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Background
It is eminent that nonlinear partial differential equations (NLPDEs) are widely used as 
models to depict many important complex physical phenomena in a variety of fields of 
science and engineering, such as, nonlinear optics, solid state physics, plasma physics, 
chemical kinematics, fluid mechanics, chemistry, biology and many others. In the recent 
years, significant improvements have been made in searching wave solutions to NLP-
DEs. Several effective and powerful methods have been established to deal with NLP-
DEs. For instance, the Backlund transformation method (Rogers and Shadwick 1982), 
the inverse scattering method (Ablowitz and Clarkson 1991), the Darboux transforma-
tion method (Rogers and Schief 2003), the homogeneous balance method (Wang 1995; 
Wang et al. 1996), the tanh-function method (Parkes and Duffy 1996), the Jacobi ellip-
tic function expansion method (Liu et al. 2001), the exp-function method (He and Wu 
2006; Akbar and Ali 2011; Naher et al. 2012), the homotopy perturbation method (Jafari 
and Aminataei 2010; Yildirim et al. 2011), the Adomian decomposition method (Ado-
mian 1994), the ansatz method (Bekir et al. 2012), the modified simple equation method 
(Jawad et al. 2010; Khan and Akbar 2013), etc.

A further significant method was introduced by Wang et  al. (2008) for obtaining 
exact solutions to NLPDEs, called the (G′/G)-expansion method. The (G′/G)-expansion 
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method is based on the assumptions that the wave solutions can be expressed by a poly-
nomial in (G′/G), where the second order linear ordinary differential equation (ODE) 
Gʺ + λG′ + μG = 0 has been executed as an auxiliary equation, λ and μ are arbitrary 
constants. The (G′/G)-expansion method is one of the powerful methods to investigate 
nonlinear problems. Thus, diverse group of scientists studied different kind of NLPDEs 
and constructed solitons, topological solitons, singular solitons and other kinds of gen-
eral solitary wave solutions via this method. Applications of this method can be found in 
references, Akbar et al. (2012a, b, c), Feng and Zheng (2010), Feng et al. (2011) and the 
references therein for better understanding.

In order to establish the usefulness and reliability of the (G′/G)-expansion method 
and to enlarge the range of its pertinence, further research has been carried out by 
numerous researchers. For example, Zhang et  al. (2010) presented an improved (G′/G)-
expansion method to look into more general traveling wave solutions. In the original 
method, the traveling wave solutions were presented in the form u(ξ) =

∑n
i=0 ai(G

′/G)i 
where an  ≠  0, while Zhang et  al. (2010) assert that the solution can be expressed as 
u(ξ) =

∑n
i=−n ai(G

′/G)i, wherein a−n or an could be zero, but both of them can-
not be zero at the same time. Here, we observe that the range of the index i is from −n 
to n in place of 0 to n of the basic (G′/G)-expansion method. Thus, (G′/G)-expansion 
method established by Wang et  al. (2008) is a particular case of the improved (G′/G)-
expansion method. Li et  al. (2010) presented a two-variable (G′/G, 1/G)-expansion 
method. They supposed that the solution to the NLEEs can be expressed in the form: 
u(ξ) =

∑n
i=0 aiϕ

i +
∑n

i=0 biϕ
i−1ψ, where φ = (G′/G), ψ = 1/G and G can be found from 

the linear differential equation G′′(ξ)+ �G(ξ) = µ. Zayed (2009) developed an alternative 
approach of the (G′/G)-expansion method, where G(ξ) satisfies the Jacobi elliptical equa-
tion [G′(ξ)]2 = e2G

4(ξ)+ e1G
2(ξ)+ e0. Zayed (2011) also developed a further alternative 

approach of this method wherein G(ξ) satisfies the Riccati equation G′(ξ) = A+ BG2(ξ). 
Guo and Zhou (2010) established an extended (G′/G)-expansion. Akbar et al. (2012b) pre-
sented a generalized and improved (G′/G)-expansion method which provides further new 
solutions than the improved (G′/G)-expansion method (Zhang et al. 2010).

