
Meta‑heuristic algorithms for parallel
identical machines scheduling problem
with weighted late work criterion
and common due date
Zhenzhen Xu, Yongxing Zou and Xiangjie Kong*

Background
Time constrain condition is widely employed in various real-life problems, which can be
used to determine the feasibility conditions and makes it possible to estimate the qual-
ity of feasible solution corresponding to those problems. In scheduling theory, we usu-
ally model time restrictions by due dates and deadlines, and we evaluate the quality of
scheduling by taking into account these parameters. Researchers have proposed several
performance criterions base on these models, such as maximum lateness (McMahon
and Florian 1975), total tardiness (Lawler 1977), mean tardiness (Kim and Yano 1994),
and the number of tardy jobs (Moore 1968; Cheng et al. 2006). Most research literatures
always focus on these classical performance measures, while the late work criterion has
not been so widely studied.

The late work concept was first proposed in the context of an identical parallel
machines scheduling problem by Blazewicz (1984), who called it “information loss”. The

Abstract 

To our knowledge, this paper investigates the first application of meta-heuristic
algorithms to tackle the parallel machines scheduling problem with weighted late
work criterion and common due date (P|dj = d|Yw). Late work criterion is one of the
performance measures of scheduling problems which considers the length of late
parts of particular jobs when evaluating the quality of scheduling. Since this problem
is known to be NP-hard, three meta-heuristic algorithms, namely ant colony system,
genetic algorithm, and simulated annealing are designed and implemented, respec-
tively. We also propose a novel algorithm named LDF (largest density first) which is
improved from LPT (longest processing time first). The computational experiments
compared these meta-heuristic algorithms with LDF, LPT and LS (list scheduling), and
the experimental results show that SA performs the best in most cases. However, LDF is
better than SA in some conditions, moreover, the running time of LDF is much shorter
than SA.

Keywords:  Scheduling, Parallel identical machines, Common due date,
Meta-heuristic algorithms

Open Access

© 2015 Xu et al. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://
creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided
you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate
if changes were made.

RESEARCH

Xu et al. SpringerPlus (2015) 4:782
DOI 10.1186/s40064-015-1559-5

*Correspondence:
xjkong@ieee.org
School of Software, Dalian
University of Technology,
Dalian 116620, China

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s40064-015-1559-5&domain=pdf

Page 2 of 13Xu et al. SpringerPlus (2015) 4:782

phrase “late work” was first proposed by Potts and Van Wassenhove (1992), who applied
it to the single machine cases. Other researchers such as Hochbaum and Shamir (1990),
Hariri et al. (1995), Kovalyov and Kubiak (1999), Kethley and Alidaee (2002) also stud-
ied the single machine cases. Then, the late work performance measures were applied to
the shop scheduling problems (Błażewicz et al. 2000). Similarly, Blazewicz et al. (2004)
focused on the open shop scheduling problem and Blazewicz et al. (2005b) studied the
two-machine flow-shop problem. A number of scholars used meta-heuristic approaches
to solve the scheduling problem with late work criterion in dedicated machine case. In
Blazewicz et al. (2005a) and (2008), three meta-heuristic approaches (tabu search, sim-
ulated annealing and variable neighborhood search) were applied to the F2|dj = d|Yw
problem, and genetic algorithm (GA) was used to solve the problem of F |rj|Y (Sterna
et al. 2007).

However, meta-heuristic algorithms have not been used in the context of parallel
machines case. We propose, for the first time, three meta-heuristic algorithms for the par-
allel identical machines scheduling problem with weighted late work criterion and com-
mon due date which is denoted by P|dj = d|Yw. Three meta-heuristic algorithms include
ant colony system algorithm (ACS), genetic algorithm (GA), and simulated annealing (SA).

Two typical scheduling algorithms were also implemented: longest processing time
first (LPT) and list scheduling (LS). The LPT should sort all jobs based on their process-
ing time first, and assign each job to a machine with minimum load. While in LS, a job
will be directly assigned to the machine with minimum load. Additionally, we proposed
a novel algorithm named LDF (largest density first) which is an improved algorithm of
LPT. In the simulation experiments, six algorithms mentioned above were compared
with each other under different values of parameters.

