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Background
Uncertainty is an important topic in research on artificial intelligence (Li and Du 2005). 
Rough set theory (RST) is a mathematical tool for handling imprecise, incomplete and 
uncertain data (Pawlak 1991), and it is an effective method to deal with uncertainty 
problems. In classical RST, the uncertainty of rough sets depends on two factors, knowl-
edge uncertainty (the size of information granularities) and set uncertainty (the size of 
the rough set boundary) (Pawlak 1991). Set uncertainty in RST is measured with two 
quantities, accuracy and roughness, but they do not adequately reflect the uncertainty 
of a rough set. In some cases, the accuracy measure reflects only the size of the bound-
ary region but not the size of the information granularities formed by the attribute sets, 
which limits the applicability of classical rough sets (Pawlak 1991). To solve this problem, 
researchers have proposed a number of integrated uncertainty measures based on cer-
tain binary relations (Teng et al. 2016; Wang et al. 2008a; Liang et al. 2009) that consider 
both the knowledge uncertainty and the set uncertainty. Although these measures are 
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effective, they have certain restrictions. These measures change with information granu-
larities which are unrelated to rough set X, i.e., information granularities in the negative 
region of X; this is inconsistent with human cognition in uncertainty problems (Wang 
and Zhang 2008). Intuitively, a rough measure that reflects two types of uncertainty 
should have a higher value than that of a measure which reflects only one type of uncer-
tainty, but this property is not satisfied by the existing integrated uncertainty measures. 
In addition, the existing integrated uncertainty measures do not sufficiently characterise 
the uncertainty in certain cases. Wang and Zhang (2008) proposed a fuzziness measure 
for rough sets based on information entropy, which overcomes the problem of existing 
uncertainty measures for rough sets. However, a fuzziness measure based on the equiva-
lence relation is not suitable for the incomplete information system and ordered infor-
mation system. In practice, knowledge acquisition usually involves information that is 
incomplete for various reasons such as data measurement errors, a limited understand-
ing and the conditions under which the data were acquired (Kryszkiewicz et al. 1998). 
Incompleteness in an information system is one of the main causes of uncertainty. RST, 
which is based on the traditional equivalence relation (i.e., reflexivity, symmetry, and 
transitivity) cannot directly deal with incomplete information systems, which greatly 
constrains the use of RST in practical applications (Gantayat et al. 2014; Sun et al. 2014). 
Hence, several extended models and methods for RST such as the tolerance relation (i.e., 
reflexivity, symmetry) (Wang and Zhang 2008), the asymmetric similarity relation (i.e., 
reflexivity, transitivity) (Stefanowski and Tsoukias 1999), the limited tolerance relation 
(i.e., reflexivity, symmetry) (Wang 2002), the dominance relation (reflexivity, transitivity) 
(Greco et al. 2002; Hu et al. 2012), and the general binary relation (i.e., reflexivity) (Yao 
1998; Teng et al. 2009; Zhu 2007) which can directly process an incomplete information 
system, have been proposed. Based on these relations, directly measuring the uncer-
tainty of incomplete data has caused considerable concern (Huang et al. 2004; Qian et al. 
2009; Xu and Li 2011; Dai and Xu 2012; Sun et al. 2012; Dai et al. 2014; Chen et al. 2014; 
Dai et al. 2013).

The various uncertainty measures mentioned above are mostly aimed at one special 
binary relation without universality, and do not adequately reflect the uncertainty of 
rough sets in certain cases. Little attention has been paid to uncertainty measures based 
on general binary relations (Huang et al. 2004; Wang et al. 2008b). To overcome the limi-
tations of the existing uncertainty measures and to analyse data more efficiently, it is 
necessary to find an uncertainty measure that is universal and more accurate.

This paper begins with an analysis of the limitations of the existing uncertainty meas-
ures for rough sets. Next, a knowledge uncertainty measure based on general binary 
relations is presented, which is applicable in classical systems as well, i.e., it is an effec-
tive technique to deal with complex data sets. Novel integrated measures based on gen-
eral binary relations are proposed, and the properties of these integrated measures are 
analysed. At last, Examples are used to verify the validity of the proposed uncertainty 
measures.
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Preliminary concepts of RST
Information system is a pair S =  (U, A), where U = {u1,u2, . . . ,u|U |} is a non-empty 
finite set of objects (|∙| denotes the cardinality of the set), A = {a1, a2, . . . , a|A|} is a non-
empty finite set of attributes such that aj: aj → Vaj for every aj ∈ A. The set Vaj is called 
the value set of aj.

Each subset of attributes P ⊆ A determines a binary indiscernibility relation IND(P) as 
follows:

Obviously, IND(P) is an equivalence relation. If 
(

ui,uj
)

∈ IND(P), then ui and uj are 
indiscernible with respect to attribute set P. The partition generated by IND(P) is denoted 
by U/IND(P), which can be abbreviated as U/P. The partition U/P = {P1,P2, . . . ,Pm} 
denotes knowledge associated with the equivalence relation IND(P), where Pi is an 
equivalence class, 1 ≤ i ≤ m, and 1 ≤ m ≤ |U |. Each equivalence class is an infor-
mation granularity. Thus, the attribute set P will also be called the knowledge. The 
equivalence class determined by ui with respect to the attribute set P is denoted by 
[ui]P =

{

uj ∈ U |(ui,uj) ∈ IND(P)
}

. Obviously, if ui ∈ Pk, then [ui]P = Pk. For any set 
X ⊆ U , the P-lower and P-upper approximations of X are PX = {ui ∈ U |[ui]P ⊆ X} and 
PX = {ui ∈ U |[ui]P ∩ X �= ∅}, respectively. The boundary region of X is represented by 
BNP(X) = PX − PX.