In the present article, we derive abundant traveling wave solutions to NLPDEs via the 
(1+1)-dimensional mBBM equation with some new solutions. To this end, a new ansatz 
involving the (G′/G)-expansion method will be presented. To depict the novelty, reliabil-
ity and advantages, we compare the acquired solutions to those solutions attained by 
Zayed and Al-Joudi (2010). These solutions include soliton, topological soliton, singular 
soliton and generalized solitary wave solutions which might be helpful to analyze com-
plex phenomena.

Description of the method
In this section, we present the description of the method. We consider the general 
NLPDE in the following form

where u is an unknown function which depends on x and t and H is a polynomial of u = u 
(x, t) and its partial derivatives in which linear term(s) of the highest order and highest 
order nonlinear term(s) exist. The most important steps of the new ansatz are as follows:

(1)H(u, ut , ux, ut t , ut x, ux x) = 0,
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Step 1: In order to find traveling wave solutions of (1), we introduce the wave variable

where the constant V is the traveling wave speed to be determined. The traveling wave 
transformation (2) permits us to convert (1) into an ordinary differential equation (ODE) 
for u = u(ξ):

where in the superscripts denote the ordinary derivatives with respect to ξ.
Step 2: Integrate (3) term by term one or more times according to possibility that 

yields constant(s) of integration. The integration constant(s) may be zero for simplicity.
Step 3: We assume the traveling wave solution of (3) can be expressed in the following 

form:

where G = G(ξ) satisfies the auxiliary equation

ai, bi (i = −N, …, N) and λ are constants to be determined, σ = ±1, μ ≠ 0 and N is a posi-
tive integer.

Step 4: To fix the positive integer N, we consider the homogeneous balance between 
the highest-order linear terms with the nonlinear terms of the highest order in (3).

Step 5: We substitute (4) into (3) including (5) and collect all terms of same powers of 
(G′/G)j and (G′/G)j

√

σ [1+ (G′/G)2/µ] together. Setting each coefficient to zero yields 
an over-determined system of algebraic equations. We solve the system of algebraic 
equations for ai, bi (i = −N···N) and λ, V.

Step 6: The general solutions of (5) yield:

where A, B are arbitrary constants.
Step 7: Assume that the constants ai, bi (i = −N···N), λ, V can be obtained by solving 

the algebraic equations in Step 5. Substituting these constants and the solutions given in 
(6) into (4), we obtain wave solutions of Eq. (1) directly.

Application of the method
In this section, the method discussed in “Description of the method” brings into look 
into wide-ranging and innovative solutions to the (1+1)-dimensional mBBM equation 
(Zayed and Al-Joudi 2010):

(2)u (x, t) = u (ξ), ξ = x − Vt,

(3)R (u, −V u′, V 2u′′, u′′, . . .),

(4)u (ξ) =
N
∑

i=−N

{

ai (G
′/G)i

(1+ � (G′/G)) i
+ bi (G

′/G)i−1

√

σ

(

1+
1

µ
(G′/G)2

)

}

,

(5)G′′ + µG = 0.

(6)

F1(ξ) =
G′

G
=

√
−µ

(

A sinh(
√
−µξ)+ B cosh(

√
−µξ)

A cosh(
√
−µξ)+ B sinh(

√
−µξ)

)

, µ < 0

F2(ξ) =
G′

G
=

√
µ

(

−A sin(
√
µ ξ)+ B cos(

√
µ ξ)

A cos(
√
µξ)+ B sin(

√
µ ξ)

)

