δq)

]

=
q ln(R0)

(αp− δq)
+ T1

0
.

(12)

∣

∣

∣

∣

∣

∣

∣

∣

−ρ − � βSe−αT1
0+δT2

0
0 0

ρ −γ − � 0 0
pµ2 pµ3 −τ − � 0
qµ2 qµ3 0 −τ − �

∣

∣

∣

∣

∣

∣

∣

∣

= 0,

(�+ ρ)(�+ γ )− ρβSe−αT1
0+δT2

0
= 0.

(13)�
2 + (ρ + γ )�+ ργ (1− R0) = 0.
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If R0 < 1, then we have

It follows from the above equation that all the eigenvalues of (12) are negative. Therefore 
E0 is a locally asymptotically stable equilibrium of (1). We define a Lyapunov function

It is obvious that V (t) ≥ 0 and the equality holds if and only if E(t) = I(t) = 0. From the 
third and the fourth equation of (1), we have

When αp− δq ≥ 0(i.e.,αT1 − δT2 ≥ 0), we yield

Using the result of differential inequalities (Lakshmikantham et al. 1988), we obtain

Therefore, αT1 − δT2 ≥
µ1S
τ
(αp− δq) = αT1

0 − δT2
0, for all t ≥ 0. Differentiating V(t) 

and using βSe−αT1
0+δT2

0
= γR0, we have

It follows that V(t) is bounded and non-increasing. Therefore, limt→∞ V (t) exists. Note 
that dV (t)

dt
= 0 if and only if E(t) = I(t) = 0, T1 = T1

0 and T2 = T2
0. By LaSalle Invari-

ance Principle (LaSalle 1987), the disease-free equilibrium E0 is globally attracting when 
αp− δq ≥ 0 and R0 < 1. Together with the local asymptotic stability, we show that E0 is 
globally asymptotically stable when αp− δq ≥ 0 and R0 < 1. This completes the proof of 
Theorem 2.  �

Remark 1 When R0 < 1 and αp− δq < 0, globally asymptotically stability of the disease-
free equilibrium E0 is not been established. Figure 2b seems to support the idea that the 
disease-free equilibrium of system (1) is still global asymptotically stable even in this case.

�1 = �2 = −τ ,

�3 + �4 = −(ρ + γ ) < 0,

�3�4 = ργ (1− R0) > 0.

V (t) = E(t)+ I(t).

d(αT1 − δT2)

dt
= α(pµ1S + pµ2E + pµ3I − τT1)− δ(qµ1S + qµ2E + qµ3I − τT2)

= µ1S(αp− δq)+ µ2E(αp− δq)+ µ3I(αp− δq)− τ(αT1 − δT2).

(14)
d(αT1 − δT2)

dt
≥ µ1S(αp− δq)− τ(αT1 − δT2).

(15)

αT1 − δT2 ≥ (αT1
0 − δT2

0)e
∫ t
0 (−τ)du +

∫ t

0
µ1S(αp− δq)e

∫ t
v (−τ)dudv

= (αT1
0 − δT2

0)e−τ t +
µ1S

τ
(αp− δq)(1− e−τ t)

=

[

(αT1
0 − δT2

0)−
µ1S

τ
(αp− δq)

]

e−τ t +
µ1S

τ
(αp− δq).

dV (t)

dt
=

dE(t)

dt
+

dI(t)

dt

= βSIe−αT1+δT2 − γ I

= I(γR0 − γ )

= γ I(R0 − 1) ≤ 0.



Page 9 of 20Huo and Zhang  SpringerPlus  (2016) 5:88 

Stability of the endemic equilibrium

Theorem 3 The endemic equilibrium E∗ is locally asymptotically stable if and only if 
one of the following statements is satisfied:

1. R0 > 1, αp− δq > 0, and µ3 ≤ µ3
∗, where µ3

∗ =
ρ+τ
ρ

µ2;
2. R0 > 1, αp− δq > 0, µ3 > µ3

∗, and β < min{β∗,β∗∗}, where β∗ and β∗∗ are given 
by (25) and (27), respectively.