An information system S (= (U, A)) is an incomplete information system if the attrib-
ute values include an empty value “*”; otherwise, S is a complete information system.

In an information system, a relation derived from the attribute sets is generally not 
an equivalence relation but a general binary relation. In this paper, we use RP to repre-
sent a general binary relation derived from the knowledge P. In an information system S, 
P ⊆ A . We define the function RP

S  as follows:

1.	 The set-valued function RP
S : U → P(U) is defined as RP

S (ui) = {uj ∈ U |(ui,uj) ∈ RP} ,  
where RP

S (ui) is the subsequent neighbour of ui under the binary relation RP. The rela-
tion RP and the corresponding subsequent neighbour RP

S (ui) can be uniquely deter-
mined from each other, i.e., uiRPuj ⇔ uj ∈ RP

S (ui). Let U
/

RP = {RP
S (ui)|ui ∈ U } 

represent the classification of U divided by the knowledge P, where RP
S (ui) is called a 

classification granularity under the general binary relation. The classification granu-
larity RP

S (ui) can be understood as the largest set of objects that cannot be distin-
guished from object ui given the knowledge P; i.e., objects in RP

S (ui) should belong to 
the same class as ui given the knowledge P. Obviously, RP

S (ui) will be an equivalence 
class, a dominance class, a tolerance class, a limited tolerance class, or an asymmetric 
similarity class of an object ui if RP is an equivalence relation, a dominance relation, 
a tolerance relation, a limited tolerance relation or an asymmetric similarity rela-
tion, respectively. Note that classification granularities in U

/

RP do not always con-
stitute partitions or covers of U (Wang et al. 2008b). The lower and upper approx-
imation sets of X ⊆ U with respect to a general binary relation RP are defined as 
RP(X) = {ui ∈ U |RP

S (ui) ⊆ X} and RP(X) = {ui ∈ U |RP
S (ui) ∩ X �= ∅}, respectively.

2.	 If Q and P ⊆ A, we define a partial relation ≺
−

 as follows: P ≺
−
Q ⇔ RP

S (ui) ⊆ R
Q
S (ui) 

for ∀ui ∈ U , which means that the knowledge P is finer (i.e., has finer classification 

(1)IND(P) =
{(

ui,uj
)

∈ U ×U
∣

∣∀a ∈ P, f (ui, a) = f
(

uj , a
)}
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granularities) than the knowledge Q. If RP
S (ui) ⊆ R

Q
S (ui) for ∀ui ∈ U and ∃uj ∈ U 

satisfies RP
S (uj) ⊂ R

Q
S (uj), then we say that the knowledge P is strictly finer than the 

knowledge Q, or the knowledge Q entirely depends on the knowledge P, which is 
denoted by P ≺ Q. The notation P ≈ Q represents RP

S (ui) = R
Q
S (ui) for ∀ui ∈ U .

Limitations of existing uncertainty measures
In classical RST, there are two main causes of uncertainty: the information granularity 
derived from the binary relation in the universe, which is knowledge uncertainty, and 
the boundary of the rough set in the given approximation space, which is set uncertainty 
(Pawlak 1991). Beaubouef et al. (1998) proposed a new integrated uncertainty measure 
for complete information systems, which they called rough entropy.

Given an information system S = (U ,A), P,Q ⊆ A, and U/P = {P1,P1, . . . ,Pm}. The 
rough entropy of X ⊆ U with respect to P is defined as (Beaubouef et al. 1998)

where HG(P) = −

∣

∣

∣

∑m
i=1

|Pi|
|U |

log2
1
|Pi|

∣

∣

∣
 is called the granularity measure of the knowl-

edge P. In Eq.  (2), HG(P) measures knowledge uncertainty, and the roughness 

ρP(X) = 1−

∣

∣

∣
P−X

∣

∣

∣

∣

∣P̄X
∣

∣

 measures set uncertainty. Rough entropy considers two types of 

uncertainty and is therefore an integrated uncertainty measure.
Yang and John (2008) noted that existing uncertainty measures cannot correctly meas-

ure the uncertainty of boundary rough sets, whose lower approximation is an empty 
set. Thus, Yang and John (2008) defined the measures global accuracy σP(X) and global 
roughness GP(X) under the equivalence relation to measure the uncertainty of rough 
sets:

where BNP(X) =
∣

∣PX
∣

∣− |PX |. The global accuracy and the global roughness reveal 
the global uncertainty with respect to the universe of discourse, which addresses the 
shortcomings of classical measures for boundary rough sets. However, similar to clas-
sical measures, global accuracy and global roughness cannot measure the knowledge 
uncertainty.

If the boundary region of X ⊆ U with respect to the knowledge A is an empty set, the 
rough set X can be precisely described by the knowledge A. In this case, the rough set 
X becomes a precise set; i.e., the uncertainty of X is 0. Thus, the uncertainty of a rough 
set X is related only to the size of the boundary region and the information granularity 
of the boundary region and not to the information granularity in the positive and nega-
tive regions (Wang and Zhang 2008). Although the rough entropy in Eq. (2) can measure 
two types of uncertainty, it is not always effective in certain cases. In the following, two 
examples reveal the limitations of the existing uncertainty measures for both complete 
and incomplete information systems.

