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Background
There exist several paradoxes in mechanics; the most amazing may occur in stability 
analysis. A celebrated problem is the ‘Ziegler Paradox’ (Ziegler 1952; Beck 1952; Bolotin 
1963; Herrmann and Jong 1965; Herrmann 1967; Leipholz 1964; Plaut and Infante 1970; 
Plaut 1971; Walker 1973; Hagedorn 1970; Banichuk et  al. 1989; Kounadis 1992), also 
known as the ‘destabilizing effect of damping’ , according to which a given small damp-
ing has a detrimental effect on the stability of linear circulatory systems. The Ziegler 
column, i.e. an upward double pendulum loaded at the tip by a follower force, represents 
a discrete mechanical prototype of this paradox. A geometrical explanation of the phe-
nomenon, based on the existence of the ‘Whitney’s umbrella’ surface (Whitney 1943), 
was given by Bottema (1955, 1956). More recently, Seyranian and Kirillov, according to 
the singularity theory by Arnold (1983, 1992), gave a justification of the paradox for both 
general finite-dimensional (Seyranian and Mailybaev 2003; Kirillov 2005, 2013; Kirillov 
and Seyranian 2005) and continuous (Kirillov and Seyranian 2005) systems, based on a 
perturbation analysis of the eigenvalues at the (known) double Hopf bifurcation point of 
the circulatory system. Differently from this latter approach, a perturbation algorithm 
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was developed in Luongo and D’Annibale (2014, 2015) and Andreichikov and Yudovich 
(1974), where the starting point of the asymptotic analysis is an unknown, marginally 
stable, sub-critical undamped system.

A less known, but equally surprising phenomenon, is the ‘Nicolai Paradox’ (Nicolai 
1928, 1929; Bolotin 1963). It concerns a cantilever beam, of equal moments of inertia, 
loaded at the tip by a follower torque, which causes dynamic instability of the trivial 
equilibrium at a critical value equal to zero. The amazing phenomenon has been recently 
reconsidered by Seyranian and Mailybaev (2011), who, according to the singularity 
theory Arnold (1983), proved that this paradox is related to the bifurcation of a double 
semi-simple eigenvalue, leading to a stability domain with a conic singularity. Moreover, 
the effects of the pre-twist deformation, the damping, an axial dead load and the com-
pressibility of the beam have been deeply analyzed in Seyranian et  al. (2014), Luongo 
et al. (2014) and Seyranian and Glavardanov (2014). An extension of the problem to sec-
ond-order perturbations was also performed in Luongo and Ferretti (2014).

A third paradox, recently discovered by the authors of the present paper, concerns 
the stability of autonomous piezo-electro-mechanical (PEM) systems in the presence of 
nonconservative (positional) actions (D’Annibale et al. 2015). It has been proved that the 
so-called ‘similarity principle’ (see, e.g., Alessandroni et al. 2004, 2005; Andreaus et al. 
2004; dell’Isola et  al. 2003a, b, 2004; Maurini et  al. 2004; Porfiri et  al. 2004; Rosi and 
Pouget 2010; Alessandroni et  al. 2002), which usually works in controlling vibrations 
of externally excited (i.e. non autonomous) systems, has instead detrimental effects on 
the occurrence of dynamic bifurcations. Said in other words, the connection of a similar 
piezo-electric system to a mechanical one, the former duplicating the whole spectrum of 
the eigenvalues of the latter, which would supply a complete protection from any excita-
tion frequency, is indeed detrimental in terms of stability.

In spite of a wide literature existing on paradoxical linear systems, to the authors’ 
knowledge, really few studies concerning the post-critical analysis have been carried out 
(see, e.g., Hagedorn 1970; Thomsen 1995; O’Reilly et al. 1996). The main question to be 
answered is the following: does the paradoxical loss of stability predicted by the linear 
theory really lead to motions of large amplitude when nonlinearities are accounted for? 
In other terms, since the amplitudes of motions depend on nonlinearities, the question is 
to ascertain if nonlinearities are able or not to limit the amplitudes within values smaller 
than a certain tolerance. A comprehensive answer, of course, would require an in-depth 
study which is beyond the scope of this work; anyway, a first attempt in this direction is 
made here by limiting ourselves to a numerical investigation.

The scope of this paper is twofold. First, we want to frame our previous results on lin-
ear stability analysis of paradoxical systems, so far developed independently, in a unique 
organic context; second, we want to illustrate some original, although so far limited, 
results concerning nonlinear behavior. To these ends, the above mentioned phenom-
ena are reviewed for a class of finite-dimensional mechanical systems. The reasons of 
the paradoxes are explained by recalling asymptotic expansions of the eigenvalues of the 
tangent operator previously developed in the literature. Preliminary results concerning 
the nonlinear behavior are obtained via numerical analyses, directly carried out on the 
equations of motion of prototype systems. The limit-cycle which arises after the occur-
rence of (simple or semi-simple) Hopf bifurcations, is determined, and the influence of 
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the main parameters is studied. It is wished that the studies presented here will stimulate 
also experimental activity, necessary to validate the theoretical predictions.

The paper is organized as follows. In second section, the model of a class of finite-
dimensional mechanical system, suffering the paradoxes discussed above, is introduced. 
In third and fourth sections, the Ziegler and Nicolai paradoxes are investigated, respec-
tively. In fifth section, the failure of the ‘similarity principle’ is discussed. In sixth section, 
some conclusions are drawn. Finally an “Appendix” furnishes details.

The model
Uncontrolled systems

We consider a class of nm-dimensional autonomous mechanical systems, whose nondi-
mensional equations of motion are in the following form:

where a dot denotes differentiation with respect the time t; x = x(t) is the nm × 1 
column matrix of the mechanical Lagrangian coordinates; M,K,C are the nm × nm 
symmetric mass, stiffness and damping matrices, respectively; H is the nm × nm non-
symmetric circulatory matrix; 0 < µ ∈ R is the load parameter; Fj(·), j = 1, . . . , 3 are 
nm × 1 trilinear vector functions of their arguments, accounting for geometrical nonlin-
earities, viz. F1, and inertial forces, viz. F2, F3.

 The trivial equilibrium position x = 0 of system (1) can lose stability according to one 
of the three mechanisms sketched in Fig. 1, as discussed ahead.

