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Background
A real-valued function f defined on an interval I ⊆ R is said to be convex on I, if

for all x, y ∈ I and � ∈ [0, 1].
If f is convex on I, then we have the Hermite-Hadamard inequality (see Mitrinović 

et al. 1993)

for all a, b ∈ I.
A function f : I ⊆ R → R is said to be quasi-convex on I, if

for all x, y ∈ I and � ∈ [0, 1].
Clearly, any convex function is a quasi-convex function. Furthermore, there exist 

quasi-convex functions which are not convex.
In 2007, Ion (2007) presented an inequality of Hermite-Hadamard type for functions 

whose derivatives in absolute values are quasi-convex functions, as follows:

f (�x + (1− �)y) ≤ �f (x)+ (1− �)f (y)

(1)f

(

a+ b

2

)

≤
1

b− a

∫ b

a
f (x)dx ≤

f (a)+ f (b)

2

f (�x + (1− �)y) ≤ max
{

f (x), f (y)
}

Abstract 

In this paper we present some inequalities of Hermite-Hadamard type for functions 
whose third derivative absolute values are quasi-convex. Moreover, an application to 
special means of real numbers is also considered.
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Theorem 1.1  Let f : I ⊂ R → R be a differentiable mapping on Io, a, b ∈ I with a < b. 
If  
∣

∣f ′
∣

∣ is quasi-convex on [a, b], then the following inequality holds:

In 2010, Alomari et  al. (2010a) established an analogous version of inequality (1), 
which is asserted by Theorem 1.2 below:

Theorem  1.2  Let f : I ⊂ R → R be twice differentiable mapping on Io, a, b ∈ I with 
a < b and f ′′ is integrable on [a, b]. If 

∣

∣f ′′
∣

∣ is quasi-convex on [a, b], then the following 
inequality holds:

Recently, Guo et al. (2015) investigated Hermite-Hadamard type inequalities for geo-
metrically quasi-convex functions. Xi and Qi (2014, 2015) and Xi et  al. (2012, 2014) 
showed some new Hermite-Hadamard type inequalities for s-convex functions. For 
more results relating to refinements, counterparts, generalizations of Hadamard 
type inequalities, we refer interested readers to Alomari et  al. (2010b), Chen (2015), 
Niculescu and Persson (2006), Pečarić et  al. (1992), Sroysang (2014), Sroysang (2013) 
and Wu (2009).

The main purpose of this paper is to present a parametrized inequality of Hermite-
Hadamard type for functions whose third derivative absolute values are quasi-convex. 
As applications, some new inequalities for special means of real numbers are established.

Lemmas
In order to prove our main results, we need the following lemmas.

Lemma 2.1  Let ǫ ∈ R and let f: I ⊂ R → R be three times differentiable on I◦ and 
a, b ∈ I with a < b. Assume that f ′′′ is integrable on [a, b]. Then

(2)

∣

∣

∣

∣

∣

f (a)+ f (b)

2
−

1

b− a

∫ b

a
f (x)dx

∣

∣

∣

∣

∣

≤
b− a

4
max

{∣

∣f ′(a)
∣

∣,
∣

∣f ′(b)
∣

∣

}

.

(3)

∣

∣

∣

∣

∣

f (a)+ f (b)

2
−

1

b− a

∫ b

a
f (x)dx

∣

∣

∣

∣

∣

≤
(b− a)2

12
max

{∣

∣f ′′(a)
∣

∣,
∣

∣f ′′(b)
∣

∣

}

.

(4 − ǫ)f (a)+ (2+ ǫ)f (b)

6
−

1

b− a

∫ b

a
f (x)dx −

b− a

12

(

ǫf ′(b)− (2− ǫ)f ′(a)
)

=
(b− a)3

12

∫ 1

0

�(1− �)(2�− ǫ)f ′′′(�a+ (1− �)b)d�.
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Proof  Integrating by parts, we have
∫ 1

0

�(1− �)(2�− ǫ)f ′′′(�a+ (1− �)b)d�

=
1

a− b

∫

�=1

�=0

�(1− �)(2�− ǫ)df ′′(�a+ (1− �)b)

=
1

a− b

[

�(1− �)(2�− ǫ)f ′′(�a+ (1− �)b)
]�=1

�=0

−
1

a− b

∫

�=1

�=0

f ′′(�a+ (1− �)b)d(�(1− �)(2�− ǫ))

= −
1

a− b

∫

�=1

�=0

f ′′(�a+ (1− �)b)d(�(1− �)(2�− ǫ))

=
1

b− a

∫

�=1

�=0

(

−6�2 + 2(2+ ǫ)�− ǫ

)

f ′′(�a+ (1− �)b)d�

=
1

(b− a)2

∫

�=1

�=0

(

6�2 − 2(2+ ǫ)�+ ǫ

)

df ′(�a+ (1− �)b)