The rest of the paper is organized as follows. The problem statement of P|dj = d|Yw
is introduced in “Problem statement” section. The design and application of meta-heu-
ristic algorithms for P|dj = d|Yw are described in detail in “Meta-heuristic algorithms
for P|dj = d|Yw” section. “Largest density first algorithm” section gives a new method
which is improved from LPT. “Computational experiments” section analyses the com-
putational experiment results performed by these algorithms. In “Conclusions” section,
some conclusions are given.

Problem statement
Generally, the scheduling problem can be defined as assigning a set of jobs to a set
of machines under given constrained conditions (Sterna 2011). Hence, the paral-
lel identical machines scheduling problem with weighted late work criterion, could
be defined as follows. Given n jobs J = {J1, J2, . . . , Jj , . . . , Jn} and m identical machines
M = {M1,M2, . . . ,Mi, . . . ,Mm}, each job Jj (j = 1, 2, . . . , n) is mainly described by its
processing time pj, due date dj and weight wj. Let dj represents the preferred completion
time for this job, and weight wj represents the relative importance of this job. Each job
can be executed on one of the machines and each machine can execute only one job at
a time. In this paper, we focus on a common due date d for all jobs (i.e. dj = d) and we
look for a non-preemption schedule that minimizes the total weighted late work Yw .

The completion time of job Jj is denoted by Cj, the late work Yj for this job is given by
the following formula (cf. Fig. 1):

Page 3 of 13Xu et al. SpringerPlus (2015) 4:782

According to this definition, we can conclude that the late work criterion evaluates the
quality of a feasible solution based on the length of late parts of particular jobs. Late
work concentrates the advantages of two kinds of parameters: tardiness and the number
of tardy jobs.

The total weighted late work can be defined as the weighted sum of late works of all
jobs, is given by the following formula:

Meta‑heuristic algorithms for P|dj = d|Yw

In this section, we design three meta-heuristic algorithms to solve the problem
P|dj = d|Yw , respectively. The parameters setting of these algorithms will be given in
“Computational experiments” section.

ACS for P|dj = d|Yw

ACS algorithm is one of the successful variations of ant colony optimization (ACO)
(Dorigo and Gambardella 1997). Recently, ACO methods have been widely used in vari-
ous scheduling problems, such as single machine case considered by Merkle and Mid-
dendorf (2003) and Bauer et al. (1999), job-shop problem (Dorigo et al. 1996; Colorni
et al. 1994) and flow-shop case (Stutzle 1998). These research literatures show that ACO
methods perform much better than other heuristic algorithms in finding the optimal
solution of some benchmark problems (Merkle and Middendorf 2003).

Definition of heuristic information

When assigning a job, an ant should first choose a machine Mi as the processing
machine randomly, and then add a job Jj to the scheduling sequence of machine Mi
based on heuristic information and pheromone. The heuristic information is denoted by
ηij, which indicates the expectation of selecting job Jj to assign to machine Mi. The value

Yj = min{pj , max{0,Cj − d}}

Yw =

n
∑

j=1

wjYj =

n
∑

j=1

wj min{pj , max{0,Cj − d}}

Fig. 1  Late work definition schematic diagram. In this figure, d is the common due date, pj denotes the pro-
cessing time of each job Jj (j = 1, 2, . . . , n), and Cj denotes the completion time of job Jj, then the late work Yj
for this job is the minimum of pj and max{0, Cj − d}

Page 4 of 13Xu et al. SpringerPlus (2015) 4:782

of ηij is calculated according to the heuristic rule named variation of modified due date
rule (VMDD) (Merkle and Middendorf 2003), i.e.,

where Ti indicates the total processing time of all jobs which are already assigned to
machine Mi.

Pheromone initialization

Similar to the definition of heuristic information, the pheromone is denoted by τij, indi-
cates the pheromone value of choosing a job Jj to assign to machine Mi. We initialize the
pheromone value as τ0 = 1/nLH, where LH is the objective function value obtained by
the initial solution.

