
The graphical method for goodness of fit 
test in the inverse Weibull distribution based 
on multiply type‑II censored samples 
Suk‑Bok Kang1 and Jun‑Tae Han2*

Background
The probability density function (PDF) and the cumulative distribution function (CDF) 
of the two-parameter inverse Weibull distribution are given by

and

where σ and � are scale and shape parameters respectively.
This distribution has been recently proposed as a model in the analysis of life testing 

data. Many authors have discussed estimation of the parameters and associated infer-
ence, for example, Calabria and Pulcini (1990, 1994; Maswadah 2003; Mahmoud et al. 
2003).

In life testing and reliability experiments, it is well known that the lifetimes of test 
units may not be always observed exactly. There are also situations in which the removal 
of units prior to failure is pre-planned because of the time or cost limitations associated 

(1.1)g(x; σ , �) = �σ−�x−(�+1)exp
[

−(xσ)−�

]

, x > 0, σ > 0, � > 0

(1.2)G(x; σ , �) = exp
[

−(xσ)−�

]

, x > 0, σ > 0, � > 0,
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with testing. The type-I and type-II censoring are the most common censoring schemes, 
but the typical type-I and type-II censoring do not have flexibility. The type-II censoring 
scheme is a special case of the multiply type-II censoring scheme. Multiply type-II cen-
sored sampling arises in a life-testing experiment whenever the experimenter does not 
record the failure times of some units placed on a life testing.

The approximated maximum likelihood estimating method for the Rayleigh distribu-
tion was first developed by Balakrishnan (1989). Fei et al. (1995) studied the estimation 
for the two-parameter Weibull distribution and extreme-value distribution under mul-
tiply type-II censoring. They compared the mean squared errors of the maximum likeli-
hood estimators, approximate maximum likelihood estimators (AMLEs), and best linear 
unbiased estimators (BLUEs) of the parameters in the extreme value distribution.

Goodness-of-fit tests were discussed by several authors. Porter III et al. (1992) devel-
oped three modified Kolmogorov-Smirnov, Anderson-Darling, and Cramer-von Mises 
tests for the Pareto distribution based on the complete samples. Shimokawa and Liao 
(1999) studied the goodness of fit test for the extreme value and Weibull distribution, 
when the population parameters are estimated from a complete sample by graphical 
plotting techniques. Puig and Stephens (2000) studied some tests of fit for the Laplace 
distribution based on the empirical distribution function (EDF) statistics and the appli-
cation of the Laplace distribution in the least absolute deviations regression. In addition, 
Choulakian and Stephens (2001) discussed estimation of parameters and goodness-of-fit 
tests for the generalized Pareto distribution.

The objective of the our study is to derive the AMLEs of the scale parameter σ and the 
shape parameter � based on multiply type-II censored samples. We also propose a sim-
ple graphical method for goodness-of-fit test based on multiply type-II censored sam-
ples using AMLEs.

The paper is organized as follows. “Approximate maximum likelihood estimators” 
describes estimation of the scale and shape parameter under multiply type-II censored 
samples. “Graphical methods in the goodness-of-t tests” describes graphical methods in 
the goodness-of-fit tests. In “Illustrative examples”, we apply graphical method using two 
example data set. Finally, “Conclusions” concludes the paper and gives some recommen-
dations for future work.

Approximate maximum likelihood estimators
We assume that n items are put on a life test, but only a1th, a2th, …, asth failures are 
observed, the rest are unobserved or missing, where a1, a2,…, as are considered to be 
fixed.

If X is an inverse Weibull random variable, then Y = logX has extreme-value distribu-
tion with location µ = log(1/σ) and scale parameter θ = 1/� with PDF and CDF given 
respectively as;

and
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Let us assume that the following multiply type-II censored sample from a sample of 
size n is ya1:n ≤ ya2:n ≤ · · · ≤ yas:n, where 1 ≤ a1 < a2 < · · · < as ≤ n, a0 = 0, 
as+1 = n+ 1, F(ya0:n) = 0, and F(yas+1:n) = 1.

The likelihood function based on the multiply type-II censored sample is given by

where zi:n = (yi:n − µ)/θ, and f(z) and F(z) are the pdf and the cdf of the standard 
extreme-value distribution, respectively.

Since f ′(z)/f (z) = e−z − 1, we can obtain the likelihood equations as follows;

and

Since the likelihood equations are very complicated, the equations (2.4) and (2.5) do not 
admit explicit solutions for θ and µ, respectively.