Controlled systems

When the mechanical system (1) is connected, via a set of piezoelectric devices, to an 
active electrical circuit, a PEM system is obtained, whose linear part is of the type dis-
cussed, e.g., in D’Annibale et al. (2015). The equations of motion assume the following 
non-dimensional form [see also D’Annibale et al. (2015) for a detailed derivation]:

(1)Mẍ + Cẋ + (K + µH)x = F1(x, x, x)+ F2(x, ẋ, ẋ)+ F3(x, x, ẍ)

(2)







Mmẍ + Cmẋ + (Km + µmHm)x − γGT ẏ = F1(x, x, x)+ F2(x, ẋ, ẋ)
+F3(x, x, ẍ)
Meÿ + Ceẏ + (Ke + µeHe)y + γGẋ = 0

2

ReReRe

ImImIm

a b c
Fig. 1  Sketch of the behavior of eigenvalues close to a bifurcation point: a circulatory Hopf of an undamped 
system; b simple Hopf of a damped system; c semi-simple Hopf
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Here, and in the following, the subscripts “m”, “e” refer to mechanical and electrical 
quantities, respectively. x(t), y(t) are the Lagrangian coordinates of the PEM system, 
namely: x(t) is the nm-dimensional column-matrix of the Lagrangian coordinates of 
the structure and y(t) is the ne-dimensional column-matrix of the flux linkages at the 
nodes of the circuit. Moreover, Mα ,Kα ,Cα(α = m, e) are the nα × nα mass, stiffness and 
damping matrices for mechanical and electrical sub-systems, respectively; Hm is the 
nm × nm circulatory mechanical matrix, accounting for external positional nonconserva-
tive forces, whose amplitude is governed by the load multiplier µm;He is the ne × ne cir-
culatory electrical matrix, accounting for the nonconservative actions furnished to the 
system by the active electrical circuit, whose amplitude is governed by the load multi-
plier µe;G is a ne × nm electro-mechanical coupling matrix, here referred to as the ‘gyro-
scopic matrix’, whose amplitude depends on a (small) parameter γ. While Mα ,Kα and Cα 
are symmetric matrices, Hm and He are not. G, instead, is not squared, unless nm = ne; 
however, even in this case, it is generally non-symmetric. Finally the apex T denotes the 
transpose matrix.

By following the lines of D’Annibale et  al. (2015), the similarity between mechani-
cal (primary) and electrical (secondary) sub-systems is obtained when the coeffi-
cients of the uncoupled linear parts of Eq. (2) are identical. This circumstance occurs 
when nm = ne and the following properties hold: (a) equal own characteristics, 
Mm = Me =: M,Km = Ke =: K; (b) equal damping characteristics, Cm = Ce =: C; (c) 
equal external actions characteristics, Hm = He =: H, with µ := µm = µe. For these sys-
tems, Eq. (2) reduce to:

The trivial equilibrium position x = y = 0 of system (3) can lose stability via the 
mechanism illustrated in Fig. 1c, as discussed ahead.

The Ziegler paradox
This section is devoted to recall the well-known Ziegler paradox, with the aim to high-
light some important aspects both in the linear and nonlinear regimes.

The system that we will take as a prototype of such a paradox is the so called Zie-
gler column (Ziegler 1952), depicted in Fig.  2a. It consists of a two hinged weightless 
rigid bars of equal length ℓ, carrying two concentrated masses, m1 := 2m at the common 
hinge, and m2 := m at the tip; it is visco-elastically constrained at the hinges by: (a) two 
linear springs of stiffness k1 := k and k2 := k and (b) two linear dashpots of viscosity 
coefficients c1 and c2, respectively. Moreover, the column is loaded at the free end by a 
follower force of intensity F, whose direction remains parallel to the upper bar.

The equations of motion for the system are expressed in terms of its Lagrangian coor-
dinates, namely the rotations of the two bars viz. ϑ1 and ϑ2, (see Fig. 2c). When an expan-
sion up to the cubic terms in displacements and velocities of the exact kinematics is 
carried out, the equations of motion assume the form of Eq. (1), and the following defi-
nitions hold (see, e.g., Luongo and D’Annibale 2014; Hagedorn 1970):

(3)

{

Mẍ + Cẋ + (K + µH)x − γGT ẏ = F1(x, x, x)+ F2(x, ẋ, ẋ)+ F3(x, x, ẍ)
Mÿ + Cẏ + (K + µH)y + γGẋ = 0
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together with the quantities defined in the next, which have to be introduced for 
nondimensionalization:

Here ξ1 and ξ2 are the two damping coefficients, thus entailing C = C(ξ1, ξ2).

Linear analysis

Let us first consider the linearized equations (1), with the aim to discuss the bifurcation 
mechanism occurring in the paradox. When the system is undamped (also referred to as 
circulatory), i.e. C = 0, and µ = 0, the two pairs of complex conjugate eigenvalues lie on 
the imaginary axis so that the system is (marginally) stable. If µ is increased from zero, 
the eigenvalues move on the imaginary axis, still remaining distinct (see Fig. 1a), until 
the load reaches a critical value, namely µ = µc, at which they collide and a  circulatory 
(or reversible) Hopf bifurcation takes place; if an infinitesimal increment δµ > 0 is given, 

(4)

x :=
[

ϑ1
ϑ2

]

M :=
[

3 1
1 1

]

, K :=
[

2 − 1
−1 1

]

C :=
[

ξ1 + ξ2 − ξ2
−ξ2 ξ2

]

, H :=
[

−1 1
0 0

]

F1(x, x, x) := µ

[

− 1
6 (ϑ1 − ϑ2)

3

0

]

F2(x, ẋ, ẋ) :=
[

−(ϑ1 − ϑ2)ϑ̇
2
2

(ϑ1 − ϑ2)ϑ̇
2
1

]

F3(x, x, ẍ) :=
[

1
2 (ϑ1 − ϑ2)

2ϑ̈2
1
2 (ϑ1 − ϑ2)

2ϑ̈1

]

(5)τ = ωt, ω2 = k

mℓ2
, µ = F

mℓω
, ξ1 =

c1

mℓ2ω
, ξ2 =

c2

mℓ2ω

m1

m1

m2m2

k1k1

c1c1

k2k2 c2c2

F
F

F

ϑ1

ϑ2

Pz1

Pz2

ψ1

ψ2

C

a b c
Fig. 2  The Ziegler column: a uncontrolled column; b controlled column; c Lagrangian coordinates
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they separate and instability occurs. The load value µc is the critical load of the circula-
tory system.