(2)H(X ,P) = ρP(X)H
G(P)

(3)σp(X) =
|U − BNP(X)|

|U |

(4)GP(X) = 1− σp(X)
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Example 1  In a complete information system S = (U ,A), U = {u1,u2, . . . ,u3600} , 
X ⊆ U and P ⊆ A. Figure  1 presents the lower and upper approximations and the 
boundary region of X as the information granularity induced by the knowledge P 
changes, where in subfigures (1)–(7) the information granularity is progressively finer. 
In subfigure (1), the lower approximation set is an empty set and the boundary region is 
the entire universe. Parts of the universe in Fig. 1 (2) are finer than those in Fig. 1 (1), i.e., 
6 units in Fig. 1 (1) are equally divided into 24 smaller units. The lower approximation 
set remains empty, and the boundary region comprises 22 smaller units. Similarly, Fig. 1 
(3) shows the results as parts of the universe [i.e., two of the large units in Fig. 1 (2)] are 
further divided evenly. Figure 1 (4) presents the results when the largest unit in Fig. 1 (3) 
is further divided evenly. Figure 1 (5) shows the results when all of the smaller units in 
Fig. 1 (4) are further divided evenly, and Fig. 1 (6) presents the results when the negative 
region of Fig. 1 (5) is divided evenly. Figure 1 (7) presents the results when the positive 
domain of Fig. 1 (6) is further divided evenly.

The values of various uncertainty measures for the rough set X in each subfigure of 
Fig. 1 are shown in Table 1, where Num_L, Num_U and Num_B represent the number of 
objects in the lower approximation, the upper approximation, and the boundary region, 

(4)

(5) (6) (7)

(1) (3)

 rough set X

Lower approximation of X

X

 

 

 U

(2)

 

Upper approximation of

Fig. 1  Lower and upper approximations of a rough set for various levels of information granularities

Table 1  Uncertainty measures of the rough set X with various information granularities

Subfig. no. Uncertainty measures

Num_L Num_U Num_B ρP(X) GP(X) HG(P) H(X , P)

(1) 0 3600 3600 1 1 8.64 8.64

(2) 0 2200 2200 1 0.61 7.31 7.31

(3) 0 2200 2200 1 0.61 6.87 6.87

(4) 200 2200 2000 0.91 0.56 6.64 6.04

(5) 5400 1548 1008 0.65 0.28 5.17 3.36

(6) 5400 1548 1008 0.65 0.28 4.03 2.62

(7) 5400 1548 1008 0.65 0.28 3.25 2.11
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respectively. From Table 1, we can observe that the number of objects in the boundary 
of X decreases as the information granularity becomes finer, i.e., the number of objects 
surely belonging or not belonging to X increases. The uncertainty measures decrease 
monotonically as the information granularities become smaller through finer classifi-
cation. However, the existing uncertainty measures are not always effective in certain 
cases; their limitations are revealed by the following five observations:

1.	 Rough set X is a boundary rough set (i.e., the lower approximation of X is an empty 
set) in Figs.  1 and 2. From the differences between partitions (1) and (2), we can 
observe that the boundary region becomes smaller and the information granularities 
in the boundary region become finer. Obviously, the uncertainty of the rough set X 
should become smaller. However, ρP(X) in Table 1 does not change; although HG(P) 
decreases, it reflects only the variation in the information granularity and not the 
uncertainty of the set. Thus, ρP(X) and HG(P) cannot adequately describe the uncer-
tainty of a boundary rough set. The measure H(X ,P) reflects only the set uncertainty 
of the boundary rough set and not the knowledge uncertainty.

2.	 It can be observed that from partitions (2) and (3) that the boundary region does not 
change, but the information granularity in the boundary region becomes finer, which 
shows that the set uncertainty remains the same while the knowledge uncertainty 
decreases. In Table 1, ρP(X) and GP(X) do not change whereas H(X ,P) decreases, 
which illustrates that ρP(X) and GP(X) do not reflect the uncertainty of the knowl-
edge whereas rough entropy H(X ,P) does.

3.	 Comparing partitions (3) with (4) and (4) with (5), it can be observed that the bound-
ary region becomes smaller and the information granularity in the boundary region 
becomes finer. Therefore, the uncertainty of the rough set X decreases. In Table 1, 
ρP(X), GP(X), HG(P) and H(X ,P) all decrease. However, ρP(X) and GP(X) reflect 
only the set uncertainty, HG(P) reflects only the knowledge uncertainty, and H(X ,P) 
reflects both types of uncertainty.

4.	 Comparing partitions (5) with (6) and (6) with (7), we can observe that the bound-
ary region and the information granularity in the boundary region remain the same. 
Accordingly, the uncertainty of X should not change (Wang and Zhang 2008). 
Although the information granularity becomes finer in the negative region from 

Fig. 2  Uncertainty measures when X = X1
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(5) to (6) and in the positive region from (6) to (7), the uncertainty of rough set X 
should remain unaffected (Wang and Zhang 2008). In Table 1, ρP(X) and GP(X) are 
constant, which is consistent with human cognition, but H(X ,P) decreases, which 
shows that H(X ,P) does not accurately reflect the uncertainty of a rough set in this 
case.

5.	 An integrated measure of uncertainty in RST includes both types of uncertainty. 
Intuitively, the value of an integrated roughness measure that includes both types 
of uncertainty should be larger than that of a measure that considers only one type 
of uncertainty. However, rough entropy does not satisfy this requirement: although 
rough entropy includes both types of uncertainty, the numerical values can be 
smaller than those of the knowledge uncertainty measure, as shown in Table 1.

From the preceding analysis, it may be concluded that the existing uncertainty meas-
ures for a complete information system do not accurately reflect the uncertainty of 
rough sets. Next, the characteristics of uncertainty measures for an incomplete informa-
tion system will be analysed.