=
1

(b− a)2

[(

6�2 − 2(2+ ǫ)�+ ǫ

)

f ′(�a+ (1− �)b)
]�=1

�=0

−
1

(b− a)2

∫

�=1

�=0

f ′(�a+ (1− �)b)d
(

6�2 − 2(2+ ǫ)�+ ǫ

)

=
−1

(b− a)2

(

ǫf ′(b)− (2− ǫ)f ′(a)
)

−
1

(b− a)2

∫

�=1

�=0

(12�− 2(2+ ǫ))f ′(�a+ (1− �)b)d�

=
−1

(b− a)2

(

ǫf ′(b)− (2− ǫ)f ′(a)
)

+
2

(b− a)3

∫

�=1

�=0

(6�− 2− ǫ)df (�a+ (1− �)b)

=
−1

(b− a)2

(

ǫf ′(b)− (2− ǫ)f ′(a)
)

+
2

(b− a)3
[(6�− 2− ǫ)f (�a+ (1− �)b)]�=1

�=0

−
2

(b− a)3

∫

�=1

�=0

f (�a+ (1− �)b)d(6�− 2− ǫ)

=
−1

(b− a)2

(

ǫf ′(b)− (2− ǫ)f ′(a)
)

+
2

(b− a)3

(

(4 − ǫ)f (a)+ (2+ ǫ)f (b)
)

−
12

(b− a)3

∫

�=1

�=0

f (�a+ (1− �)b)d�.
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Changing variable x = �a+ (1− �)b, it follows that

Thus,

The proof of Lemma 2.1 is completed. � �

Lemma 2.2  Let ǫ be a real number. Then

Proof  We distinguish three cases

Case 1 If ǫ ≥ 2, then

Case 2 If 0 < ǫ < 2, then

Case 3 If ǫ ≤ 0, then

This completes the proof of Lemma 2.2. � �

∫ 1

0

�(1− �)(2�− ǫ)f ′′′(�a+ (1− �)b)d�

=
−1

(b− a)2

(

ǫf ′(b)− (2− ǫ)f ′(a)
)

+
2

(b− a)3

(

(4 − ǫ)f (a)+ (2+ ǫ)f (b)
)

−
12

(b− a)4

∫ x=b

x=a
f (x)dx.

(b− a)3

12

∫ 1

0

�(1− �)(2�− ǫ)f ′′′(�a+ (1− �)b)d�

=
(4 − ǫ)f (a)+ (2+ ǫ)f (b)

6
−

1

b− a

∫ b

a
f (x)dx −

b− a

12

(

ǫf ′(b)− (2− ǫ)f ′(a)
)

.

� 1

0

�(1− �)|2�− ǫ|d� =























ǫ − 1

6
if ǫ ≥ 2

4ǫ3 − ǫ4

48
+

1− ǫ

6
if 0 < ǫ < 2

1− ǫ

6
if ǫ ≤ 0.

∫ 1

0

�(1− �)|2�− ǫ|d� =

∫ 1

0

�(1− �)(ǫ − 2�)d� =
ǫ − 1

6
.

∫ 1

0

�(1− �)|2�− ǫ|d� =

∫ ǫ/2

0

�(1− �)(ǫ − 2�)d�+

∫ 1

ǫ/2

�(1− �)(2�− ǫ)d�

=
4ǫ3 − ǫ4

48
+

1− ǫ

6
.

∫ 1

0

�(1− �)|2�− ǫ|d� =

∫ 1

0

�(1− �)(2�− ǫ)d� =
1− ǫ

6
.
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Main results
Our main results are stated in the following theorems.

Theorem 3.1  Let q ≥ 1 and ǫ ∈ R, and let f : I ⊂ R → R be three times differentiable 
on I◦ and a, b ∈ I with a < b. Assume that f ′′′ is integrable on [a, b], and 

∣

∣f ′′′
∣

∣

q is quasi-
convex on [a, b]. Then

Proof  Using Lemma 2.1 and Hölder’s inequality gives

By the quasi-convexity of 
∣

∣f ′′′
∣

∣

q, we obtain

�

�

�

�

�

(4 − ǫ)f (a)+ (2+ ǫ)f (b)

6
−

1

b− a

� b

a
f (x)dx −

b− a

12

�

ǫf ′(b)− (2− ǫ)f ′(a)
�

�

�

�

�

�

≤































(b− a)3

12

�

ǫ − 1

6

�

�

max
�
�

�f ′′′(a)
�

�

q
,
�

�f ′′′(b)
�

�

q��1/q
if ǫ ≥ 2

(b− a)3

12

�

4ǫ3 − ǫ4

48
+

1− ǫ

6

�

�

max
�
�

�f ′′′(a)
�

�

q
,
�

�f ′′′(b)
�

�

q��1/q
if 0 < ǫ < 2

(b− a)3

12

�

1− ǫ

6

�

�

max
��

�f ′′′(a)
�

�

q
,
�

�f ′′′(b)
�

�

q��1/q
if ǫ ≤ 0.