Solution construction and pheromone updating

Initially, the algorithm generates an initial solution randomly and obtains the initial
pheromone value τ0. Each ant should finish the solution construction process and phero-
mone updating process. An ant k located on machine Mi chooses a next job Jj based on
the pseudo random proportional rule, i.e.,

If q > q0, the probability of choosing job Jj as the next job could be formulated as follows:

where q is a random uniform variable in [0,1], and q0 (0 ≤ q0 ≤ 1) is a parameter to
determine the relative importance between exploitation of a priori knowledge and
exploration of a new edge. α and β are factors whose value determines the relative influ-
ence of pheromone and heuristic information, respectively. Nk is the set of jobs that have
not been visited by ant k so far.

To avoid premature convergence, an ant should conduct local pheromone updating
after selecting a job Jj, according to the following rule:

where ξ(0 < ξ < 1) represents the local pheromone evaporation rate. After all of the
ants have constructed their valid solutions, the pheromone of the best solution found so
far should be updated according to the following rule:

where Sbest represents the best solution found so far and �τ bestij denotes the inverse of
the objective function value obtained by Sbest. ρ is used to control the global pheromone

ηij =
wj

max
{

Ti + pj , d
}

− Ti

j =

{

arg max
l∈Nk

{

τil[ηij]
β
}

if q ≤ q0

J , otherwise

pkij =







[τij]
α[ηij]

β

�

l∈Nk

[τil]
α[ηil]

β , if j ∈ Nk
i

0, otherwise

τij = (1− ξ)τij + ξτ0

τij = (1− ρ)τij + ρ�τ bestij , if (i, j) ∈ Sbest

Page 5 of 13Xu et al. SpringerPlus (2015) 4:782

evaporation rate. The algorithm repeats these steps above until meeting the terminal
condition, then the Sbest will be the ultimate solution obtained by ACS. In this paper, we
set the terminal condition as the maximum number of iteration.

GA for P|dj = d|Yw

The genetic algorithm (GA) is an optimization technique inspired by natural evolution,
and it is widely used in various realistic scheduling problem such as berth allocation
(Pratap et al. 2015). In the GA, the individuals (called chromosomes) in a population are
encoded to present candidate solutions to an optimization problem. The evolution usu-
ally starts with an initial population generated randomly, then the fitness of each individ-
ual in the population will be evaluated and a selection mechanism is applied according
to the fitness. Then the crossover and mutation operators are applied to generate the off-
spring. The algorithm repeats these steps until reach the maximum number of iteration.

Chromosomes encoding

In this paper, we adopt a two-dimensional encoding method. Each gene is constituted
by a tuple: (xj , yj), 1 ≤ j ≤ n, where xj denotes the number of the machine which job Jj is
assigned to, and yj represents that Jj is the yj-th job in the job sequence on the current
machine. For example, given five jobs and two machines, then we can construct a chro-
mosome with five genes to represent a candidate solution: (1,2), (2,1), (2,2), (1,3), (1,1).
The above chromosome means job J1 is assigned to m1 and it is the second job on that
machine, and J2 is assigned to m2 and it is the first job to be executed on that machine,
and so on.

Initial population and fitness function

The initial population is generated randomly. The fitness function evaluates the quality
of an individual in the population. Since it is a minimization problem, the fitness func-
tion can be designed as follows:

where Yw(i) is the objective function value (weighted late work) obtained by individual i,
and M is a constant which guarantees that the fitness value is positive.

Selection

In this algorithm, the selection operator is based on roulette rule. The probability of
selecting the i-th individual can be defined as:

where popsize is the population size, and f(i) denotes the fitness value of the i-th
individual.

f (i) = M − Yw(i)

pi =
f (i)

∑popsize
k=1

f (k)

Page 6 of 13Xu et al. SpringerPlus (2015) 4:782

Crossover

In order to generate the offspring, information between two selected parents should be
exchanged. In this paper, we consider the single point crossover method. Assuming that
the crossover rate is pc , a crossover process can be described as follows:

1.	 Generate a random number p ∈ (0, 1), if p > pc , then go to (2), else exit this process.
2.	 Generate a random integer number l ∈ [1, n] , where n is the number of all jobs,

also the length of a chromosome. Then, exchange the genes from l to n between two
selected parents. Go to (3).