When the system is damped, namely C is positive definite, there exists a critical load 
µd, that is the smallest µ at which an eigenvalue (together with its complex conjugate) 
crosses from the left the imaginary axis, (see Fig.  1b) and a simple Hopf bifurcation 
occurs. When the damping is sufficiently small, µd < µc, as it has been show in several 
contributions in the literature (see, e.g., Ziegler 1952; Bolotin 1963; Herrmann and Jong 
1965; Seyranian and Mailybaev 2003; Kirillov and Verhulst 2010; Kirillov 2005).

The linear stability analysis of the column can be tackled through an exact or an 
asymptotic analysis. The exact analysis, carried out by making use of the Routh–Hurwitz 
criterion on the characteristic equation of the eigenvalue problem associated with the 
linearized Eq. (1) (see, e.g., Kirillov 2005), furnishes the critical locus in the (µ, ξ1, ξ2)
-space, known in the literature as the ‘Whitney’s umbrella’ surface (Whitney 1943; 
Kirillov and Verhulst 2010), whose equation reads:

where µc := 7/2−
√
2 ≃ 2.09. The locus is displayed in Fig.  3. In particular, Fig.  3a 

shows the exact Whitney’s umbrella surface (labeled by Ex), given by Eq. (6), in the 3D 
domain (µ, ξ1, ξ2); it separates the stable region (marked with S in the figure) from the 
unstable one (marked with U in the figure). The points on the surface are Hopf bifurca-
tion points, except for those on the µ-axis that, indeed, are marginally-stable points, for 
which a circulatory Hopf bifurcation occurs at µ = µc (Luongo and D’Annibale 2014). 
In Fig.  3b the contour lines µ = const, are displayed (gray curves in the figure); each 

(6)µ = µc +
ξ1ξ2

2
−

(

3− 2
√
2
)

2

(

ξ1 −
(

4 + 5
√
2
)

ξ2

)2

(ξ1 + ξ2)(ξ1 + 6ξ2)

a b
Fig. 3  Stability boundary of the Ziegler column: a critical manifold in the (µ, ξ1, ξ2)-parameter space: S stable 
region, U unstable region, Ex exact manifold, As asymptotic manifold; b µ-isolines: S stable region, U unstable 
region
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contour lines divides the plane in a stable region (marked with S) and in an unstable one 
(marked with U). There exists a contour line, i.e. a value of µ, namely µ = 0.33 =: µmin

d  , 
below which the column is stable for any ξ1, ξ2. The figure shows, from a quantitative 
point of view, the consequences of the paradox discussed qualitatively above, namely 
that damping has a detrimental effect in the (ξ1, ξ2)-plane, since, in except for a small 
region (filled in gray in the figure), which is close to an optimal damping ratio (dashed 
line in the figure), µd is lower with respect to µc. Moreover, it can be shown that on the 
left side of the optimal direction the stability is governed by the first mode, while on the 
right side by the second one.

Previous results can be explained via asymptotic analysis, based on the evaluation 
of the eigenvalue sensitivities of the circulatory system when a small damping is intro-
duced as a perturbation. Differently from the common approach (Kirillov 2005), and 
by rediscovering a pioneering idea contained in Andreichikov and Yudovich (1974), 
we suggested in Luongo and D’Annibale (2014, 2015) to start the asymptotic expansion 
not from the critically loaded circulatory system (µ = µc) but rather from a sub-criti-
cally loaded undamped system (µ < µc), with µ arbitrary in the interval 

(

µmin
d ,µc

)

 and 
taken constant; in this case a perturbation of a simple eigenvalue has to be carried out 
instead of a not-semi-simple (defective) double eigenvalue. The perturbation algorithm 
illustrated in Luongo and D’Annibale (2014, 2015) leads to the determination of the first 
eigenvalue sensitivities of the complex eigenvalues of the undamped column (see the 
“Appendix” for the details), namely:

being uj and vj the (real) right and left eigenvectors, respectively, and j = 1 or 2. There-
fore, the first sensitivity �̂j is found to be real; the sign of max

j

[

�̂j(µ)

]

 governs the stabil-
ity of the system: if it is negative, the sub-critically loaded system remains stable, if it is 
positive, the damping renders the system unstable. By equating �̂j = 0, see, e.g. Luongo 
and D’Annibale (2014), the asymptotic Whitney’s umbrella surface (labeled by As), 
showed in Fig. 3a, is obtained, together with the the contour lines µ = const displayed 
in Fig. 3b (black lines). Remarkably, the asymptotic procedure furnishes an excellent rep-
resentation of the exact surface, in particular, when the damping ratio produces high 
destabilizing effect; as it is expected, the approximation worsens close to the optimal 
direction, where an interaction between the eigenvalues occurs and the system becomes 
nearly-defective.

Finally, it is important to remark that the asymptotic procedure recalled above has 
not to be regarded as a mere perturbation algorithm, since it is able to explain the true 
essence of the paradox, that is: when a generic damping matrix is added to an undamped 
circulatory system in sub-critical regime, modes that would be marginally stable can 
become incipiently unstable. In this perspective, no discontinuities appear in the damped 
system with respect to the undamped one; thus, the apparent discontinuity of the amaz-
ing paradox is a consequence of a wrong point of view, in which the damped system is 
compared with the unique critically loaded undamped system, instead that with the infi-
nitely many sub-critically loaded members of the undamped family.

(7)�̂j(µ) = −1

2
vTj (µ)Cuj (µ)
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Post‑critical behavior

The post-critical behavior of the Ziegler column is investigated in the following with 
the aim to analyze the amplitude of the limit-cycle when the load is close to the criti-
cal load of the damped system µd. To this end, we will refer to two damped systems, 
marked with a black dot and a label I or II in Fig. 3b, respectively far and close enough 
to µc, namely:

• • case study I: ξ1 = 0.016, ξ2 = 0.1, entailing µd ≃ 0.65, for which damping has a 
strong destabilizing effect (−69 %);

• • case study II: ξ1 = 0.081, ξ2 = 0.06, entailing µd ≃ 1.63 for which damping has a 
moderate destabilizing effect (−22 %).