, µ > 0

(7)
ut + ux − α u2 ux + ux x x = 0,
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where α is a non-zero positive constant. This equation was derived to describe an approxima-
tion for surface long waves in nonlinear dispersive media. It can also characterize the hydro-
magnetic waves in cold plasma, acoustic waves in inharmonic crystals and acoustic gravity 
waves in compressible fluids. We now examine solutions to (7) by using the proposed ansatz 
scheme. By means of the traveling wave transformation (2) and integrating once, we obtain

where primes indicate derivatives with respect to ξ and C is an integration constant to 
be determined. Using homogeneous balance between the highest order nonlinear term 
u3 and the linear term of the highest order u″ involved in (8) yields N = 1. Therefore, the 
suggested ansatz scheme allows us to set the solution of (8) as follows:

where a0, a1, a−1, b0, b1 and b−1 are constants to be determined and G = G(ξ) satis-
fies (5). Substituting (9) jointly with (5) into (8) and collecting each coefficient with the 
equal orders of (G′/G)j and (G′/G)j

√

σ [1+ (G′/G)2/µ], and setting them to zero yield 
an over-determined system of algebraic equations for a0, a1, a−1, b0, b1, b−1, V, λ and 
C (for minimalism the equations have not been displayed here). Solution of this over-
determined system of algebraic equations with the help of computer algebra yields:

Case 1:   a1 = 0, a−1 = 0, a0 = 0, b0 = b−1 = 0, b1 = ±
√

6µ
σ α

, V = 1 − μ, λ = λ, C = 0.

Case 2:  a0 = ± �µ
√
6α

α
, a1 = ∓

√

6
α

(

1+ �
2 µ

)

,  a−1  =  0, b0  =  b−1  =  0, b1  =  0, 
V = 1 + 2μ, λ = λ, C = 0.

Case 3:  a1 = ±
√

3
2α

, a−1 = 0, b1 = ±
√

3µ
2α σ

, a0 = b0 = b−1 = 0, V = 1+ µ
2
, λ = 0, 

C = 0.
Case 4:  a1 = ±

√

6
α

, a−1 = ±
√

6
α
µ, a0 = b0 = b1 = b−1 = 0, V = 1 − 4μ, λ = 0, C = 0.

a1 = ±
√

6
α

, a−1 = ∓
√

6
α
µ, a0 = b0 = b1 = b−1 = 0, V = 1 + 8μ, λ = 0, C = 0.

Case 5:  a1  =  0, a−1 = ∓µ

√

6
α

, b1  =  0, a0  =  a0, b0  =  b−1  =  0, V  =  1  +  2μ, 

� = ±α a0
µ

√

1
6α

, C = 0.

Case 6:  a1 = ∓
(

6µ+α a2
0

)

µ

√

1
6α

, a−1 = ∓µ

√

6
α

, a0  =  a0, b0  =  b−1  =  b1  =  0, 

V = 1 − 4μ − αa0
2, � = ±α a0

µ

√

1
6α

, C = 2
3
(6µ+ α a20) a0

Case 7:  a1 = a0 = a−1 = b1 = b−1 = 0, b0 = ±µ

√

6
σ α

, V = 1 − μ, λ = λ, C = 0.

Case 8:  a1 = ±
√

3
2α

, a0 =
√

3µ
2α

, a−1 = ±µ

√

3
2α

, b1 = ±
√

3µ
2 σ α

, b0 = ∓µ

√

3
2 σ α

, 

b−1 = 0, V = 1− 5
2
µ, λ = 0,  C = −µ

√

6µ
α

 a1 = ±
√

3
2α

, a0 = −
√

3µ
2α

, a−1 = ±µ

√

3
2α

, b1 = ±
√

3µ
2 σ α

, b0 = ∓µ

√

3
2 σ α

, 

b−1 = 0, V = 1− 5
2
µ, λ = 0, C = µ

√

6µ
α

.