3.	 Repeat (1) and (2) for all adjacent chromosomes.

Mutation

Mutation operator can help avoid getting trapped in local optimum. In this process, the
procedure traverses all individuals in a population, for each individual, the algorithm
judges whether it should perform the mutation operator according to the mutation rate
pm. When an individual is selected to mutate, we randomly pick a job from it, and reas-
sign this job to another random position which can be on the current machine or on
other machines.

SA for P|dj = d|Yw

Simulated annealing (SA) is a random optimization algorithm based on Mente Carlo
simulation, which was inspired by the similarity between the annealing process of solid
matters and combinational optimization problems. The algorithm was widely applied to
the combinational optimization problems (Kirkpatrick et al. 1983; Van Laarhoven and
Aarts 1987; Hazir et al. 2008).

Initialization and termination condition

In this paper, we generate an initial solution randomly with an initial temperature. The
algorithm is terminated after reaching a minimum temperature or exceeding a given
number of iterations.

Neighborhood structure

In order to explore the solution space, two operators are given to generate a neighbor:
job move (N1) and jobs interchange (N2).

In the job move operator, a neighbor is generated by selecting a job from a current
solution randomly and moving it to another random position. Jobs interchange operator
generates a new neighbor through swapping two jobs selected randomly from different
machines. The SA selects an operator randomly at each iteration, and performs it ⌊m/2⌋
times, and then obtain a new neighbor.

Cooling scheme

In this paper, we consider the geometric cooling scheme, which was a typical scheme
that widely used in many scheduling problems (Hasani et al. 2014). In this scheme, the
temperature is updated according to:

Tk = θTk−1, k = 1, 2, . . .

Page 7 of 13Xu et al. SpringerPlus (2015) 4:782

where 0 < θ < 1 is the cooling factor. Tk is reduced after running Iiter iterations.

Proposed algorithm procedure

The pseudo-code of the proposed algorithm is described as follows
:

Largest density first algorithm
We propose a novel algorithm named LDF (largest density first). This algorithm is
improved from LPT (longest processing time first). Considered the weight of each job,
we define the density of a job Jj as wj/pj. The main idea of this algorithm is assigning the
jobs to machines based on their density. The job with the largest density will be sched-
uled first and assigned to the machine with minimum load. The pseudo-code of LDF is
described as follows:

Computational experiments
Parameters setting

In the ACS algorithm, parameters are set as: q0 = 0.8, α = 1.0, β = 3.0, ρ = 0.5,
ξ = 0.1 . Set the size of ant colony AntSize = 30 , and the maximum number of iteration
Imax = 50.

The parameters setting of GA are as follows: set the size of population PopSize = 30,
the maximum number of iteration Gmax = 300, and pc = 0.8, pm = 0.01.

In the SA, set T0=5 ·
∑n

i=1 pi, θ = 0.975, and Iiter = 20.
Note that a solution with Yw = 0 must be an optimal solution, so the algorithms will

“early exit” when generate a solution with Yw=0.
In order to simulate different experimental cases, we also need to set five input param-

eters, which are the number of machines m, the number of jobs n, the processing time of
each job p, the weight of each job w, and the common due date d. The settings of these
input parameters are shown in Table 1.