In an incomplete information system, the equivalence relation of classical measures is 
extended to a tolerance relation RP

T , which is expressed as:

In Eqs.  (5) and (6), αRP
T
(X) and ρRP

T
(X) are the accuracy and the roughness, respec-

tively. Obviously, 0 ≤ αRP
T
(X), ρRP

T
(X) ≤ 1. The larger the uncertainty of a rough set, the 

smaller αRP
T
(X) is and the larger ρRP

T
(X) is. Therefore, the accuracy and the roughness 

can be used to measure the set uncertainty. As was the case for a complete information 
system, Eqs. (5) and (6) measure only set uncertainty and not knowledge uncertainty for 
an incomplete information system (Wang et  al. 2008a). Wang et  al. (2008a) proposed 
new definitions of accuracy and roughness based on the tolerance relation:

Knowledge granularity, defined as GK (RP
T
) =

∑|U |
i=1

∣

∣RP
T
(ui)

∣

∣

/

|U |2, was employed 
to measure the roughness of knowledge. In contrast to knowledge granularity, 
HK (RP

T
) = 1− GK (RP

T
) was used to characterise the precision of knowledge. Obviously, 

Eqs. (7) and (8) consider both set uncertainty and knowledge uncertainty, which corrects 
the problems with the classical definitions of accuracy and roughness to some extent. 
However, certain limitations remain for an incomplete information system, and these 
are revealed by the following example.

(5)αRP
T
(X) =

∣

∣

∣
RP
T (X)

∣

∣

∣

∣

∣

∣
RP
T (X)

∣

∣

∣

(6)ρRP
T
(X) = 1− αRP

T
(X)

(7)α∗
RP
T

(X) = 1− ρRP
T
(X)× GK (RP

T
)

(8)ρ∗
RP
T

(X) = ρRP
T
(X)× GK (RP

T
)
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Example 2  Let S = (U ,A) be an incomplete information system with 
U = {u1,u2, . . . ,u7}, P,Q ⊆ A. Assume that

Obviously, U
/

RQ
T
⊂ U

/

RP
T
. Table 2 shows the upper and lower approximations, and the 

boundary region of the rough set X, while Table 3 shows the values of the uncertainty 
measures of the rough sets X for the knowledge P and Q. Figures 2 and 3 present the 
uncertainty measures of X1 and X2, respectively. The subscripts of the uncertainty meas-
ures in Figs. 2 and 3 are omitted, e.g., αRP

T
(X) is abbreviated as α and GK (RP

T
) is abbrevi-

ated as GK .
From Tables 2 and 3, Figs. 2, and 3, we can make the following observations:

1.	 When X = X1, the lower and upper approximations of X1 with respect to the knowl-
edge P and Q are identical, and the classification granularities in the upper approxi-
mations {u1, u2, u6, u7} induced by the knowledge P and Q are also identical. There-
fore, the roughness and the accuracy of the knowledge P and Q are equal, which 
is logically consistent. However, α∗

RP
T

(X) < α∗

R
Q
T

(X) and ρ∗

R
Q
T

(X) < ρ∗
RP
T

(X). These 
results are caused by the subdivision of the classification granularities RP

T
(u3) and 

RP
T
(u5) in the negative region of set X1 with the knowledge Q. Obviously, RP

T
(u3) and 

(9)

{

U
/

RP
T
= {{u1,u2}, {u2,u1}, {u3,u4,u5}, {u4,u3}, {u5,u3,u6}, {u6,u5,u7}, {u7,u6}}

U
/

RQ
T
= {{u1,u2}, {u2,u1}, {u3,u4}, {u4,u3}, {u5,u6}, {u6,u5,u7}, {u7,u6}}

Table 2  Upper and lower approximations and the boundary region of the rough set X

X RP
T
(X) R

Q

T
(X) RP

T
(X) R

Q

T
(X) BN

RP
T
(X) BN

R
Q

T

(X)

X1 {u1, u2} {u1, u2} {u1, u2, u6, u7} {u1, u2, u6, u7} {u6, u7} {u6, u7}

X2 ∅ ∅ {u1, u2, u3, u4, u5} {u1, u2, u3, u4} {u1, u2, u3, u4, u5} {u1, u2, u3, u4}

Table 3  Uncertainty measures of the rough set X

X ρ
RP
T
(X) ρ

R
Q

T

(X) GK(RP
T
) GK(R

Q

T
) ρ∗

RP
T

(X) ρ∗

R
Q

T

(X)

X1 0.50 0.50 0.35 0.31 0.17 0.15

X2 1 1 0.35 0.31 0.35 0.31

Fig. 3  Uncertainty measures when X = X2
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RP
T
(u5) are unrelated to X, and thus α∗

RP
T

(X) and ρ∗
RP
T

(X) are inconsistent with human 
cognition.

2.	 When X = X2, the lower approximation of set X2 is an empty set, and as a result, X2 
is a boundary rough set. The boundary regions of X2 with respect to the knowledge 
P and Q are different. In this case, the larger the boundary region is, the coarser the 
knowledge (Yang and John 2008). However, ρRP

T
(X) = ρ

R
Q
T
(X) and αRP

T
(X) = α

R
Q
T
(X) , 

so from Tables  2 and 3 we obtain HK (RP
T
) = α∗

RP
T

(X) < α∗

R
Q
T

(X) = HK (RQ
T
) and 

GK (RQ
T
) = ρ∗

R
Q
T

(X) < ρ∗
RP
T

(X) = GK (RP
T
), which shows that ρRP

T
(X) and αRP

T
(X) do 

not accurately reflect the uncertainty of the rough set when BNRPT
(X) = ∅; α∗

RP
T

(X) 
and ρ∗

RP
T

(X) can measure the knowledge uncertainty but not the set uncertainty.

3.	 From Fig. 2 and Fig. 3, it can be observed that αRP
T
(X) ≤ α∗

RP
T

(X), α
R
Q
T
(X) ≤ α∗

R
Q
T

(X) , 

HK (RP
T
) ≤ α∗

RP
T

(X), and HK (RQ
T
) ≤ α∗

R
Q
T

(X); therefore, ρ∗
RP
T

(X) < ρRP
T
(X), 

ρ∗

R
Q
T

(X) < ρ
R
Q
T
(X), ρ∗

RP
T

(X) ≤ GK (RP
T
) and ρ∗

R
Q
T

(X) ≤ GK (RQ
T
) when X = X1 or 

X = X2. That is, the value of the roughness measure that includes two types of uncer-
tainty is smaller than that of the measure reflecting only one type of uncertainty, 
whereas the value of the accuracy measure that includes two types of uncertainty is 
greater than that of the measure reflecting only one type of uncertainty. Obviously, 
these results are logically inconsistent.