Proof The characteristic equation of the linearization of system (1) at the endemic 
equilibrium E∗ is

Note that R0 =
βS
γ
e−αT1

0+δT2
0 , T1

∗ =
p ln(R0)
(αp−δq) + T1

0 and T2
∗ =

q ln(R0)
(αp−δq) + T2

0, we have

The corresponding characteristic equation becomes

Simplifying the above determinant, so the characteristic equation about E∗ can be 
rewritten as

∣

∣

∣

∣

∣

∣

∣

−ρ − ξ βSe−αT1
∗+δT2

∗

−αβSI∗e−αT1
∗+δT2

∗

δβSI∗e−αT1
∗+δT2

∗

ρ −γ − ξ 0 0
pµ2 pµ3 −τ − ξ 0
qµ2 qµ3 0 −τ − ξ

∣

∣

∣

∣

∣

∣

∣

= 0.

βSe−αT1
∗+δT2

∗

= βSe
−α

[

p ln(R0)
αp−δq +T1

0
]

+δ

[

q ln(R0)
αp−δq +T2

0
]

= βSe−αT1
0+δT2

0
e
−αp+δq
αp−δq ln(R0)

= γR0e
− ln(R0)

= γ .

∣

∣

∣

∣

∣

∣

∣

−ρ − ξ γ −αγ I∗ δγ I∗

ρ −γ − ξ 0 0
pµ2 pµ3 −τ − ξ 0
qµ2 qµ3 0 −τ − ξ

∣

∣

∣

∣

∣

∣

∣

= 0.
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Fig. 2 a Illustration of disease‑free equilibrium of the system (1) is globally asymptotically stable when R0 < 1 
and the positive information more than negative information (i.e., αp− δq > 0, b illustration of disease‑free 
equilibrium of the (1) is globally asymptotically stable when R0 < 1 and the negative information more than 
positive information (i.e., αp− δq > 0
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where

It is evident that ai > 0 (i = 1, 2, 3, 4), when R0 > 1. On the basis of the Routh–Hurwitz 
criteria (Murray 1998), we have

Denoting the expression γρτ ln(R0)[(ρ + τ)µ2 − ρµ3] + 2τ(ρ + γ + τ )2γρτ ln(R0) by 
ϕ, one has

Therefore a1a2 − a3 > 0 if and only if ϕ > 0. Moreover

(16)P(ξ) = ξ4 + a1ξ
3 + a2ξ

2 + a3ξ + a4,

(17)a1 = ρ + γ + 2τ ,

(18)

a2 = γ I∗µ2(αp− δq)+ τ 2 + 2τ(ρ + γ )

=
γρτ ln(R0)µ2

γµ2 + ρµ3
+ τ 2 + 2τ(ρ + γ ),

(19)

a3 = γ I∗(αp− δq)[ρµ3 + (τ + γ )µ2]+ τ 2(ρ + γ )

=
γρτ ln(R0)

γµ2 + ρµ3
[ρµ3 + (τ + γ )µ2]+ τ 2(ρ + γ ),

(20)a4 = γ I∗τ(αp− δq)(γµ2 + ρµ3) = γρτ 2 ln(R0).

a1a2 − a3 = (ρ + γ + 2τ )
[

γ I∗µ2(αp− δq)+ τ 2 + 2τ(ρ + γ )

]

− γ I∗(αp− δq)[ρµ3 + (τ + γ )µ2]− τ 2(ρ + γ )

= γ I∗(αp− δq)[(ρ + τ)µ2 − ρµ3]+ τ 2(ρ + γ + 2τ )

+ 2τ(ρ + γ )(ρ + γ + 2τ )− τ 2(ρ + γ )

= γ I∗(αp− δq)[(ρ + τ)µ2 − ρµ3]+ 2τ(ρ + γ + τ )2

=
γρτ ln(R0)

γµ2 + ρµ3
[(ρ + τ)µ2 − ρµ3]+ 2τ(ρ + γ + τ )2

=
1

γµ2 + ρµ3
{γρτ ln(R0)[(ρ + τ)µ2 − ρµ3]

+ 2τ(ρ + γ + τ )2γρτ ln(R0)}.

a1a2 − a3 =
ϕ

γµ2 + ρµ3
.