Pseudo-code of SA for P |dj = d|Yw

Construct an initial solution S0

T0= initial temperature
Let T = T0, i = 0, S = S0

WHILE(The termination condition is not met) DO

WHILE i < Iiter DO

Select a neighbor of Saccording to N1 or N2 randomly,S′=Nk(S), k = 1, 2.
IF ∆ = Yw(S′)− Yw(S) < 0

LetS = S′

ELSE

ReplaceSbyS′with probability p = exp(−∆/T)
END IF

END WHILE

T = θ · T
END WHILE

Pseudo-code of LDF
Given n jobs J = {J1, J2, · · · , Jj , · · · , Jn}
Sort all jobs in descending order of density, LetJ ′=SortbyDensity(J)
WHILE (!isempty(J ′)) DO

Pick one job Ji fromJ ′ in sorted order
Assign Ji to the machine with minimum load

END WHILE

Page 8 of 13Xu et al. SpringerPlus (2015) 4:782

The value of p is an integer and it will be rounded down in Poisson distribution. µ is a
parameter that belongs to the set 0.8, 0.9, 1.1, 1.2, which controls the value of d. For each
group of the five input parameters, 20 different experimental instances are generated to
run each algorithm 20 times. For example, set m = 2 and n = 3m (i.e. n = 6), assume
p is generated randomly from U[1,10n] (i.e. U[1,60]), w is generated from U[1,100],
set µ = 0.8 and we can obtain the corresponding d. Then, 20 different experimental
instances are generated according to this group of parameters. The experiments are con-
ducted on a server with win server operating system, E5-2407 CPU and 32G memory.

Results and analysis

For each group of experiments, six different algorithms are all carried out. Because the
orders of magnitudes of Yw are quite different under different parameter values, we use
Yw/

∑n
i=1 piwi to evaluate and compare the quality of a solution. The average values of

Yw/
∑n

i=1 piwi (in percent, denoted by Y ′Avg) and the average running time TimeAvg (in
seconds) of every 20 test instances are computed. Figs. 2, 3, 4, 5 and 6 show the compari-
son results in Y ′Avg∗, which are merged by Y ′Avg with the same m, n, p, w and µ, respec-
tively, due to the space limitations.

As we can see from Figs. 2 and 3, SA performs best in most cases, and LDF is slightly
better than SA when the problem scale is large, i.e., m = 10 or n = 15m. In Fig. 2, the
performance of ACS is significantly influenced by the parameter m which related to the
problem scale. ACS is getting worse and worse with the increasing number of machines.
Fig. 3 shows that LDF is greatly influenced by the parameter n. LDF is worse than three
meta-heuristic algorithms when n = 3m but better than ACS and GA with the increas-
ing ratio from 5 to 15.

In Fig. 4, we can see that the distributions of p have a greater impact on LDF compared
with others. LDF is much worse than SA when p obeys U[1,10n] or U[1,20n]. However,
it outperforms SA when p obeys Poisson distribution or U[100−5,100+5]. That means
LDF can get better performance when the job procession time is concentrated.

The distributions of w gives no evident influence on all these algorithms and SA per-
forms the best in all cases according to Fig. 5. Figure 6 shows the comparison results
merged by different common due dates. When µ = 1.1 and µ = 1.2, almost all of these
algorithms can obtain the optimal solutions (Y ′Avg = 0%), and LDF is a little worse than
three meta-heuristic algorithms. When µ = 0.8 and µ = 0.9, the performance of pro-
posed algorithms from high to low are SA, LDF, GA and ACS.

According to Figs. 2, 3, 4, 5 and 6, we can conclude that SA performs best in most
cases. LDF also shows excellent performances and it is even better than SA in certain

Table 1  Settings of five input parameters

m n p w d

U[1,10n] U[1, 3m]
⌊

µ · 1
m

∑n
i=1 pi

⌋

U[1,20n] U[1, 5m]

{2, 3, 5, 10} {3m, 5m, 10m, 15m} Poisson distribution where

� = 500 U[1, 50]

U[100 − 5,100 + 5] U[1, 100]

Page 9 of 13Xu et al. SpringerPlus (2015) 4:782

conditions. Though GA and ACS are not so good, they are greatly better than LPT and
LS.