Example 2 shows that, similar to the results for a complete information system, uncer-
tainty measures for an incomplete information system have certain limitations. Xu et al. 
(Xu et al. 2009) presented a new integrated uncertainty measure for ordered information 
systems with properties similar to those of α∗

RP
T

(X) and ρ∗
RP
T

(X). Therefore, this uncer-
tainty measure has the same limitations.

From Examples 1 and 2, we can conclude that the imprecision of rough sets is not well 
characterised by existing measures for both complete and incomplete information sys-
tems. Therefore, it is necessary to find a more comprehensive and effective uncertainty 
measure based on general binary relations.

Integrated measures based on general binary relations
In classical RST (Pawlak 1991), uncertainty includes knowledge uncertainty and set 
uncertainty. Various integrated uncertainty measures have been proposed that are based 
on a given binary relation and include both types of uncertainty (Wang et  al. 2008a; 
Liang et al. 2009; Xu et al. 2009). The values of these measures depend on the classifica-
tion granularity, which is unassociated with the set X ⊆ U , specifically the classification 
granularity in the negative region of X. This behaviour is inconsistent with human cog-
nition (Wang and Zhang 2008). Intuitively, the value of an integrated roughness meas-
ure (i.e., the roughness of a rough set) that evaluates two types of uncertainty should 
be greater than that of a measure which evaluates only one type of uncertainty, but this 
property is not satisfied by almost all the existing integrated measures. In addition, the 
existing integrated uncertainty measures cannot be used to effectively characterise the 
roughness of rough sets in certain cases. In this section, the limitations of existing inte-
grated uncertainty measures are addressed. First, a knowledge uncertainty measure that 
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is based on general binary relations is presented. Based on this uncertainty measure, 
novel and logically consistent integrated uncertainty measures are presented.

Information entropy measure based on general binary relations

Classical RST starts from an equivalence relation. Knowledge is based on the ability to 
partition a “universe” using the equivalence relation. The finer the partitioning, the more 
precise the knowledge will be. In an incomplete information system, overlaps may occur 
among several similar classes defined by the tolerance relation, the similarity relation, or 
the limited tolerance relation. Moreover, a covering is substituted for the partition of the 
universe. Thus, the equivalence relation cannot be satisfied for an incomplete informa-
tion system. The same problems appear for general binary relations. However, research 
on uncertainty measures based on general binary relations is lacking (Huang et al. 2004). 
This lack of research motivates the investigation of an effective uncertainty measure 
based on general binary relations. In the following, an uncertainty measure based on 
general binary relations will be discussed.

Let RP ⊆ U ×U  be a general binary relation on U, P ⊆ A. For two elements ui,uj ∈ U  , 
if uj has the same properties as ui with respect to RP, i.e., uiRPuj, we say that uj is RP

-related to ui. A general binary relation may be more conveniently represented using 
successor neighbourhoods or a classification granularity:

The classification granularity RP
S (ui) consists of all RP-related elements of ui. If RP

S (ui) 
contains more elements, more objects will belong to the same class as ui, the classifi-
cation granularities will be larger, and the capability of the knowledge P to classify the 
object ui will be weaker. Given these characteristics, a definition of an uncertainty meas-
ure based on general binary relations is given as follows.

Definition 1  Given an information system S = (U ,A), ui ∈ U  and 1 ≤ i ≤ |U |, the 
information entropy of the knowledge P ⊆ A is defined as

where

Theorem  1  (Monotonicity) Given an information system S = (U ,A), P,Q ⊆ A and 
P ≺

−
Q, the information entropy satisfies H ′(Q) ≤ H ′(P), where equality holds if and only 

if P ≈ Q.

The proof of this theorem follows from the definition of the partial relation and Defini-
tion 1.

(10)RP
S (ui) = {uj

∣

∣

∣
uj ∈ U ,uiR

P
S uj }

(11)H ′(P) = 1− G′(P)

(12)G′(P) =
∑

ui∈BNRP
(X)

∣

∣RP
S (ui)

∣

∣− 1

|U |(|U | − 1)
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Corollary 1  Given an information system S = (U ,A), P ⊆ A, H ′(P) reaches a mini-
mum value of 0 if and only if RP

S (ui) = U for ∀ui ∈ U , and H ′(P) reaches a maximum 
value of 1 if and only if RP

S (ui) = ui for ∀ui ∈ U .

Theorem  1 and Corollary 1 indicate that the information entropy monotonically 
increases as the classification granularity becomes smaller through finer classification. 
If the knowledge P cannot distinguish between any two objects in the universe U, the 
information entropy is at the minimum and the knowledge P has the weakest classifica-
tion capability and the greatest roughness. If the knowledge P can distinguish all objects 
in the universe U, the information entropy is at the maximum and the knowledge P 
has the strongest classification capability and accuracy. Therefore, information entropy 
describes the roughness of knowledge in the context of granularity.

Integrated measures of rough sets

To measure the uncertainty of rough sets more precisely, Yang and John (2008) proposed 
two complementary uncertainty measures for a complete information system, global 
accuracy and global roughness. These two complementary uncertainty measures can 
measure the set uncertainty more comprehensively than other uncertainty measures. 
However, these two complementary uncertainty measures are based on the equivalence 
relation and are not suitable for an incomplete information system. However, global 
accuracy and global roughness can be extended to incomplete systems using a general 
binary relation. The new definition for global accuracy is

where BN ′
P(X) = RP(X)− RP(X). Global roughness is then defined as 

ω′
P(X) = 1− σ ′

P(X). Based on these definitions, we propose two novel integrated 
measures.