∣

∣

∣

∣

∣

(4 − ǫ)f (a)+ (2+ ǫ)f (b)

6
−

1

b− a

∫ b

a
f (x)dx −

b− a

12

(

ǫf ′(b)− (2− ǫ)f ′(a)
)

∣

∣

∣

∣

∣

≤
(b− a)3

12

∫ 1

0

�(1− �)|2�− ǫ|
∣

∣f ′′′(�a+ (1− �)b)
∣

∣d�

=
(b− a)3

12

∫ 1

0

(�(1− �)|2�− ǫ|)1−1/q

×
(

�(1− �)|2�− ǫ|
∣

∣f ′′′(�a+ (1− �)b)
∣

∣

q)1/q
d�

≤
(b− a)3

12

(

∫ 1

0

�(1− �)|2�− ǫ|d�

)1−1/q

×

(

∫ 1

0

�(1− �)|2�− ǫ|
∣

∣f ′′′(�a+ (1− �)b)
∣

∣

q
d�

)1/q

.

∣

∣

∣

∣

∣

(4 − ǫ)f (a)+ (2+ ǫ)f (b)

6
−

1

b− a

∫ b

a
f (x)dx −

b− a

12

(

ǫf ′(b)− (2− ǫ)f ′(a)
)

∣

∣

∣

∣

∣

≤
(b− a)3

12

(

∫ 1

0

�(1− �)|2�− ǫ|d�

)1−1/q

×

(

∫ 1

0

�(1− �)|2�− ǫ|max
{∣

∣f ′′′(a)
∣

∣

q
,
∣

∣f ′′′(b)
∣

∣

q}
d�

)1/q

=
(b− a)3

12

(

∫ 1

0

�(1− �)|2�− ǫ|d�

)

(

max
{∣

∣f ′′′(a)
∣

∣

q
,
∣

∣f ′′′(b)
∣

∣

q})1/q
.
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Utilizing Lemma 2.2 leads to the desired inequality in Theorem 3.1. � �

Remark 3.2  It is worth noticing that if we use a substitution a → b, b → a and 
ǫ → 2− ǫ in Theorem 3.1, we have the following further generalization of Theorem 3.1.

Theorem 3.3  Let q ≥ 1 and ǫ ∈ R, and let f : I ⊂ R → R be three times differentiable 
on I◦, a, b ∈ I with a �= b. Assume that f ′′′ is integrable on [a, b], and 

∣

∣f ′′′
∣

∣

q is quasi-con-
vex on the closed interval formed by the points a and b. Then

As a direct consequence, choosing ǫ = 1 in Theorem  3.3, we get the following 
inequality:

Corollary 3.4  Let q ≥ 1 and ǫ ∈ R, and let f : I ⊂ R → R be three times differentiable 
on I◦, a, b ∈ I with a �= b. Assume that f ′′′ is integrable on [a, b], and 

∣

∣f ′′′
∣

∣

q is quasi-con-
vex on the closed interval formed by the points a and b. Then

In addition, if we utilize Theorem 3.1 with a substitution of ǫ = 0, 0.5, 3, −2, −3, −5, 
respectively, then we obtain the following results:

Corollary 3.5  Let q ≥ 1 and ǫ ∈ R, and let f : I ⊂ R → R be three times differentiable 
on I◦, a, b ∈ I with a �= b. Assume that f ′′′ is integrable on [a, b], and 

∣

∣f ′′′
∣

∣

q is quasi-con-
vex on the closed interval formed by the points a and b. Then

�

�

�

�

�

(4 − ǫ)f (a)+ (2+ ǫ)f (b)

6
−

1

b− a

� b

a
f (x)dx −

b− a

12

�

ǫf ′(b)− (2− ǫ)f ′(a)
�

�

�

�

�

�

≤































|b− a|3

12

�

ǫ − 1

6

�

�

max
�
�

�f ′′′(a)
�

�

q
,
�

�f ′′′(b)
�

�

q��1/q
if ǫ ≥ 2

|b− a|3

12

�

4ǫ3 − ǫ4

48
+

1− ǫ

6

�

�

max
��

�f ′′′(a)
�

�

q
,
�

�f ′′′(b)
�

�

q��1/q
if 0 < ǫ < 2

|b− a|3

12

�

1− ǫ

6

�

�

max
��

�f ′′′(a)
�

�

q
,
�

�f ′′′(b)
�

�

q��1/q
if ǫ ≤ 0.