The running times of these algorithms are mainly affected by the scale of problem.
Note that in meta-heuristic algorithms, we adopt an “early exit” mechanism proposed

Fig. 2  Comparison results in Y ′Avg∗ merged by m. This figure shows the comparison results of six algo-
rithms in Y ′Avg∗ which are merged by Y ′Avg with the same m. Y ′Avg is denoted as the average value of
Yw/

∑n
i=1 piwi

Fig. 3  Comparison results in Y ′Avg∗ merged by n. This figure shows the comparison results of six algorithms
in Y ′Avg∗ which are merged by Y ′Avg with the same n. Y ′Avg is denoted as the average value of Yw/

∑n
i=1 piwi

Fig. 4  Comparison results in Y ′Avg∗ merged by p. This figure shows the comparison results of six algorithms
in Y ′Avg∗ which are merged by Y ′Avg with the same p. Y ′Avg is denoted as the average value of Yw/

∑n
i=1 piwi

Page 10 of 13Xu et al. SpringerPlus (2015) 4:782

above when the algorithms find a solution with Yw = 0. Hence in µ = 1.1 and µ = 1.2,
the meta-heuristic run significantly faster than in other situations. Tables 2, 3 and 4 give
the values of TimeAvg∗ which merged the TimeAvg by m, n and µ, respectively.

The average running time of GA and SA are much shorter than ACS in large scale
problems according to Tables 2 and 3. The running time of LPT, LS and LDF are quite
small even in large scale problem. In Table 4, the values of meta-heuristic algorithms in
µ = 0.8 and µ = 0.9 present the average running time merged by µ without “early exit”
mechanism and SA is the best.

To make a comparison among the meta-heuristic algorithms in detail, the average
number of better solutions is counted. The comparison results of meta-heuristic algo-
rithms in the percent of better solutions are shown in Table 5, which is merged by µ.

The first column of Table 5 presents the values of µ. The rest columns are divided into
three groups. In each group, two meta-heuristic algorithms are compared. The first

Fig. 5  Comparison results in Y ′Avg∗ merged by w. This figure shows the comparison results of six algo-
rithms in Y ′Avg∗ which are merged by Y ′Avg with the same w. Y ′Avg is denoted as the average value of
Yw/

∑n
i=1 piwi

Fig. 6  Comparison results in Y ′Avg∗ merged by µ. This figure shows the comparison results of six algo-
rithms in Y ′Avg∗ which are merged by Y ′Avg with the same µ. Y ′Avg is denoted as the average value of
Yw/

∑n
i=1 piwi

Page 11 of 13Xu et al. SpringerPlus (2015) 4:782

column and the second column in each group show the average amount of better solu-
tions obtained by these two algorithms, respectively. For example, the value “12.64” at
the first row and the third column means that when µ = 0.8 and traversing all other
parameters, the GA generated an average number of 12.64 solutions which are better
than that of ACS. At the same situation, the number of solutions which have equal qual-
ity in ACS and GA can be calculated by 20 − 6.32 − 12.64 = 1.04.

As we can see from Table 5, SA can usually generate better solutions, apart from the
solutions with equal quality to other algorithms.

Combining the above analysis, we can conclude that SA performs best in most cases
while its time cost is also acceptable. ACS and GA are also much better than the typical

Table 2  Comparison results in TimeAvg∗ by m

m TimeAvg∗

GA SA ACS LPT LS LDF

2 1.1111 0.5938 1.8501 0.0005 0.0005 0.0005

3 1.6686 0.7714 4.9555 0.0008 0.0007 0.0008

5 3.5004 1.7310 24.6330 0.0013 0.0014 0.0017

10 7.0229 4.9816 58.5864 0.0030 0.0028 0.0031

Table 3  Comparison results in TimeAvg∗ by n

n TimeAvg∗

GA SA ACS LPT LS LDF

3m 1.5580 1.4967 7.1742 0.0005 0.0005 0.0005

5m 2.3343 1.7119 13.4007 0.0009 0.0008 0.0011

10m 3.8761 2.0118 27.4117 0.0016 0.0015 0.0016

15m 5.5346 2.8575 42.0384 0.0027 0.0026 0.0029

Table 4  Comparison results in TimeAvg∗ by µ

µ TimeAvg∗

GA SA ACS LPT LS LDF

0.8 6.1848 3.1833 39.1215 0.0014 0.0014 0.0015

0.9 6.2162 3.1991 39.5560 0.0014 0.0013 0.0015

1.1 0.7111 1.0418 9.8085 0.0014 0.0014 0.0015

1.2 0.1909 0.6536 1.5389 0.0014 0.0014 0.0016

Table 5  Comparisons of meta-heuristic algorithms in the percent of better solutions