Definition 2  Given an information system S = (U ,A), P ⊆ A, X ⊆ U and the general 
binary relation RP, the integrated roughness and the integrated accuracy of X are defined 
as:

H ′(P) is used to measure knowledge uncertainty, and σ ′
P(X) is used to measure set 

uncertainty. Obviously, Definition 2 considers not only the size of the boundary region 
of a rough set but also the classification granularity of the boundary region. Therefore, 
integrated roughness and integrated accuracy measure two types of uncertainty.

Theorem 2  (Monotonicity) Given an information system S = (U ,A), P,Q ⊆ A, P ≺ Q, 
and X ⊆ U , the following relations hold:

(1) σ
′
Q(X) ≤ σ ′

P(X); (2) ρ
′
P(X) ≤ ρ′

Q(X).

(13)σ ′
P(X) = 1−

∣

∣BN ′
P(X)

∣

∣

2|U |

(14)ρ′
P(X) = 1− α′

P(X)

(15)α′
P(X) = σ ′

P(X)×H ′(P)
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Proof  (1) Because P ≺ Q, we have that RP
S (ui) ⊆ R

Q
S (ui) for ∀ui ∈ U , and ∃uk ∈ U  

satisfies RP
S (uk) ⊂ R

Q
S (uk). For ∀ui ∈ RQ(X), RQ

S (ui) ⊆ X, we obtain RP
S (ui) ⊆ X, i.e., 

ui ∈ RP(X). Thus, RQ(X) ⊆ RP(X). Similarly, RP
S (ui) ∩ X �= ∅ for ∀ui ∈ RP(X). Because 

RP
S (ui) ⊆ R

Q
S (ui), we have RQ

S (ui) ∩ X �= ∅, i.e., ui ∈ RQ(X). Therefore, RP(X) ⊆ RQ(X) 
and BN ′

P(X) ⊆ BN ′
Q(X). According to Eq. (13), we have σ ′

Q(X) ≤ σ ′
P(X), where equality 

holds if and only if BN ′
P(X) = BN ′

Q(X).

(2) Because P ≺ Q, we have RP
S (ui) ⊆ R

Q
S (ui) for any ui ∈ U , and ∃uk ∈ U  satisfies 

RP
S (uk) ⊂ R

Q
S (uk). To simplify the proof, we assume that only one object uk ∈ U  satisfies 

RP
S (uk) ⊂ R

Q
S (uk), so we have RP

S (ui) = R
Q
S (ui) for any other ui �= uk (the proof for many 

objects is similar). Three cases are discussed:

①	RQ
S (uk) ⊆ X: Because RP

S (uk) ⊂ R
Q
S (uk), it follows that RP

S (uk) ⊆ X and 
uk /∈ BN ′

P(X) = BN ′
Q(X). From the proof of (1), we have σ ′

Q(X) = σ ′
P(X). Because 

RP
S (ui) = R

Q
S (ui) for ∀ui �= uk, from Eq. (8) we obtain H ′(P) = H ′(Q). According to 

Definition 2, we have α′
Q(X) = α′

P(X) and ρ′
P(X) = ρ′

Q(X).
②	RQ

S (uk) ∩ X = ∅: Because RP
S (uk) ⊂ R

Q
S (uk), we have RP

S (uk) ∩ X = ∅ and 
uk /∈ BN ′

P(X) = BN ′
Q(X). From the proof of (1), we have σ ′

Q(X) = σ ′
P(X). Because 

RP
S (ui) = R

Q
S (ui) for ∀ui �= uk, from Eq. (11) we obtain H ′(Q) = H ′(P). According to 

Definition 2, we have that α′
Q(X) = α′

P(X) and ρ′
P(X) = ρ′

Q(X).
③	RQ

S (uk) ∩ X �= ∅ and RQ
S (uk) ∩ X �= R

Q
S (uk). We have uk ∈ BN ′

Q(X). Three cases 
must be considered:

(1)	 If RP
S (uk) ∩ X �= ∅ and RP

S (uk) ∩ X �= RP
S (uk), then uk ∈ BN ′

P(X) = BN ′
Q(X). 

From the proof of (1), we obtain 0 < σ ′
Q(X) = σ ′

P(X). Because RP
S (ui) = R

Q
S (ui) 

for ∀ui �= uk, RP
S (uk) ⊂ R

Q
S (uk), from Eq.  (8) and Definition 2 we have that 

H ′(Q) < H ′(P), α′
Q(X) < α′

P(X) and ρ′
P(X) < ρ′

Q(X).
(2)	 If RP

S (uk) ⊆ X, then uk /∈ BN ′
P(X). Thus, BN ′

P(X) ⊂ BN ′
Q(X) �= ∅. From 

the proof of (1), we have σ ′
Q(X) < σ ′

P(X). Because RP
S (ui) = R

Q
S (ui) and 

RP
S (uk) ⊂ R

Q
S (uk) for ∀ui �= uk, according to Eq. (8) we have that H ′(Q) < H ′(P) . 

From Definition 2, we have that α′
Q(X) < α′

P(X) and ρ′
P(X) < ρ′

Q(X).
(3)	 If RP

S (uk) ∩ X = ∅, then uk /∈ BN ′
P(X). Therefore, BN ′

P(X) ⊂ BN ′
Q(X) �= ∅. 

From the proof of (1), we have σ ′
Q(X) < σ ′

P(X). Because RP
S (ui) = R

Q
S (ui) and 

RP
S (uk) ⊂ R

Q
S (uk) for ∀ui �= uk, according to Eq. (13) we obtain H ′(Q) < H ′(P). 