(21)

a3(a1a2 − a3)− a1
2a4 =

{

γ I∗(αp− δq)[ρµ3 + (τ + γ )µ2]+ τ 2(ρ + γ )

}

×

{

γ I∗(αp− δq)[(ρ + τ)µ2 − ρµ3]+ 2τ(ρ + γ + τ)2
}

− (ρ + γ + 2τ)2γ I∗τ(αp− δq)(γµ2 + ρµ3)

= [ρµ3 + (τ + γ )µ2][(ρ + τ)µ2 − ρµ3]
[

γ I∗(αp− δq)
]2

+

{

ρτµ3[(ρ + γ )2 − τ(ρ + γ + 2τ)] + γ τµ2[(ρ + γ )2 − 2τ 2]

+τ 2µ2

[

2(ρ + γ + τ)2 + (ρ + γ )(ρ + τ)

]}

[

γ I∗(αp− δq)
]

+ 2τ 3(ρ + γ )(ρ + γ + τ)2.
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Obviously, a3(a1a2 − a3)− a1
2a4 = 0 is an unary quadratic equation about 

γ I∗(αp− δq). With the help of Matlab, we can obtain two solutions of this unary quad-
ratic equation, in other words,

Hence, the endemic equilibrium E∗ is locally asymptotically stable if and only if ϕ > 0 
and a3(a1a2 − a3)− a1

2a4 > 0.
Let µ3

∗ =
ρ+τ
ρ

µ2.
If µ3 ≤ µ3

∗(i.e.,(ρ + τ)µ2 − ρµ3 ≥ 0), then ϕ > 0.
For µ3 > µ3

∗(i.e.,(ρ + τ)µ2 − ρµ3 < 0). If ϕ > 0, then the following inequality needs 
to be satisfied

Note that R0 =
βS
γ
e−αT1

0+δT2
0, we solve β and obtain β < β∗, where

Therefore, we show that a1a2 − a3 > 0 if (1) µ3 ≤ µ3
∗ or (2) µ3 > µ3

∗ and β < β∗.
Next, we prove that if µ3 ≤ µ3

∗, then a3(a1a2 − a3)− a1
2a4 > 0 holds constantly. In 

fact, the right first term of (21) is nonegative constantly, namely,

We denote the right second term of (21) to be ψ[γ I∗(αp− δq)], where

Thanks to µ3 ≤ µ3
∗, then ψ is satisfied the following inequality

Therefore, the right second term of (21) is negative constantly. Obviously, the right third 
term 2τ 3(ρ + γ )(ρ + γ + τ )2 of (21) is also negative constantly. Taking the above fact 
into consideration, we get a3(a1a2 − a3)− a1

2a4 > 0 holds constantly if µ3 ≤ µ3
∗. 

Hence the statements (1) of Theorem 3 are proved.
For µ3 > µ3

∗ and β < β∗, if a3(a1a2 − a3)− a1
2a4 > 0 holds, we must make 

(γH∗(αp− δq))2 <
τ [(ρ+γ )2+τ(ρ+γ )]

ρµ3−(ρ+τ)µ3
 hold constantly.

(22)
(

γ I∗(αp− δq)
)

1
=

−(2ρτ 2 + 2γ τ 2 + 2τ 3)

ρµ3 + (γ + τ)µ3
,

(23)
(

γ I∗(αp− δq)
)

2
=

τ
[

(ρ + γ )2 + τ(ρ + γ )
]

ρµ3 − (ρ + τ)µ3
.

(24)ln(R0) <
2τ(ρ + γ + τ )2(γµ2 + ρµ3)

γρτ [ρµ3 − (ρ + τ)µ2]
.

(25)β∗ =
γ

S
e
2(ρ+γ+τ)2(γµ2+ρµ3)

γρ[ρµ3−(ρ+τ)µ2] e
µ1S
τ

(αp−δq).

[ρµ3 + (τ + γ )µ2][(ρ + τ)µ2 − ρµ3]
[

γ I∗(αp− δq)
]2

≥ 0

ψ = ρτµ3

[

(ρ + γ )2 − τ(ρ + γ + 2τ )
]

+ γ τµ2

[

(ρ + γ )2 − 2τ 2
]

+ τ 2µ2

[

2(ρ + γ + τ )2 + (ρ + γ )(ρ + τ )

]

.