µ ACS vs GA ACS vs SA GA vs SA

0.8 6.32 12.64 1.06 16.48 1.27 17.54

0.9 8.89 9.84 1.70 15.33 1.63 16.99

1.1 0.13 1.77 0.42 1.74 0.69 0.41

1.2 0.02 0.16 0.20 0.17 0.20 0.03

Page 12 of 13Xu et al. SpringerPlus (2015) 4:782

scheduling algorithms LPT and LS, but they have no advantages in comparison with
LDF in most cases.

Conclusions
In this paper, we proposed three meta-heuristic algorithms (i.e., ACS, GA and SA) and
a novel LDF algorithm to solve the scheduling problem P|dj = d|Yw for the first time.
The proposed algorithms were compared to two typical scheduling algorithms LPT and
LS. The computational experiments demonstrated that SA performed best in terms of
finding optimal solutions compared to others in most cases, while the runtime of SA was
acceptable in practical problems. The quality of solutions obtained by LDF is better than
SA when the problem scale is large or the job processing time is concentrated. LDF also
have the advantages in short running time. GA is better than ACS both in the quality
of solutions and the running time of algorithm. In terms of the quality of solutions, the
overall order in performance from high to low is SA, LDF, GA, ACS, LPT and LS.

Authors’ contributions
ZZ investigated the first application of meta-heuristic algorithms to tackle the parallel machines scheduling problem
with weighted late work criterion and common due date and designed three meta-heuristic algorithms including ACS,
GA and SA to solve this problem. She also drafted the manuscript. YX proposed a novel algorithm named LDF which is
improved from LPT, and he carried out all the experiments and analyze the experimental results in detail. XJ helped to
draft the manuscript and give a lot of valuable suggestions. All authors read and approved the final manuscript.

Acknowledgements
This work is supported by National Natural Science Foundation of China under Grant Nos. 51209036 and 61203165.

Competing interests
The authors declare that they have no competing interests.

Received: 2 September 2015 Accepted: 24 November 2015

References
Bauer A, Bullnheimer B, Hartl RF, Strauss C (1999) An ant colony optimization approach for the single machine total tardi-

ness problem. In: Proceedings of the 1999 congress on evolutionary computation, 1999. CEC 99, vol 2. IEEE
Blazewicz J (1984) Scheduling preemptible tasks on parallel processors with information loss. Tech Sci Inform

3(6):415–420
Błażewicz J, Pesch E, Sterna M, Werner F (2000) Total late work criteria for shop scheduling problems. In: Proceedings

1999 on operations research, Springer, pp 354–359
Blazewicz J, Pesch E, Sterna M, Werner F (2004) Open shop scheduling problems with late work criteria. Discret Appl

Math 134(1):1–24
Blazewicz J, Pesch E, Sterna M, Werner F (2005a) Metaheuristics for late work minimization in two-machine flow shop

with common due date. In: KI 2005: advances in artificial intelligence, Springer, pp 222–234
Blazewicz J, Pesch E, Sterna M, Werner F (2005b) The two-machine flow-shop problem with weighted late work criterion

and common due date. Eur J Oper Res 165(2):408–415
Blazewicz J, Pesch E, Sterna M, Werner F (2008) Metaheuristic approaches for the two-machine flow-shop problem with

weighted late work criterion and common due date. Comput Oper Res 35(2):574–599
Cheng TE, Ng C, Yuan J (2006) Multi-agent scheduling on a single machine to minimize total weighted number of tardy

jobs. Theor Comput Sci 362(1):273–281
Colorni A, Dorigo M, Maniezzo V, Trubian M (1994) Ant system for job-shop scheduling. Belg J Oper Res Stat Comput Sci