∣

∣

∣

∣

∣

f (a)+ f (b)

2
−

1

b− a

∫ b

a
f (x)dx −

b− a

12

(

f ′(b)− f ′(a)
)

∣

∣

∣

∣

∣

≤
|b− a|3

192

(

max
{∣

∣f ′′′(a)
∣

∣

q
,
∣

∣f ′′′(b)
∣

∣

q})1/q
.

∣

∣

∣

∣

∣

2f (a)+ f (b)

3
−

1

b− a

∫ b

a
f (x)dx +

b− a

6
f ′(a)

∣

∣

∣

∣

∣

≤
|b− a|3

72

(

max
{∣

∣f ′′′(a)
∣

∣

q
,
∣

∣f ′′′(b)
∣

∣

q})1/q
,

∣

∣

∣

∣

∣

7f (a)+ 5f (b)

12
−

1

b− a

∫ b

a
f (x)dx −

b− a

24

(

f ′(b)− 3f ′(a)
)

∣

∣

∣

∣

∣

≤
71|b− a|3

9216

(

max
{∣

∣f ′′′(a)
∣

∣

q
,
∣

∣f ′′′(b)
∣

∣

q})1/q
,
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Applications to special means
We now consider the applications of our results to the special means of real numbers.

The weighted arithmetic mean of real numbers 
{

a, b
}

 with weight {wa,wb} is defined 
by

  where a, b,wa,wb ∈ R with wa + wb �= 0.
In particularly

  which is called the arithmetic means.
The generalized logarithmic mean of real numbers 

{

a, b
}

 is defined by

where a, b,∈ R, n ∈ Z with n �= 0,−1, a �= b.

∣

∣

∣

∣

∣

f (a)+ 5f (b)

6
−

1

b− a

∫ b

a
f (x)dx −

b− a

12

(

3f ′(b)+ f ′(a)
)

∣

∣

∣

∣

∣

≤
|b− a|3

36

(

max
{∣

∣f ′′′(a)
∣

∣

q
,
∣

∣f ′′′(b)
∣

∣

q})1/q
,

∣

∣

∣

∣

∣

f (a)−
1

b− a

∫ b

a
f (x)dx +

b− a

6

(

f ′(b)+ 2f ′(a)
)

∣

∣

∣

∣

∣

≤
|b− a|3

24

(

max
{∣

∣f ′′′(a)
∣

∣

q
,
∣

∣f ′′′(b)
∣

∣

q})1/q
,

∣

∣

∣

∣

∣

7f (a)− f (b)

6
−

1

b− a

∫ b

a
f (x)dx +

b− a

12

(

3f ′(b)+ 5f ′(a)
)

∣

∣

∣

∣

∣

≤
|b− a|3

18

(

max
{∣

∣f ′′′(a)
∣

∣

q
,
∣

∣f ′′′(b)
∣

∣

q})1/q
,

∣

∣

∣

∣

∣

3f (a)− f (b)

2
−

1

b− a

∫ b

a
f (x)dx +

b− a

12

(

5f ′(b)+ 7f ′(a)
)

∣

∣

∣

∣

∣

≤
|b− a|3

12

(

max
{∣

∣f ′′′(a)
∣

∣

q
,
∣

∣f ′′′(b)
∣

∣

q})1/q
.

A(a, b;wa,wb) =
waa+ wbb

wa + wb
,

A(a, b; 1, 1) = A(a, b) =
a+ b

2
,

Ln(a, b) =

[

bn+1 − an+1

(n+ 1)(b− a)

]

1
n

,
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Proposition 4.1  Let a, b, ǫ ∈ R, a �= b, ǫ �= 1 and n ∈ N, n ≥ 3. Then, we have

Proof  We consider the function f (x) = xn, x ∈ R, n ≥ 3. It is easy to verify that the 
function f ′′′(x) = n(n− 1)(n− 2)xn−3 is quasi-convex on (−∞,+∞) (see Alomari et al. 
2010b). The assertion follows from Theorem 3.3 with q = 1. � �

Remark 4.2  In a similar way as the proof of the Proposition 4.1, one can easily deduce 
from Corollary 3.4 the following inequality.

Proposition 4.3  Let a, b ∈ R, a �= b and n ∈ N, n ≥ 3. Then, we have

Conclusions
This paper provides some new results related to the Hermite-Hadamard type inequali-
ties. Firstly, we present a parametrized inequality of Hermite-Hadamard type for func-
tions whose third derivative absolute values are quasi-convex, the main results are given 
in Theorems 3.1 and 3.3. As special cases, by assigning special value to the parameter, 
one can obtain several new and previously known results for Hermite-Hadamard type 
inequality (Corollaries 3.4 and 3.5). Secondly, as applications of the obtained results, we 
establish two new inequalities involving special means of real numbers by using the par-
ametrized Hermite-Hadamard type inequality (see Propositions 4.1 and 4.3).
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