ψ ≥ τ

{

ρµ3(ρ + γ )2 + 2τµ2

[

(ρ + γ )2 + τ(ρ + γ )

]

+ γµ2(ρ + γ )2
}

> 0.



Page 12 of 20Huo and Zhang  SpringerPlus  (2016) 5:88 

In this case, the quadratic equation a3(a1a2 − a3)− a1
2a4 = 0 about γ I∗(αp− δq) 

is an opening down, and there are two unequal roots (positive and negative). There-
fore, we need γ I∗(αp− δq) < τ [(ρ+γ )2+τ(ρ+γ )]

ρµ3−(ρ+τ)µ3
 is satisfied. Moreover, we can obtain 

a3(a1a2 − a3)− a1
2a4 > 0. From γ I∗(αp− δq) < τ [(ρ+γ )2+τ(ρ+γ )]

ρµ3−(ρ+τ)µ3
, we can get 

γρτ ln(R0)
γµ2+ρµ3

<
τ [(ρ+γ )2+τ(ρ+γ )]

ρµ3−(ρ+τ)µ2
, that is to say,

It follows from the expression of R0 (see (3)) that

Simplifying the above inequality, we have

Now, we rewritten inequality (26) as β < β∗∗, where

Furthermore, we have a3(a1a2 − a3)− a1
2a4 > 0 holds, if µ3 > µ3

∗, β < β∗ and 
β < β∗∗, where β∗ and β∗∗ are given by equality (25) and equality (27) respec-
tively. Owing to R0 > 1, combining with (20), we can obtain a4 > 0. Thus we have 
a3a4(a1a2 − a3)− a1

2a24 > 0 if a3(a1a2 − a3)− a1
2a4 > 0. From Routh-Hurwitz cri-

teria (Murray 1998), we know the endemic equilibrium is locally asymptotically stable. 
This completes the proof of the statements (2) of Theorem 3. �

Hopf bifurcation

Theorem 4 A Hopf bifurcation occurrs when β increases and the curve β∗∗ is crossed, 
where β∗∗ is defined in equation (26).

Proof Note that two eigenvalues of the fourth degree characteristic polynomial (16) are 
always negative. To observe how the real parts of the other two eigenvalues change their 
signs, we check the transversality condition of the Hopf bifurcation. Assume P(ξ) has 
two real roots x, y and a pair of complex roots a± bi, where x < 0, y < 0 and a, b ∈ R. 
We yield

ln(R0) <

[

(ρ + γ )2 + τ(ρ + γ )
]

(γµ2 + ρµ3)

γρ[ρµ3 − (ρ + τ)µ2]
.

ln

(

βS

γ

)

<

[

(ρ + γ )2 + τ(ρ + γ )
]

(γµ2 + ρµ3)

γρ[ρµ3 − (ρ + τ)µ2]
+ αT1

0 − δT2
0.

(26)β <
γ

S
e
[(ρ+γ )2+τ(ρ+γ )](γµ2+ρµ3)

γρ[ρµ3−(ρ+τ)µ2] e
µ1S
τ

(αp−δq).

(27)β∗∗ =
γ

S
e
[(ρ+γ )2+τ(ρ+γ )](γµ2+ρµ3)

γρ[ρµ3−(ρ+τ)µ2] e
µ1S
τ

(αp−δq).

P(ξ) = (ξ − x)(ξ − y)[ξ − (a+ bi)][ξ − (a− bi)]

= [ξ2 − (x + y)ξ + xy][ξ2 − 2aξ + (a2 + b2)]

= ξ4 − (2a+ x + y)ξ3 +
[

(a2 + b2)+ xy+ 2a(x + y)
]

ξ2

−

[

(x + y)(a2 + b2)+ 2axy
]

ξ + xy(a2 + b2).
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Taking equation (16) into consideration, we obtain

where ai > 0 (i = 1, 2, 3, 4) are given in equations (17)–(20). Now we investigate the case 
when P(ξ) = 0 has a pair of purely imaginary roots, i.e., a = 0. In this case, we get

Thus, a3(a1a2 − a3)− a1
2a4 = 0, which leads to β = β∗∗. Therefore, the occurrence 

of a pair of purely imaginary roots corresponds to the threshold curve β = β∗∗. Sub-
stituting a+ bi into the characteristic equation (16), we yield P(a+ bi) = 0. Thus, 
Re[P(a+ bi)] = 0, where Re denotes the real part of a complex number. Calculating 
Re[P(a+ bi)] = 0, we have