34(1):39–53
Dorigo M, Gambardella LM (1997) Ant colony system: a cooperative learning approach to the traveling salesman prob-

lem. IEEE Trans Evolut Comput 1(1):53–66
Dorigo M, Maniezzo V, Colorni A (1996) Ant system: optimization by a colony of cooperating agents. IEEE Trans Syst Man

Cybern Part B Cybern on 26(1):29–41
Hariri AM, Potts CN, Van Wassenhove LN (1995) Single machine scheduling to minimize total weighted late work. ORSA J

Comput 7(2):232–242
Hasani K, Kravchenko SA, Werner F (2014) A hybridization of harmony search and simulated annealing to minimize mean

flow time for the two-machine scheduling problem with a single server. Int J Oper Res 3(1):9–26
Hazir O, Günalay Y, Erel E (2008) Customer order scheduling problem: a comparative metaheuristics study. Int J Adv

Manuf Technol 37(5–6):589–598

Page 13 of 13Xu et al. SpringerPlus (2015) 4:782

Hochbaum DS, Shamir R (1990) Minimizing the number of tardy job units under release time constraints. Discret Appl
Math 28(1):45–57

Kethley RB, Alidaee B (2002) Single machine scheduling to minimize total weighted late work: a comparison of schedul-
ing rules and search algorithms. Comput Ind Eng 43(3):509–528

Kim Y-D, Yano CA (1994) Minimizing mean tardiness and earliness in single-machine scheduling problems with unequal
due dates. Naval Res Logist (NRL) 41(7):913–933

Kirkpatrick S, Gelatt CD, Vecchi MP (1983) Optimization by simulated annealing. Science 220(4598):671–680
Kovalyov MY, Kubiak W (1999) A fully polynomial approximation scheme for the weighted earliness-tardiness problem.

Oper Res 47(5):757–761
Lawler EL (1977) A "pseudopolynomial" algorithm for sequencing jobs to minimize total tardiness. Ann Discret Math

1:331–342
McMahon G, Florian M (1975) On scheduling with ready times and due dates to minimize maximum lateness. Oper Res

23(3):475–482
Merkle D, Middendorf M (2003) Ant colony optimization with global pheromone evaluation for scheduling a single

machine. Appl Intell 18(1):105–111
Moore JM (1968) An n job, one machine sequencing algorithm for minimizing the number of late jobs. Manag Sci

15(1):102–109
Potts CN, Van Wassenhove LN (1992) Single machine scheduling to minimize total late work. Oper Res 40(3):586–595
Pratap S, Nayak A, Cheikhrouhou N, Tiwari MK (2015) Decision support system for discrete robust berth allocation. IFAC-

PapersOnLine 48(3):875–880
Sterna M (2011) A survey of scheduling problems with late work criteria. Omega 39(2):120–129
Sterna M, Blazewicz J, Pesch E (2007) Genetic algorithm for late work minimization in a flow shop system. In: Proceedings

of the 3rd multidisciplinary international scheduling conference: theory and applications (MISTA 2007), pp 455–462
Stutzle T (1998) An ant approach to the flow shop problem. In: Proceedings of the 6th European congress on intelligent

techniques and soft computing (EUFIT’98), vol 3, pp 1560–1564
Van Laarhoven PJM, Aarts EHL (1987) Simulated annealing: theory and applications, vol 37. Springer Science and Business

Media, Springer, Netherlands

	Meta-heuristic algorithms for parallel identical machines scheduling problem with weighted late work criterion and common due date
	Abstract
	Background
	Problem statement
	Meta-heuristic algorithms for
	ACS for
	Definition of heuristic information
	Pheromone initialization
	Solution construction and pheromone updating

	GA for
	Chromosomes encoding
	Initial population and fitness function
	Selection
	Crossover
	Mutation

	SA for
	Initialization and termination condition
	Neighborhood structure
	Cooling scheme
	Proposed algorithm procedure

	Largest density first algorithm
	Computational experiments
	Parameters setting
	Results and analysis

	Conclusions
	Authors’ contributions
	References