In Figs. 4 and 5 the exact bifurcation diagrams (black curves labeled with Ex) for the 
uncontrolled Ziegler column are displayed for the case study I and II, respectively. They 
have been obtained numerically via a continuation algorithm directly applied to the 
system (1). Figures 4 and 5 show the maximum values of the moduli of the amplitudes 
of the motion components, max |ϑ1| and max |ϑ2|, which are plotted vs the bifurcation 
parameter µ.

It is observed that, even when the bifurcation parameter slightly exceeds the critical 
value µd, the column manifests large amplitude limit-cycles. This is due to destabilizing 

a b
Fig. 4  Bifurcation diagrams of the Ziegler column for the case study I: a max |ϑ1| versus µ; b max |ϑ2| versus 
µ

a b
Fig. 5  Bifurcation diagrams of the Ziegler column for the case study II: a max |ϑ1| versus µ; b max |ϑ2| versus 
µ
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effect of damping which persists also in the post-critical regime. As a matter of fact, if 
we consider, for example, an increment of the load with respect to the critical value, 
δµ := µ− µd equal to δµ = 0.1, we found: max |ϑ1| ≃ 0.75 rad, max |ϑ2| ≃ 1.12 rad in 
case I, and max |ϑ1| ≃ 0.37 rad, max |ϑ2| ≃ 0.72 rad in case II. Remarkably, we can con-
clude from this example that, for the same increment of the load, the higher the destabi-
lizing effect on linear stability, the higher the amplitude of the limit-cycle occurring in the 
post-critical regime.

Finally, the same Figs.  4 and 5 show the results furnished by the Harmonic Balance 
Method applied to the two case studies. It is observed that, when the first harmonic is 
considered (points represented by small circles in the figures), the approximation of the 
exact results is good only in the case study II, while it worsens when the destabilizing 
effect of damping is significant (case study I). When instead the first and the third har-
monics are considered (points represented by small triangles in the figures) the approxi-
mation of the exact results is excellent in both the case studies.

The Nicolai paradox
The Nicolai beam, displayed in Fig. 6, is an elastic cantilever beam embedded in a 3D 
Euclidean space, of length ℓ and mass per unit length m̃, loaded at the tip by a follower 
torque of intensity L. In the present paper we will consider a discretized model of this 
beam, which has been obtained by using the Galerkin Method, with the aim to discuss 
the effects of a small vanishing torque on the linear and nonlinear stability. In particu-
lar, we will discuss some interesting results of the linear stability analysis, thus giving an 
explanation of the paradox, and we will introduce some new aspects occurring in the 
post-critical behavior. Here, damping has not been accounted for.

Following the notation of the Eq. (1), the linear operator and the trilinear forms associ-
ated to the nonlinearities of the discretized system, in nondimensional form, read:

Fig. 6  The Nicolai beam
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in which x1(t), x2(t) are (time-dependent) amplitudes of the trial function adopted for 
the Galerkin projection, m, J1, J2 and µ are the nondimensional mass, inertia moments 
with respect  to the two principal inertia axes and intensity of the follower torque, 
respectively, defined as:

where E is Young modulus of the elastic material, m0 and J0 are the mass per unit length 
and the inertia moment, respectively, taken as the characteristics of an ideal symmetric 
system, from which the actual system can be generated via a perturbation (Luongo et al. 
2014). The other quantities appearing in Eq. (8) are numerical coefficients resulting from 
the Galerkin projection, which has been performed by selecting as trial function, in each 
of the principal inertia plane, the first eigenfunction of the cantilever beam; they assume 
the following values:

It is important to remark that the continuous model from which the discretized equa-
tions of motion have been derived, has been formulated by modeling the Nicolai beam 
as a one-dimensional polar continuum, geometrically nonlinear and internally con-
strained. In particular, the constraints are the unshearability, the inextensibility and the 
untwistability. The first two are commonly used in the modeling of beams while the third 
one is based on an analysis of the orders of magnitude of the energy contribution of the 
underlying elastic model, according to Luongo and Zulli (2013). Once the kinematics 
is established, the partial integro-differential equations of motion are derived with the 
methods presented in Paolone et al. (2006) and Luongo and Zulli (2013) and expanded 
up to cubic terms.

Linear analysis

By using the discretized system introduced above, we want to highlight the bifurca-
tion mechanisms which guides the Nicolai paradox. When the follower torque µ is 
equal to zero (i.e. the system is Hamiltonian) and the two inertia moments are equal 

(8)

x :=
[

x1
x2

]

M :=
[

m 0
0 m

]

, K :=
[

J2ω
2 0

0 J1ω
2

]

C := 0, H :=
[

0 cµ
− cµ 0

]

F1(x, x, x) :=
[

µ d1
(

x2x
2
1 + x32

)

+ J2d2x
3
1 + (J1d3 + J2d4)x1x

2
2

−µ d1
(

x1x
2
2 + x31

)

+ J1d2x
3
2 + (J1d4 + J2d3)x2x

2
1

]

F2(x, ẋ, ẋ) :=
[

md5
(

x1ẋ
2
1 + x1ẋ

2
2

)

md5
(

x2ẋ
2
2 + x2ẋ

2
1

)

]

F3(x, x, ẍ) :=
[

md6
(

x21ẍ1 + x1x2ẍ2
)

md6
(

x22ẍ2 + x2x1ẍ1
)

]

(9)m = m̃

m0
, J1 =

J̃1

J0
, J2 =

J̃2

J0
, µ = Lℓ

EJ0

(10)
ω = 3.52, cµ = −3.79, d1 = 7.18, d2 = −13.81

d3 = 6.41, d4 = −20.22, d5 = −4.60, d6 = −2.44
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(i.e. J1 = J2 = 1), the system admits a couple of purely imaginary coincident eigenvalues, 
see Fig. 1c; moreover, they are semi-simple, since two independent (real) eigenvectors, 
describing the same modal shape in the two planes, are associated with each of them. 
When the Hamiltonian system is loaded by small nonconservative forces, the two coales-
cent eigenvalues split on opposite parts of the complex plane (Seyranian and Mailybaev 
2011; Seyranian et al. 2014; Luongo et al. 2014; Seyranian and Glavardanov 2014), see 
Fig. 1c, thus entailing instability; the presence of a small asymmetry, that we label with a 
parameter α, is able to shift the critical load of a small amount only (Seyranian and Mai-
lybaev 2011; Seyranian et al. 2014; Luongo et al. 2014; Seyranian and Glavardanov 2014).