From (19) and (20), we know that a3 and a4 rely on β due to R0 accommodates β. Con-
sequently, �(a,β) = 0 defines an implicit function a(β) with the independent vari-
able β. Differentiating � in regard to β, we have ∂�

∂β
= 0, which leads to ∂�

∂a
∂a
∂β

+ ∂�
∂β

= 0. 
Thereby, ∂a

∂β
= − ∂�

∂β
/ ∂�
∂a .

Then, we decide the sign of ∂a
∂β

 along the curve β = β∗∗. Noticing that a = 0 and 
a2 = b2 + xy on the curve β = β∗∗, and only a2, a3 and a4 rely upon β. So we have

From (13) we can get

Further, we can easily obtain

a1 = −(2a+ x + y),

a2 = (a2 + b2)+ xy+ 2a(x + y),

a3 = −

[

(x + y)(a2 + b2)+ 2axy
]

,

a4 = xy(a2 + b2),

a1 = −(x + y), a2 = b2 + xy, a3 = −(x + y)b2, a4 = xyb2.

(28)

� = Re
[

(a+ bi)4 + a1(a+ bi)3 + a2(a+ bi)2 + a3(a+ bi)+ a4

]

= a4 − 6a2b2 + b4 + a1(a
3 − 3ab2)+ a2(a

2 − b2)+ a3a+ a4

= a4 − 6a2b2 + b4 + a1a
3 − 3a1ab

2 + a2a
2 − a2b

2 + a3a+ a4

= 0.

(29)

∂�

∂β
|β=β∗∗ =

(

a2
∂a2

∂β
− b2

∂a2

∂β
+ a

∂a3

∂β
+

∂a4

∂β

)

|β=β∗∗

=

(

−b2
∂a2

∂β
+

∂a4

∂β

)

|β=β∗∗

=
γρτ

β∗∗

(

τ −
b2µ2

γµ2 + ρµ3

)

.

�3,4 =
−(ρ + γ )±

√

4ργ (1− R0)− (ρ + γ )2i

2
.

(30)b2 = ργ (1− R0)−
(ρ + γ )2

4
.
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By substituting (30) into (29), we obtain

and

Thus, we have

This show that a Hopf bifurcation occurs when β increases and crosses the curve 
β = β∗∗ . The proof is completed.  �

Numerical simulation
In this section, some numerical results of system (1) are presented for supporting the 
analytic results obtained above. Our part parameter values on the basis of available data. 
The incubation time for the 2009 H1N1 influenza pandemic was reported to be between 
2 and 10 days with a mean of 6 days (Centers for Disease Control and Prevention (CDC) 
2009; Tracht et  al. 2011; Pawelek et  al. 2014). Thereby, we assume that people in the 
exposed compartment move to the infectious compartment at a rate ρ = 1/6day−1. 
The infectious period was estimated to be between 4 and 7 days with a mean of 5 days 
(Leekha et  al. 2007; Tracht et  al. 2011; Pawelek et  al. 2014). Therefore, we choose the 
recovery rate to be γ = 0.2day−1. The susceptible population size S is set to 1 million 
and initially 10 people get exposed to the disease (Tracht et al. 2011; Pawelek et al. 2014). 
The other parameters are chosen to illustrate the theoretical results.

In Fig.  2, we carry out numerical simulations to illustrate the results showed in 
Theorem  2. Figure  2a illustrates the positive information more than negative infor-
mation (i.e., αp− δq > 0); the parameter values are β = 0.0016person−1 day−1 , 
α = 0.00011 tweet−1, δ = 0.00019 tweet−1, ρ = 1/6 day−1, γ = 0.2 day−1, p = 2/3 , 
µ1 = 0.2 day−1, µ2 = 0.4 day−1, µ3 = 0.8 day−1, τ = 0.2 day−1, q = 1/3 , R0 = 0.36.  
Figure  2b illustrates the negative information more than positive informa-
tion (i.e., αp− δq < 0); the parameter values are β = 0.00016 person−1 day−1, 
α = 0.000068 tweet−1, δ = 0.00007 tweet−1, ρ = 1/6 day−1, γ = 0.3 day−1, p = 0.45 , 
µ1 = 0.2 day−1, µ2 = 0.4 day−1, µ3 = 0.6 day−1, τ = 0.2 day−1, q = 0.55, R0 = 0.54.  
It should be observed, of course, that the disease-free equilibrium is globally asymp-
totically stable. However, we only theoretically prove the first case (Fig.  2a), which is 