(8)(1− V )u−
1

3
α u3 + u′′ + C = 0,

(9)

u(ξ) = a0 +
a1 (G

′/G)

1+ � (G′/G)
+

a−1 [1+ � (G′/G)]
(G′/G)

+ b0 (G
′/G)−1

√

σ [1+ (G′/G)2/µ]

+ b1

√

σ [1+ (G′/G)2/µ] + b−1 (G
′/G)−2

√

σ [1+ (G′/G)2/µ],
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Case 9:  a1  =  0, a0 = −�µ

√

3
2α

, a−1 = µ

√

3
2α

, b1  =  0, b0 = ±µ

√

3
2 σ α

, b−1  =  0, 

V = 1+ 1
2
µ, λ = λ, C = 0.

 a1  =  0, a0 = �µ

√

3
2α

, a−1 = −µ

√

3
2α

, b1  =  0, b0 = ±µ

√

3
2 σ α

, b−1  =  0, 

V = 1+ 1
2
µ , λ = λ, C = 0.

Zayed and Al-Joudi (2010) investigated traveling wave solutions to the modified Benja-
min–Bona–Mahony equation by using the extended (G′/G)-expansion method and they 
achieved only three sets of solutions of the algebraic equations (only cases 1, 2 and 3 
were obtained when λ = 0). Using (6) into the solution (9) and substituting Cases 1–9, 
we obtain abundant traveling wave solutions including soliton, singular soliton, periodic 
solution, etc. to the modified Benjamin–Bona–Mahony equation in the following:

Soliton solutions

When μ < 0, then Case 1 yields the following traveling wave solution:

where ξ = x − (1 − μ)t and A, B are arbitrary constants while σ = ±1.

Particular cases

If we set specific values of A and B, various known solutions can be rediscovered. For 
example, soliton, periodic and complex solutions can be derived from the traveling wave 
solutions (10):

1. Soliton solutions

Setting A ≠ 0 but B = 0 in u1,1, we obtain

If A ≠ 0 and A > B, we obtain

where φ0 = tanh−1(B/A) and the value of σ is positive. These are exact bell-type soliton 
solutions.

2. Singular soliton solution

Setting A = 0 but B ≠ 0, we obtain

(10)u1,1(ξ) = ±
√

6µ

σ α

√

√

√

√σ

[

1−
(

A sinh(
√
−µ ξ)+ B cosh(

√
−µ ξ)

A cosh(
√
−µξ)+ B sinh(

√
−µ ξ)

)2
]

,

(11a)u1,2(ξ) = ±
√

6µ

α
sec h(

√
−µξ).

(11b)u1,3(ξ) = ±
√

6µ

α
sec h(

√
−µξ + ϕ0),

(12)u1,4(ξ) = ±
√

−6µ

α
cos ech(

√
−µξ).
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Solution (12) is the singular soliton solution. Singular solitons are another kind of soli-
tary waves that appear with a singularity, usually infinite discontinuity (Wazwaz 2012). 
Singular solitons can be connected to solitary waves when the center position of the 
solitary wave is imaginary (Drazin and Johnson 1989). Therefore it is not irrelevant to 
address the issue of singular solitons. This solution has spike and therefore it can prob-
ably provide an explanation to the formation of Rogue waves.

Periodic solutions

When μ > 0, Case 1 yields the following periodic solution:

When A and B receive particular values, different known solutions will be rediscovered. 
For example:

If A ≠ 0 but B = 0, we obtain

When A ≠ 0 and A > B, we obtain

If A = 0 but B ≠ 0, we obtain

Periodic traveling waves play an important role in numerous physical phenomena, 
including reaction–diffusion–advection systems, impulsive systems, self-reinforcing sys-
tems, etc. Mathematical modelling of many intricate physical events, for instance biol-
ogy, chemistry, physics, mathematical physics and many more phenomena resemble 
periodic traveling wave solutions.

Case 2 gives the following traveling wave solutions:
When μ < 0,

When μ > 0,

where ξ = x − (1 + 2μ)t.
Case 3 gives the following traveling wave solutions:

(13)u1,5(ξ) = ±
√

6µ

σ α

√

√

√

√σ

[

1+
(

−A sin(
√
µ ξ)+ B cos(

√
µ ξ)

A cos(
√
µ ξ)+ B sin(

√
µ ξ)

)2
]

.