Following the perturbation methods detailed in Seyranian and Mailybaev (2011), Sey-
ranian et  al. (2014), Luongo et  al. (2014) and Seyranian and Glavardanov (2014), the 
splitting mechanism of the semi-simple eigenvalue iωj (here j = 1), is described by the 
formula (see “Appendix” for details):

where �̂± are the first sensitivities of the coalescent eigenvalues. Accordingly, the trivial 
equilibrium is asymptotically stable when Re

(

�
±) < 0, i.e. when Re

(

�̂
±
)

< 0, which 
leads to the following stability condition in the parameter space (α,µ):

This latter equation represents the key point to understand the Nicolai paradox since, if 
the system is symmetric (i.e. α = 0), the critical value of the follower torque which pro-
duces dynamic instability is equal to zero. By referring to an elliptical cross section, for 
which the nondimensional inertia moments and the mass per unit length admit a series 
expansion in term of the splitting parameter α (see, e.g., Luongo et al. 2014 for further 
details):

the coefficient cα in Eq. (12) assumes the value 3.26.
The stability domain expressed by Eq. (12) is displayed in Fig. 7. It is worth noticing 

that, since in the present paper a reduced two degrees of freedom system is considered, 
the effects of higher modes is ignored. However, the effects of this reduction needs to be 

(11)�
± = iωj + �̂

±

(12)µ2 ≤ c2αα
2

(13)m = 1+ α, J1 = 1+ α, J2 = 1+ 3α + O
(

α2
)

Fig. 7  Stability domain in the (α,µ)-plane. Stable zone S in gray
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deeply investigated since, e.g., when α = 0, all the modes are incipiently unstable, thus 
implying an infinite dimensional Center Manifold, which represents an open problem. 
In that sense the present paper is a first (although quite rough) approach to the matter.

Post‑critical behavior

Our post-critical analysis is aimed to numerically investigate the dynamics of the non-
linear system close to the bifurcation point. To this end, a direct integration of the non-
linear equations of motion and a parametric analysis has been performed, in the case 
of elliptical cross section of the previous paragraph. Results of this integration are dis-
played in Fig. 8, from which the following considerations are drawn.

1.	 The system manifests a paradoxical behavior also in nonlinear regimes: indeed, start-
ing with a couple of parameters (α,µ) that belongs to the unstable zone (the white 
one in Fig. 7), the system reaches, after a transient motion, a circular trajectory in the 
space of configuration variables, i.e. (x1(t), x2(t)), whose amplitude is large and inde-
pendent from the selected numerical parameters (see Fig. 8a); this circular motion is 
also unaffected by the choice of the initial conditions.

2.	 Once the large circular motion has been reached, the system increases its velocity 
unboundedly (see Fig.  8b). Therefore, the beam whirls with an increasing velocity, 
experiencing a conical motion.

3.	 The only effect played by the initial conditions and by the value of (α,µ) concerns the 
time requested by the system to reach the circular motion.

Finally, it is important to remark that, in the first approach to the nonlinear problem 
carried out in the present paper, the effects of higher modes are ignored since, as we 
said, a reduced model of two degrees of freedom has been considered. Moreover, damp-
ing has been ignored. The investigation of these aspects will be object of our studies in 
future works.

a b
Fig. 8  Numerical integration of the equations of motion (µ = 0.5,α = 0, x1(0) = −x2(0) = 0.03,

ẋ1(0) = ẋ2(0) = 0): a trajectory in the (x1, x2)-plane; b trajectory in the (ẋ1, ẋ2)-plane
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The failure of the ‘similarity principle’
This section is devoted to detect the failure of the ‘similarity principle’ which occurs 
in linear and nonlinear behavior of PEM systems whose motion is described by equa-
tions in the form of Eq. (3). To this end, we will take as a prototype the piezoelectric-
controlled Ziegler column (Ziegler 1952) depicted in Fig. 2b. The mechanical system is 
that analyzed in “The Ziegler paradox” section with the reference to the discussion of 
the Ziegler paradox. Moreover, it is equipped with two piezoelectric devices indicated 
with the symbols Pz1 and Pz2 in the figure, respectively: these latter are of capacitances 
CP
1 := 2CP ,C

P
2 := CP, equal stiffnesses kP1 = kP2 := kP (in the following we will consid-

ered this stiffness negligible with respect to the stiffness of the springs), equal coupling 
coefficients gP1 = gP2 := g. Piezoelectric devices are placed in the correspondence of 
the ground and of the intermediate hinges, respectively, and each of them is connected 
to a joint of a two-nodes active circuit (sketched in the Fig.  2b), of equal inductances 
L1 = L2 := L and resistances R1 and R2, respectively, and to the ground.

The equations of motion of the PEM system are expressed in terms of its Lagrangian 
coordinates, namely the rotations of the two bars viz. ϑ1 and ϑ2, (see Fig.  2c) and the 
flux linkages at the circuit nodes ψ1 and ψ2, respectively. When an expansion up to the 
cubic terms in displacements and velocities of the exact kinematics of the mechanical 
system is developed, the ‘similarity principle’ is enforced and the piezoelectric mechani-
cal stiffness is neglected [see D’Annibale et al. (2015) for more details on the derivation 
process], the equations of motion assume the form of Eq. (3), where definitions of Eq. (4) 
hold and:

Moreover, the quantities defined in (5), together with (tilde removed):

are used for nondimensionalization (accounting for C
P
1
= 2CP ,C

P
2
= CP ,

L1 = L2 = L, gP
1
= gP

2
= g) and ψ0 is a scaling flux-linkage.