From Definition 2, we have that α′
Q(X) < α′

P(X) and ρ′
P(X) < ρ′

Q(X).
This concludes the proof of Theorem 2.

Corollary 2  Given an information system S = (U ,A), P,Q ⊆ A, P ≺ Q and X ⊆ U , 
where U ′ = {uk ∈ U

∣

∣

∣
RP
S (uk) ⊂ R

Q
S (uk) }, then ρα

P (X) = ρα
Q(X) if and only if uk /∈ BN ′

Q(X) 
for ∀uk ∈ U ′.

The proof of this corollary follows from Theorem 2. From Theorem 2 and Corollary 
2, we can observe that the integrated accuracy does not strictly monotonically increase, 
and the integrated roughness does not strictly monotonically decrease as the classifi-
cation granularity becomes smaller through finer classification. That is, the integrated 
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accuracy and the integrated roughness are unrelated to the classification granularity 
R
Q
S (ui), where ui ∈ {U − BN ′

Q(X)}. If the classification granularity RQ
S (uk) defined by 

the knowledge P satisfies uk ∈ BN ′
Q(X), the integrated accuracy (integrated roughness) 

strictly monotonically increases (decreases), which is accords to human cognition.

Corollary 3  Given an information system S = (U ,A), P ⊆ A and X ⊆ U , the inte-
grated roughness satisfies 0 ≤ ρ′

P(X) ≤ 1. Equality holds on the right side if and only if 
RP
S (ui) = U for ∀ui ∈ U , and equality holds on the left side if and only if BN ′

P(X) = ∅.

The proof of this corollary follows from Eqs. (11), (13), (14) and (15).

Theorem  3  Given an information system S = (U ,A), P ⊆ A and X ⊆ U , the inte-
grated accuracy and the integrated roughness satisfy the relations α′

P(X) ≤ σ ′
P(X) and 

ω′
P(X) ≤ ρ′

P(X).

It can be concluded from Theorem 3 that the value of the integrated accuracy α′
P(X), 

which measures two types of uncertainty, will be less than that of σ ′
P(X), which measures 

only one type of uncertainty, and the value of the integrated roughness ρ′
P(X), which 

measures two types of uncertainty, will be greater than that of ω′
P(X), which measures 

only one type of uncertainty. Therefore, the new integrated measures α′
P(X) and ρ′

P(X) 
are logically consistent.

Corollary 4  Given an information system S = (U ,A), P,Q ⊆ A, P ≺
−
Q and X ⊆ U ,

(1)	 If X is a boundary rough set (i.e., RP(X) = RQ(X) = ∅) and RQ(X) = RP(X), then 
ρQ(X) = ρP(X) and ω′

Q(X) = ω′
P(X), but ρ′

P(X) ≤ ρ′
Q(X);

(2)	 If ρ′
P(X) = ρ′

Q(X), then ρQ(X) = ρP(X) and ω′
Q(X) = ω′

P(X);
(3)	 If ρP(X) < ρQ(X) or ω′

P(X) < ω′
Q(X), then ρ′

P(X) ≤ ρ′
Q(X);Property (1) in Cor-

ollary 4 indicates that the integrated roughness ρ′
P(X) measures both set uncer-

tainty and knowledge uncertainty for X; however, ρP(X) and ω′
P(X) measure 

only set uncertainty. Property (2) in Corollary 4 shows that ρP(X) and ω′
P(X) are 

invariant if the integrated roughness ρ′
P(X) remains unchanged, although the 

classification granularity is smaller through finer classification. However, ρP(X) 
and ω′

P(X) may not decrease if the integrated roughness ρ′
P(X) decreases. Prop-

erty (3) in Corollary 4 shows that the integrated roughness ρ′
P(X) decreases when 

ρP(X) and ω′
P(X) decrease. The converses of properties (2) and (3) are not always 

true. Corollary 4 implies that the integrated roughness is more sensitive than 
ρP(X) and ω′

P(X) for a general binary relation.
The preceding properties characterise the variation of the integrated roughness with 

the classification granularity. The effectiveness of the proposed measure is verified in the 
following example.

Example 3 (Continued from Example 1)  Results for the uncertainty measures based 
on an equivalence relation were obtained from Eqs. (11), (13), (14) and (15), and these 
results are listed in Table 4.
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From Table 4, we can make the following observations:

1.	 Comparing partitions (1) with (2), (3) with (4) and (4) with (5), we can observe that 
the boundary region becomes smaller, and thus σ ′

P(X) becomes smaller and ω′
P(X) 

becomes larger. In addition, the classification granularity in the boundary region 
becomes finer, which leads to an increase in the discernibility of objects in the 
boundary region, and thus ρ′

P(X) becomes smaller and α′
P(X) becomes larger. Obvi-

ously, the new integrated measures α′
P(X) and ρ′

P(X) reflect not only the set uncer-
tainty but also the knowledge uncertainty in the boundary region.

2.	 Comparing partition (2) with (3), it can be observed that the boundary region, the 
global accuracy σ ′

P(X) and the global roughness ω′
P(X) do not change. However, the 

classification granularity in the boundary region becomes finer, i.e., the discernibility 
of objects in the boundary region increases, and thus H ′(P) becomes larger. Obvi-
ously, an increase in α′

P(X) and a decrease in ρ′
P(X) in this case reflect the decrease of 

the knowledge uncertainty in the boundary region, whereas the set uncertainty does 
not change.

3.	 Comparing partitions (5) with (6) and (6) with (7), it can be observed that the bound-
ary region and the classification granularity in the boundary region remain the same, 
and thus the uncertainty of the rough set X does not change. Accordingly, σ ′

P(X), 
ω′
P(X), H

′(P), G′(P), ρ′
P(X) and α′

P(X) all do not change, which shows that the new 
integrated measures are unassociated with subdivision of classification granularities 
unrelated to rough set X. Therefore, the new integrated measures are consistent with 
human cognition.