(14)u1,6(ξ) = ±
√

6µ

α
sec(

√
µ ξ).

(15)u1,7(ξ) = ±
√

6 µ

α
sec(

√
µξ + ϕ0), ϕ0 = tan

−1(B
/

A).

(16)u1,8(ξ) = ±
√

6µ

α
cos ec(

√
µξ).

(17)u2,1(ξ) = ± �µ

√

6

α
∓

√

6

α

[

(1+ �
2 µ) F1(ξ)

1+ � F1(ξ)

]

.

(18)u2,2(ξ) = ± �µ

√

6

α
∓

√

6

α

[

(1+ �
2 µ) F2(ξ)

1+ � F2(ξ)

]

,
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When μ < 0,

When μ > 0,

where ξ = x − (1 + μ/2)t.
Case 4 gives the following traveling wave solutions:
When μ < 0,

and

When μ > 0,

and

where ξ = x − (1 − 4μ)t.
Case 5 gives the following traveling wave solutions:
When μ < 0,

When μ > 0,

where ξ = x − (1 + 2μ)t.
Case 6 gives the following traveling wave solutions:
When μ < 0,

(19)u3,1(ξ) = ±
√

3

2α
F1(ξ)±

√

3µ

2 α σ

√

σ

[

1+
1

µ
(F1(ξ))2

]

.

(20)u3,2(ξ) = ±
√

3

2α
F2(ξ)±

√

3µ

2 α σ

√

σ

[

1+
1

µ
(F2(ξ))2

]

,

(21)u4,1(ξ) = ±
√

6

α
F1(ξ)±

√

6

α
µ (F1(ξ))

−1
,

(22)u4,2(ξ) = ±
√

6

α
F1(ξ)∓

√

6

α
µ (F1(ξ))

−1
.

(23)u4,3(ξ) = ±
√

6

α
F2(ξ)±

√

6

α
µ (F2(ξ))

−1
,

(24)u4,4(ξ) = ±
√

6

α
F2(ξ)∓

√

6

α
µ (F2(ξ))

−1
,

(25)u5,1(ξ) = a0 ∓
√

6

α
µ

[

1±
a0 α

µ

√

1

6α
F1(ξ)

]

(F1(ξ))
−1

.

(26)u5,2(ξ) = a0 ∓
√

6

α
µ

[

1±
a0 α

µ

√

1

6α
F2(ξ)

]

(F2(ξ))
−1

,

(27)u6,1(ξ) = a0 ∓
(6µ+ α a20) F1(ξ)

µ
√
6α ± α a0 F1(ξ)

∓
√

6

α
µ

[

1±
a0 α

µ

√

1

6α
F1(ξ)

]

(F1(ξ))
−1

.
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When μ > 0,

where ξ = x − (1 − 4μ − a0
2α)t.

Case 7 gives the following traveling wave solutions:
When μ < 0,

When μ > 0,

where ξ = x − (1 − μ)t.
Case 8 gives the following exact traveling wave solutions:
When μ < 0,

When μ > 0,

(28)u6,2(ξ) = a0 ∓
(6µ+ α a20) F2(ξ)

µ
√
6α ± α a0 F2(ξ)

∓
√

6

α
µ

[

1±
a0 α

µ

√

1

6α
F2(ξ)

]

(F2(ξ))
−1

,

(29)u7,1(ξ) = ±µ

√

6

σ α

√

σ

[

1+
1

µ
F2
1 (ξ)

]

F−1
1 (ξ).