Linear analysis

Let us first consider the linearized equations (3), with the aim to discuss the bifurcation 
mechanism occurring in this paradox. First, we neglect the electro-mechanical coupling, 
by letting γ = 0. The similarity principle then entails that the mechanical (primary) and 
electrical (secondary) sub-systems possess the same spectrum of the eigenvalues: if an 
eigenvalue is simple for the primary (or the secondary) sub-system taken alone, it is 
semi-simple for the whole PEM system. When the load µ reaches a critical value µd, 
that is the smallest µ at which a mechanical (or electrical) eigenvalue (together with its 
complex conjugate) crosses from the left the imaginary axis (see Fig. 1b), a simple Hopf 
bifurcation occurs for the primary (or the secondary) sub-system.

(14)

y :=
[

ψ1

ψ2

]

G :=
[

1 0
−1 1

]

(15)ỹ = 1

ψ0
y, γ = g

ωℓ
√
mCP

, ψ0 = ℓ

√

m

CP
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When the electro-mechanical coupling is accounted for, i.e. γ > 0, and the load is kept 
fixed at µ = µd, the bifurcation mechanism occurring in the PEM system is analogous 
to that of Nicolai, namely, the semi-simple eigenvalues split on the opposite part of the 
complex plane, thus entailing instability (Fig. 1c). What it is surprising in this paradox is 
that a vanishingly small gyroscopic coupling, which is introduced with the aim to con-
trol the mechanical system, i.e. to increase its critical load, produces instead instability 
(D’Annibale et  al. 2015). Said in other words, the splitting, which represents the most 
valuable beneficial effect brought by an added device in the classical Den Hartog oscilla-
tor under external excitation, is, indeed, cause of instability in the autonomous noncon-
servative case.

The linear stability analysis of the PEM system can be carried out through an exact 
or an asymptotic analysis. Concerning the exact analysis, the stability domain of the 
controlled case can be obtained by using the Routh–Hurwitz criterion on the charac-
teristic equation of the algebraic eigenvalue problem associated with the linearized Eq. 
(3). In the present paper, however, we built-up the stability domain numerically, i.e. by 
evaluating the eigenvalues, for a fixed γ, and in each point of a discretized portion of 
the (µ, ξ1, ξ2)-space. Results relevant to the linear bifurcation scenario of the controlled 
system, when γ = 0.05, are displayed in Fig. 9. In particular, Fig. 9a shows a compari-
son, in the (µ, ξ1, ξ2)-space, of the critical surfaces of the controlled (marked with a C 
in the figure) and uncontrolled (marked with a U in the figure) systems, respectively. It 
is evident that the effect of the controller is in decreasing the stable region in the whole 
space considered (the surface of the controlled system is below that of the uncontrolled 
one). This effect is much more evident when the contour lines, displayed in Fig. 9b, are 
considered: indeed, the curves corresponding to the controlled system (in solid black) 
are on the right side (i.e. in the stable region) of those corresponding to the uncontrolled 
system (in solid gray), thus entailing an extension of the unstable region.

a b
Fig. 9  Controlled Ziegler column when γ = 0.05: a critical manifold in the (µ, ξ1, ξ2)-parameter space: C con-
trolled system, U uncontrolled system; b µ-isolines: S stable region, U unstable region, black curves controlled 
system, gray curves uncontrolled system
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It is possible to show the detrimental effect of the gyroscopic coupling also via a per-
turbation method, by following the lines of D’Annibale et al. (2015), in which the first 
sensitivity of the semi-simple eigenvalue of a general continuous PEM system is deter-
mined, when a small coupling acts as a perturbation. By keeping fixed the load at 
µ = µd , the semi-simple eigenvalue �0 at bifurcation splits according to Eq. (11), namely 
�
± = �0 ± iγ

√
b1b2, where b1, b2 are coefficients depending on the right and left eigen-

vectors of the uncontrolled sub-systems and on the gyroscopic matrix (see “Appendix” 
for details). It is apparent that (a) if the product b1b2 is complex or real and negative, one 
of the two roots has positive real part, thus entailing instability; (b) if the product b1b2 is 
real and positive, the two roots are purely imaginary, so that γ is neutral at the first order. 
It is concluded that a similar controller has a detrimental (or at most neutral) effect on 
stability.

Post‑critical behavior

Preliminary results concerning the post-critical behavior of the controlled Ziegler col-
umn are discussed in this section, with the aim to investigate the effects of the controller 
on the large amplitude limit-cycles occurring in the uncontrolled case (see “Post-critical 
behavior” section referred to the Ziegler paradox). To this end, we directly integrated the 
nonlinear equations of motion (3) in the case studies I and II (marked in Fig. 3b), i.e. we 
selected the same two damped systems discussed with the reference to the post-critical 
behavior of the uncontrolled Ziegler column.

A comparison between the time histories of the components of motion ϑ1 and ϑ2, 
in uncontrolled and controlled (γ = 0.05) systems, relevant to the case study I, when 
µ = 0.68, is presented in Fig. 10. It is seen that, for small increments of the load with 
respect the critical value, i.e. δµ = 0.03 in the uncontrolled case and δµ = 0.05 in the 
controlled one, the limit-cycle of the PEM system is stable, even if its amplitude (dis-
played in light gray in Fig. 10) is larger than the amplitude of the uncontrolled column 
(displayed in dark gray in the figure). Thus, the similar controller increases the amplitude 
of the limit-cycle of the uncontrolled Ziegler column, causing a detrimental effect.

An even more dangerous situation is illustrated in Fig.  11, in which the time histo-
ries of ϑ1 and ϑ2, in uncontrolled and controlled (γ = 0.01) systems, relevant to the 
case study II, when µ = 1.66, are plotted. Indeed, for small increments of the load with 
respect the critical one (of the same order of the previous case, i.e. δµ = 0.03 in the 
uncontrolled system and δµ = 0.1 for the controlled one), the PEM system is unstable 
and the time histories of ϑ1 and ϑ2 diverge in time. Accordingly, the numerical integra-
tion has been truncated in the figures, just before this event. In contrast, the uncon-
trolled column experiences a stable limit-cycle. Thus, in this case, the similar controller 
has a catastrophic effect in the post-critical regime of the controlled Ziegler column.