∂�

∂β
|β=β∗∗ =

γρτ

β∗∗

(

τ −
b2µ2

γµ2 + ρµ3

)

=
γρτ

β∗∗(γµ2 + ρµ3)

[

τ(γµ2 + ρµ3)− b2µ2

]

=
γρτ

β∗∗(γµ2 + ρµ3)

[

τ(γµ2 + ρµ3)− ργ (1− R0)µ2 +
(ρ + γ )2

4
µ2

]

> 0,

∂�

∂a
|β=β∗∗ =

(

4a3 − 12ab2 + 3a1a
2 − 3a1b

2 + 2a2a+ a3

)

|β=β∗∗

= −3a1b
2 + a3

= 2(x + y)b2 < 0(x, y < 0).

∂a

∂β

∣

∣

∣

∣

β=β∗∗ = −
∂�

∂β
/
∂�

∂a

∣

∣

∣

∣

β=β∗∗ > 0.
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consistent with our conclusion (Theorem 2); for the second case (Fig. 2b), we graphically 
elucidated the conclusion.

As is shown in the Figs. 3 and 4, we perform numerical simulations to illustrate the 
results showed in Theorem 3. Figure 3a describes a graph of the solution curve under the 
conditions of Theorem 2, and Fig. 3b reveals the phase diagram including E(t) and I(t) 
trajectories under the conditions of Theorem 3. For the purpose of simplicity, we assume 
µ1 = µ2 = 0, and µ3 > 0; namely, only infectious individuals receive or send positive 
and negative information about influenza. It can be seen from the Fig. 3a that the results 
of numerical simulation fit in with the results of the theoretical analysis. Namely, the 
endemic equilibrium E∗ is locally asymptotically stable when R0 > 1, αp− δq > 0 and 
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µ3 ≤ µ3
∗. Figure 4 shows that the endemic equilibrium E∗ is locally asymptotically sta-

ble when R0 > 1 , µ3 > µ3
∗, and β < β∗∗,

The Fig. 5a–d give information that solution curves of system (1) performs a sustained 
periodic oscillation and phase trajectories approaches limit cycles. This is not surprising 
because theoretical derivation achieves the same goal as well. Biologically speaking, the 
phenomenon sustained periodic oscillation is enforced by unevenly alternating of the 
positive and negative information during an outbreak of epidemic flu.

Sensitivity analysis
In this section, we perform sensitivity analysis of reproduction number R0 and compare 
the effects of several important parameters about Twitter for infectious individuals. To 
see the effect of β, α, δ, p, q, and τ on R0, we note that

(31)
∂R0

∂µ1
= −

βS2

τγ
(αp− δq)e−

µ1S
τ

(αp−δq),

(32)
∂R0

∂τ
=

µ1βS
2

γ τ 2
(αp− δq)e−

µ1S
τ

(αp−δq),

(33)
∂R0

∂β
=

S

γ
e−

µ1S
τ

(αp−δq),

(34)
∂R0

∂γ
= −

βS

γ 2
e−

µ1S
τ

(αp−δq),
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Figure 6a illustrates the relationship between the basic reproductive number R0 and 
µ1 . According to Eq. (31), if ∂R0

∂µ1
> 0 (i.e. αp− δq < 0), then R0 increases as µ1 increases, 

and if ∂R0
∂µ1

< 0 (i.e. αp− δq > 0), then R0 decreases as µ1 increases. Figure 6b illustrates 
the relationship between the basic reproductive number R0 and τ. According to Eq. 
(32), when ∂R0

∂τ
> 0 (i.e. αp− δq > 0), R0 increases as τ increases, and when ∂R0

∂τ
> 0 (i.e. 