4.	 The integrated accuracy α′
P(X) and the integrated roughness ρ′

P(X) reflect two types 
of uncertainty. Therefore, the value of the integrated accuracy is smaller than those of 
σ ′
P(X) and H ′(P), and the value of the integrated roughness ρ′

P(X) is larger than those 
of ω′

P(X) and G′(P). These results are logically consistent.

Example 3 illustrates that the new integrated measures α′
P(X) and ρ′

P(X) for a complete 
information system overcome the limitations of the existing uncertainty measures, bet-
ter characterise the imprecision of rough sets and are consistent with human cognition.

Example 4 (Continued from Example 2)  We calculate the new uncertainty measures 
for the tolerance relation using Eqs.  (11), (13), (14) and (15). The results are shown in 

Table 4  New uncertainty measures of  a rough set X with  various classification granulari-
ties

Num_L Num_U Num_B σ ′

P
(X) ω′

P
(X) H′(P) G′(P) α′

P
(X) ρ′

P
(X)

(1) 0 3600 3600 0.5 0.5 0.889 0.111 0.445 0.555

(2) 0 2200 2200 0.694 0.306 0.955 0.045 0.663 0.337

(3) 0 2200 2200 0.694 0.306 0.974 0.026 0.676 0.324

(4) 200 2200 2000 0.722 0.278 0.985 0.015 0.711 0.289

(5) 5400 1548 1008 0.860 0.140 0.997 0.003 0.857 0.143

(6) 5400 1548 1008 0.860 0.140 0.997 0.003 0.857 0.143

(7) 5400 1548 1008 0.860 0.140 0.997 0.003 0.857 0.143
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Table 5. Figures 4 and 5 present the new uncertainty measures for X1 and X2, respec-
tively. The subscripts of the uncertainty measures in Figs.  4 and 5 are omitted (as in 
Figs. 2 and 3).

We can draw the following conclusions from Table 5, Fig. 4 and Fig. 5:

1.	 When X = X1, the upper and lower approximations of set X1 are equal, and the 
classification granularities of objects in the boundary region are also the same with 
respect to the knowledge P and Q. Thus, subdividing the classification granularities 
RP
S (u3) and RP

S (u5) (which are unrelated to X) in the negative region of set X does not 
alter the values of α′

P(X) and ρ′
P(X), which shows that α′

P(X) and ρ′
P(X) are consist-

ent with human cognition.
2.	 When X = X2, X is a boundary rough set. The boundary regions of X with 

respect to the knowledge P and Q are different. Consequently, σ ′
P(X) < σ ′

Q(X) 
and ω′

Q(X) < ω′
P(X). In addition, the classification granularities of objects in the 

boundary region with respect to the knowledge P and Q are different. Further-

Table 5  The proposed uncertainty measures for an incomplete information system

X σ ′

P
(X) σ ′

Q
(X) H′(P) H′(Q) α′

P
(X) α′

Q
(X)

X1 0.857 0.857 0.929 0.929 0.796 0.796

X2 0.643 0.714 0.833 0.905 0.536 0.646

Fig. 4  The proposed uncertainty measures when X = X1

Fig. 5  The proposed uncertainty measures when X = X2
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more, H ′(P) < H ′(Q) and G′(Q) < G′(P). Finally, the integrated measures satisfy 
ρ′
Q(X) < ρ′

P(X) and α′
P(X) < α′

Q(X). Obviously, the proposed integrated accuracy 
and integrated roughness can not only correctly reflect set uncertainty but also cor-
rectly measure knowledge uncertainty for a boundary rough set. Therefore, α′

P(X) 
and ρ′

P(X) can adequately characterise the uncertainty of rough sets.
3.	 From Figs.  4 and 5, it can be observed that α′

P(X) ≤ σ ′
P(X), α

′
P(X) ≤ H ′(P) , 

α′
Q(X) ≤ σ ′

Q(X) and α′
Q(X) ≤ H ′(Q) when X = X1 or X = X2. That is to say, the 

value of the integrated accuracy, which is based on two types of uncertainty, is 
smaller than that of the measure based on only one type of uncertainty. In addition, 
ω′
P(X) ≤ ρ′

P(X), G
′(P) ≤ ρ′

P(X), ω
′
Q(X) ≤ ρ′

Q(X) and G′(Q) ≤ ρ′
Q(X), which indi-

cates that the value of the integrated roughness, which reflects two types of uncer-
tainty, is greater than that of the measure reflecting only one type of uncertainty. 
Obviously, these results are logically consistent.

Comparing Examples 3 and 4 with Examples 1 and 2, we can conclude that the new 
integrated measures α′

P(X) and ρ′
P(X) under general binary relations are suitable for 

both complete and incomplete information systems. These new measures overcome 
the limitations of existing uncertainty measures and can satisfactorily characterise the 
imprecision of rough sets. Therefore, the proposed integrated measures are more com-
prehensive and effective uncertainty measures for both complete and incomplete infor-
mation systems.

Conclusion
The extension of RST to incomplete information systems is important for making RST 
practical. Uncertainty measures are the basis for information processing and knowledge 
acquisition in an incomplete information system. At present, direct processing of an 
incomplete information system lacks a theoretical basis. By considering the nature of the 
roughness of sets, we developed new integrated measures based on general binary rela-
tions. Several desirable properties of the proposed measures have been shown. We have 
demonstrated that the new measures overcome the limitations of existing uncertainty 
measures and can be used to measure with a simple and comprehensive form the rough-
ness and the accuracy of a rough set, and the results are logically consistent. Research on 
the application of our proposed integrated measures for rule acquisition is planned.
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