The two examples shown are peculiar of two different behaviors met in numeri-
cally analyzing the nonlinear dynamics of a number of systems. Namely, when a sys-
tem is chosen, and the load increased beyond the critical value, the behavior of Fig. 10 
is initially found, then the behavior of Fig. 11 manifests itself when the load exceeds a 
threshold value, this latter depending on the system characteristics. In conclusion, the 
detrimental effect of the gyroscopic coupling in similar PEM systems persists also in the 



Page 16 of 22Luongo et al. SpringerPlus  (2016) 5:60 

nonlinear regime. This aspect of the problem needs a more deep investigation, which 
will be object of forthcoming papers.

Conclusions
In this paper, some amazing paradoxical phenomena, well- and less-known in the litera-
ture, concerning linear dynamic stability of mechanical systems, have been studied refer-
ring to finite-dimensional prototype systems. Paradoxes concern: (a) the destabilizing 
effect of damping, or Ziegler paradox; (b) the zero critical value of the load, or Nicolai 
paradox; (c) the failure of the similarity principle in controlling stability by piezoelec-
tric devices. For all these problems, an explanation has been given, based on asymptotic 
expansions of the eigenvalues, started by simple or double and semi-simple eigenvalues. 
In the Ziegler case, a procedure different from that usually adopted in literature (starting 
from a double and not-semi-simple eigenvalue) has been followed, able to reveal the true 
essence of the paradox.

Some new results, concerning investigations on the nonlinear behavior of the three 
prototype systems, have been provided, although the analysis has been so far of purely 
numerical type. The following conclusions have been drawn.

Fig. 10  Time histories relevant to the case study I for the uncontrolled (dark gray curves) and controlled (light 
gray curves), when µ = 0.68 and γ = 0.05: a ϑ1 versus t; b ϑ2 versus t

Fig. 11  Time histories relevant to the case study II for the uncontrolled (dark gray curves) and controlled (light 
gray curves), when µ = 1.66 and γ = 0.01: a ϑ1 versus t; b ϑ2 versus t
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1	 The Ziegler column experiences stable large-amplitude limit-cycles. The more desta-
bilizing the damping, the larger the amplitude of the limit-cycle. Therefore, the loss 
of stability (in the Lyapunov sense), is not a mere mathematical aspect of the prob-
lem, but a signal of an incoming dangerous phenomenon from an engineering point 
of view (more interested in the amplitude of the oscillations than in the quality of the 
equilibrium).

2	 The Nicolai beam also suffers large-amplitude circular motion in the space of con-
figuration variables, even when a very small follower torque is applied, and, quite 
surprisingly, irrespectively of the chosen parameters and initial conditions. Even 
worse, this motion occurs at increasing velocity, diverging to infinite, representing a 
new paradoxical phenomenon existing in the nonlinear field. This unrealistic result is 
conjectured to depend on the absence of damping, so far not included in the model. 
Further investigations are therefore needed also considering the effects of damping, 
higher modes and twistability.

3	 The PEM Ziegler column, possesses double eigenvalues when a ‘similar’ control sys-
tem is adopted, requiring an active circuit. This equipment, that previous studies 
have shown to be optimal in controlling external excitations, is instead detrimental 
in controlling stability. When the motion is analyzed in the post-critical range, both 
stable and unstable large-amplitudes limit-cycles exist, the former close to bifurca-
tion, the latter far from bifurcation. In both cases, however, the oscillations of the 
controlled system are larger than those of the uncontrolled system, so that the similar 
control is detrimental even in the nonlinear field.

The previous results, to be corroborated by analytical studies, denote that the para-
doxes produce their malefic effects also in the nonlinear range.
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Appendix: Asymptotic analysis
This Appendix is devoted to furnish details about asymptotic analyses specifically devel-
oped for the investigation of the three paradoxes. The algorithms are here discussed with 
the aim to render the paper self-contained; they have been already presented in Luongo 
and D’Annibale (2015), Luongo and D’Annibale (2014) and Andreichikov and Yudovich 
(1974), with reference to the Ziegler paradox, in Seyranian and Mailybaev (2011), Sey-
ranian et al. (2014), Luongo et al. (2014) and Seyranian and Glavardanov (2014), for the 
Nicolai paradox, and in D’Annibale et al. (2015) for the Failure of the ‘similarity principle’.
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Ziegler paradox

The linear part of the equations of motion (1) reads:

By letting x = w exp (�t) the following eigenvalue problem is obtained:

being (�,w) the eigenpairs of the system.
We aim to tackle the problem (17) by a perturbation method (see, e.g., Luongo and 

D’Annibale 2014). To this end we first rescale the damping as C → εC, where 0 < ε ≪ 1 
is a perturbation parameter artificially introduced and to be reabsorbed at the end of the 
procedure. Then, we perform the series expansions:

in which the coefficients �̂, ŵ, are unknowns and proportional to the relevant ε-deriva-
tives evaluated at ε = 0. By substituting Eq. (18) in the problem (17) and requiring that 
this latter must be satisfied for any ε, the following perturbation equations are obtained:

with µ (here having the meaning of follower force parameter) arbitrary in the interval 
(

µmin
d ,µc

)

. The generating Eq. (19-a) admits the solution (�0,w0) =
(

±iωj ,uj
)

, i.e. the 
eigenpairs of the sub-critically loaded undamped system, with uj real. Since, however, 
the problem is not self-adjoint for the presence of the nonconservative force, the right 
eigenvectors are not mutually orthogonal, so that the left (real) eigenvectors vj, which 
form the dual basis, are also of interest. Right and left eigenvectors satisfy, respectively:

Moreover, they are bi-orthogonal with respect to the mass matrix, according to 
vTk Muj = 0 if k �= j, and they are normalized to satisfy vTj Muj = 1. To evaluate the sen-
sitivity of iωj to the damping, we take �0 = iωj , w0 = uj in Eq. (19-a) and substitute them 
in Eq. (19-b); then the solvability condition of this latter, i.e. the known term must be 
orthogonal to the kernel of the adjoint operator, furnishes the Eq. (7) (ε reabsorbed).