(30)u7,2(ξ) = ±µ

√

6

σ α

√

σ

[

1+
1

µ
F2
2 (ξ)

]

F−1
2 (ξ),

(31)

u8,1(ξ) = ∓Ω
√
µ±Ω F1(ξ)±Ω µ (F1(ξ))

−1 ±Ω µ

√

1

σ
(F1(ξ))

−1

×

√

σ

[

1+
1

µ
(F1(ξ))2

]

+Ω

√

µ

σ

√

σ

[

1+
1

µ
(F1(ξ))2

]

,

(32)

u8,2(ξ) = ∓ Ω
√
µ±Ω F1(ξ)±Ω µ (F1(ξ))

−1 ∓Ω µ

√

1

σ
(F1(ξ))

−1

×

√

σ

[

1+
1

µ
(F1(ξ))2

]

−Ω

√

µ

σ

√

σ

[

1+
1

µ
(F1(ξ))2

]

.

(33)

u8,3(ξ) = ∓Ω
√
µ±Ω F2(ξ)±Ω µ (F2(ξ))

−1 ±Ω µ

√

1

σ
(F2(ξ))

−1

×

√

σ

[

1+
1

µ
(F2(ξ))2

]

+Ω

√

µ

σ

√

σ

[

1+
1

µ
(F2(ξ))2

]

,

(34)

u8,4(ξ) = ∓Ω
√
µ±Ω F2(ξ)±Ω µ (F2(ξ))

−1 ∓Ω µ

√

1

σ
(F2(ξ))

−1

×

√

σ

[

1+
1

µ
(F2(ξ))2

]

−Ω

√

µ

σ

√

σ

[

1+
1

µ
(F2(ξ))2

]

,
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where ξ = x − (1 − 5μ/2)t and Ω =
√

3
2α

.
Case 9 gives the following exact traveling wave solutions:
When μ < 0,

When μ > 0,

where ξ = x − (1 + μ/2)t and Ω =
√

3
2α

.
Substitution of the values of F1(ξ) and F2(ξ) into solutions (17–38) yields further gen-

eral solutions to the modified Benjamin-Bona-Mahony equation. Setting particular 
values of the free parameters involved in solutions (10–38) abundant soliton, singular 
solitons, periodic solutions and general solitary wave solutions can be found.

Results and discussion
Zayed and Al-Joudi (2010) examined the solutions to the mBBM equation by using the 
extended (G′/G)-expansion method and obtained only six solutions [solutions (3.9–
3.14), see (Zayed and Al-Joudi 2010) for details]. On the other hand by means of the 
new ansatz of the (G′/G)-expansion, we obtain 24 solutions. It is noteworthy to refer that 
some of our obtained solutions are identical to the solutions achieved by Zayed and Al-
Joudi (2010) which validate our solutions and some are new. A comparison between the 
obtained solutions in this article and Zayed and Al-Joudi’s (2010) solutions are given in 
the following Table 1.

Beyond the solutions specified in the Table 1 above, we obtain further new exact trave-
ling wave solutions (21–38) which are not reported in the previous literature. These 
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solutions might be much important for the explanation of some special physical phe-
nomena. The solitary wave ansatz method can be applied to high-dimensional or cou-
pled nonlinear PDEs in mathematical physics. We expect the attained solutions may be 
useful for further numerical analysis and may help the researchers to explain complex 
physical phenomena.

Conclusion
Based on some existing extensions of the (G′/G)-expansion method, a new ansatz has 
been established to search for traveling wave solutions to nonlinear partial differential 
equations. The ansatz constructs abundant traveling wave solutions to the (1+1)-dimen-
sional modified Benjamin–Bona–Mahony equation which illustrates the validity and 
effectiveness of the algorithm. The solutions obtained in this article are in more gen-
eral forms and many known solutions to this equation are only special cases. This study 
shows that the proposed ansatz is reliable, effective and computerized which permit us 
to carry out complicated and tiresome algebraic calculation and giving new solutions 
to the applied equation. This ansatz can be applied to both single equation and coupled 
equations to establish further new solutions for other kinds of nonlinear partial differen-
tial equations.
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