αp− δq < 0), R0 decreases as τ increases. By analyzing Eqs. (33) and (34), Fig. 6c dis-
tinctly demonstrates that the greater β increases, the more significant R0 grows, and the 
smaller γ decreases, the more remarkable R0 enlarges. Combining Fig. 6d and Eqs. (35) 
and (36), we can comprehensibly perceive that if α increases, then R0 will decrease, and 
if δ increases, then R0 will increase. Biologically, this means that to reduce influence of 
negative information and transmission rate or increase influence of positive and recover 
rate are vital essential for controlling influenza.

Conclusions and discussions
First, we will discuss the influence of several important parameters about Twitter 
to infectious individuals through graphical approach. In Fig.  7a, b, we consider the 

(35)
∂R0

∂α
= −

pµ1βS
2

γ τ
e−

µ1S
τ

(αp−δq),

(36)
∂R0

∂δ
=

qµ1βS
2

γ τ
e−

µ1S
τ

(αp−δq).
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dynamics of infectious individuals with respect to different factors affecting the spread 
rate due to positive information (Fig. 7a) and negative information (Fig. 7b). The simu-
lation shows that the upper positive factors lead to the lower infectious cases and the 
upper negative factors bring about the upper infectious cases. However, under the same 
conditions, changes in the magnitude of the positive factors is distinctly greater than the 
negative factors. Thus, as is shown in the Fig. 7a, b, we learn that the impact of negative 
information on the flu is not so much while it does affect the influenza. In Figs. 7c, d, we 
research the dynamics of infectious individuals in regard to distinct rates provided posi-
tive information (Fig. 7c) and negative information (Fig. 7d). Analyzing it further, we get 
the same conclusion with the above Figures 7a, b, namely, despite the impact posed the 
negative information is not significant than the impact caused the positive information 
on influenza while its impact on the influenza virus is extraordinary.

In the above analysis of the model, we suppose that the number of susceptilbes remains 
relatively constant. In fact, the number of susceptibles may be obviously decreased due 
to infection. If we ignore the natural birth and death of susceptibles during an epidemic, 
the dynamic behavior of S(t) can be characterized by the following equation

(37)
dS(t)

dt
= −βSIe−αT1+δT2 .

0 50 100 150 200 250 300
0

0.5

1

1.5

2

2.5

3

3.5

4
x 10

4

Days

In
fe

ct
io

us
 in

di
vi

du
al

s 
(I

)

α=0.00008
α=0.008
α=0.08

0 50 100 150 200 250 300
0

0.5

1

1.5

2

2.5

3
x 10

4

Days

In
fe

ct
io

us
 in

di
vi

du
al

s 
(I

)

δ=0.00009
δ=0.00007
δ=0.00005

0 50 100 150 200 250 300
0

0.5

1

1.5

2

2.5
x 10

5

Days

In
fe

ct
io

us
 in

di
vi

du
al

s 
(I

)

p=0.31
p=0.33
p=0.35

0 50 100 150 200 250 300
0

0.5

1

1.5

2

2.5

3

3.5

4
x 10

4

Days

In
fe

ct
io

us
 in

di
vi

du
al

s 
(I

)

q=0.69
q=0.67
q=0.65

a b

c d

Fig. 7 a Illustration of the dynamics of infectious individuals with respect to different α. b Illustration of 
the dynamics of infectious individuals with respect to different δ. c Illustration of the dynamics of infectious 
individuals with respect to different p . d Illustration of the dynamics of infectious individuals with respect to 
different q
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The rest of the equations is the same as system (1). The current model has two possible 
steady states: one is trivial (all the valuables are 0) and the other is the disease-free equi-
librium (S0, 0, 0, pµ1S0

τ
,
qµ1S0

τ
), where S0 is the initial value of susceptibles. The analysis 

of the second steady state is nearly the same as our above analysis for the disease-free 
equilibrium.

Compared with Pawelek et al. (2014), in this paper we consider the influence on the 
positive and negative information at the same time. Hence, our model is more closer to 
real life. In system (1), we only consider the specific case that the number of susceptible 
people is relatively constant. Generating speaking, this is the idea state. However, if we 
further consider the recruitment of the susceptible people, we could modify system (1) 
to the following model:

where µ represents the recruitment rate of the susceptible people. We leave these works 
for the future.
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