Nicolai paradox

The linearized equations of motion of the undamped Nicolai discretized beam, i.e. when 
C = 0, are formally equivalent to Eq. (16). The system depends on two parameters, 

(16)Mẍ + Cẋ + (K + µH)x = 0

(17)
[

�
2M + �C+ (K + µH)

]

w = 0

(18)
� = �0 + ε�̂ + · · ·
w = w0 + εŵ + · · ·

(19)
ε0 :

[

�
2
0M + (K + µH)

]

w0 = 0

ε1 :
[

�
2
0M + (K + µH)

]

ŵ = −�0

(

C+ 2�̂M
)

w0

(20)

[

(K + µH)− ω2
j M

]

uj = 0
[(

K + µHT
)

− ω2
j M

]

vj = 0
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namely µ (here having the meaning of follower torque parameter) and α, accounting for 
the small asymmetries of the mass and stiffness. In particular, the matrices M and K in 
Eq. (16) admit the following Mc Laurin series expansion:

where M0,K0 are symmetric and positive-definite matrices of the ideal symmetric 
mechanical system.

The eigenvalue problem (17) is solved by a perturbation method (see, e.g., Luongo et al. 
2014). When α = µ = 0, due to the symmetry of the system, the eigenvalue �0 is a dou-
ble semi-simple eigenvalue. In such case expansions given by Eq. (18) hold (Seyranian 
and Mailybaev 2003) and, moreover, the following parameter rescaling is introduced:

By using Eqs. (18), (21) and (22) in Eq. (17), the following perturbation equations are 
obtained:

The generating solution is (�0,w0) =
(

±iωj ,Ua
)

, where j = 1, 2, . . . nm/2 (being nm 
odd). Moreover, a := (a1, a2)

T is a column-vector listing two unknown amplitudes a1 
and a2,U := (u1,u2) is the nm × 2 modal matrix listing the real right eigenvectors u1 
and u2 associated with �0, which are mutually orthogonal and normalized according to 
uTi M0uj = δij. We take �0 = iωj and by using these results, the Eq. (23-b) reads:

Solvability condition of this latter furnishes:

where:

are 2× 2 matrices and I is the 2× 2 identity matrix; moreover, UTM0U = I has been 
used and it should be remarked that, in this case, left eigenvectors coincide with the 
right ones. Equation (25) is an eigenvalue problem in the unknown �̂. Its solutions can be 
determined by solving the following characteristic equation:

where:

(21)
M = M0 + αMα + O

(

α2
)

K = K0 + αKα + O
(

α2
)

(22)(α,µ) →ε(α,µ)

(23)
ε0 :

[

�
2
0M0 + K0

]

w0 = 0

ε1 :
[

�
2
0M0 + K0

]

ŵ = −
[

2�0�̂M0 + α

(

�
2
0Mα + Kα

)

+ µH
]

w0

(24)
[

�
2
0M0 + K0

]

ŵ = −
[

2�0�̂M0 + α

(

�
2
0Mα + Kα

)

+ µH
]

Ua

(25)
[

2�0�̂I+ α

(

�
2
0M̂α + K̂α

)

+ µĤ
]

a = 0

(26)M̂α := UTMαU, K̂α := UTKαU, Ĥ := UTHU

(27)�̂
2 + I1�̂ + I2 = 0
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are linear and quadratic (complex) invariants, respectively. Eq. (27) admits, in general, 
two distinct roots �̂±; therefore, the splitting of the double semi-simple eigenvalue iωj is 
furnished by Eq. (11) (ε reabsorbed).

Failure of the ‘similarity principle’

The linear part of the equations of motion (3) reads:

By letting x = w exp (�t), y = z exp (�t) the following eigenvalue problem is obtained:

The eigenvalue problem (30) is solved, also in this case, by using a perturbation method. 
First we rescale γ → εγ and we fix the load at µ = µd, where µd is the critical load value 
of the uncontrolled PEM system, for which a Hopf bifurcation occurs. Then, the series 
expansions (18) hold and, moreover:

Accordingly, the relevant perturbation equations read:

The ε0-order problem is a linear eigenvalue problem in which the electrical sub-system 
doubles the uncontrolled mechanical one and the (double) semi-simple eigenvalues are 
�0 = �0j , j = 1, 2, . . . , nm. However, since µ = µd, there exists a (here assumed unique) 
j for which Re

(

�0j

)

= 0 and ∂
∂µ

Re
(

�0j

)

µd
> 0, so that a Hopf bifurcation occurs, when 

Im
(

�0j

)

=: ±ωj �= 0. Therefore, we take �0 = iωj and, accordingly, the generating solu-
tion of Eq. (32-a) reads:

where a1, a2 are arbitrary constants and uj, is the (right and complex) j-th eigenvec-
tor of the uncontrolled system associated with �0. In order to evaluate the sensitivity of 

(28)I1 :=
1

2�0
tr
[

α

(

�
2
0M̂α + K̂α

)

+ µĤ
]

, I2 :=
1

4�20
det

[

α

(

�
2
0M̂α + K̂α

)

+ µĤ
]

(29)

{

Mẍ + Cẋ + (K + µH)x − γGT ẏ = 0
Mÿ + Cẏ + (K + µH)y + γGẋ = 0

(30)







�

�
2M + �C+ (K + µH)

�

w − γ�GT z = 0

�

�
2M + �C+ (K + µH)

�

z + γ�Gw = 0

(31)z = z0 + εẑ + · · ·

(32)

ε0 :















�

�
2
0M + �0C+ (K + µdH)

�

w0 = 0

�

�
2
0M + �0C+ (K + µdH)

�

z0 = 0

ε1 :















�

�
2
0M + �0C+ (K + µdH)

�

ŵ =− �̂(2�0M + C)w0 + γ�0G
T z0

�

�
2
0M + �0C+ (K + µdH)

�

ẑ =− �̂(2�0M + C)z0 − γ�0Gw0

(33)

(

w0

z0

)

= a1

(

uj
0

)

+ a2

(

0
uj

)
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�0 to the coupling parameter γ, we substitute the previous findings in Eq. (32-b), thus 
obtaining:

Solvability condition of Eq. (34) leads to a characteristic equation in the unknown �̂ in 
the form of Eq. (27), where I1 = 0, I2 = γ 2b1b2 and the following definitions hold:

Moreover, the superscript H denotes the complex-conjugate and vj is the (left and com-
plex) j-th eigenvector of the uncontrolled system, solution of the following problem:

Equation (27) admits two (generally) distinct roots �̂± and, therefore, the splitting of the 
double semi-simple eigenvalue iωj is given by Eq. (11) (ε reabsorbed).
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