Let ξi = F−1(pi) = −ln[−lnpi] where pi = i/(n+ 1), qi = 1− pi. Further, we may 
expand the following function in a Taylor series around the points ξai and (ξai−1, ξai) 
respectively.

We can approximate the following functions by

and

(2.3)

L =
1

σ s

n!
�s+1

j=1(aj − aj−1 − 1)!
[F(za1:n)]

a1−1[1− F(zas:n)]
n−as

×

s
�

j=1

f (zaj :n)





s
�

j=2

[F(zaj :n)− F(zaj−1:n)]
aj−aj−1−1



,

(2.4)

∂ lnL

∂θ
= −

1

θ

[
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e
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∑
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f (zaj :n)zaj :n − f (zaj−1:n)zaj−1:n
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= 0,

(2.5)

∂ lnL
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= −

1

θ

[

(a1 − 1)e−za1 :n − (n− as)
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+

s
∑
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f (zaj :n)− f (zaj−1:n)
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= 0.

(2.6)
f (zas:n)

1− F(zas:n)
≃ κ1 + δ1zas:n,

(2.7)e
−zaj :n ≃ e

−ξaj

(

1+ ξ2aj

)

− e
−ξaj zaj :n,

(2.8)
f (zaj :n)

F(zaj :n)− F(zaj−1:n)
≃α1j + β1jzaj :n + γ1jzaj−1:n,
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where

By substituting the equations (2.6)−(2.9) into the equation (2.4), we can derive an esti-
mator of θ as follows;

where

Next, equation (2.5) does not admit an explicit solution for µ. But we can expand the fol-
lowing function as follows;

(2.9)
f (zaj−1:n)

F(zaj :n)− F(zaj−1:n)
≃ α2j + β2jzaj :n + γ2jzaj−1:n,

κ1 =
1

qas

[

f (ξas)− ξas f
′(ξas)−

f 2(ξas)

qas
ξas

]

, δ1 =
1

qas

[

f ′(ξas)+
f 2(ξas)

qas

]

,

α1j =

[

(1+ Kj)f (ξaj )− ξaj f
′(ξaj )

]

paj − paj−1

, β1j =
f ′(ξaj )

paj − paj−1

−

[

f (ξaj )

paj − paj−1

]2

,

γ1j =
f (ξaj )f (ξaj−1)
[

paj − paj−1

]2
, α2j =

[

(1+ Kj)f (ξaj−1)− ξaj−1 f
′(ξaj−1)

]

paj − paj−1

,

β2j = −γ1j , γ2j =
f ′(ξaj−1)

paj − paj−1

+

[

f (ξaj−1)

paj − paj−1

]2

,

Kj =
f (ξaj )ξaj − f (ξaj−1)ξaj−1

paj − paj−1

.

(2.10)θ̂ =
−B1 +

√

B1
2 − 4sC1

2s
,

B1 = (a1 − 1)e−ξa1

(

1+ ξ2a1

)
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s
∑

j=1

e
−ξaj (1+ ξ2aj )yaj :n −

s
∑

j=1

yaj :n

+

s
∑

j=2

(aj − aj−1 − 1)(α1jyaj :n − γ2jyaj−1:n)−

[

(a1 − 1)e
−ξaj ξ2aj − (n− as)κ1

+

s
∑

j=1

e
−ξaj

(

1+ ξ2aj

)

− s +

s
∑

j=2

(aj − aj−1 − 1)(α1j − γ2j)

]

µ̂,
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j=1
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−ξaj (yaj :n − µ̂)2

+
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.

(2.11)
f (zaj :n)− f (zaj−1:n)

F(zaj :n)− F(zaj−1:n)
≃ α3j + β3jzaj :n + γ3jzaj−1:n
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where α3j = α1j − α2j, β3j = β1j − β2j, and γ3j = γ1j − γ2j.
By substituting the equations (2.6), (2.7), and (2.11) into the equation (2.5), we can 

derive an estimator of µ as follows;

where

Since θ = 1/� and µ = log(1/σ), we can obtain the AMLEs of the shape parameter � and 
the scale parameter σ as follows; �̂ = 1/θ̂ and σ̂ = 1/eµ̂.

Graphical methods in the goodness‑of‑fit tests
In this section, we consider a graphical method for goodness on fit test in the inverse 
Weibull distribution based on multiply type-II censored samples using AMLEs.

(2.12)µ̂ =
E

D
,

D = AµC2 − A2Cµ, E = AµB2 − A2Bµ,

Aµ = (a1 − 1)e−ξa1 (1+ ξ2a1 )− (n− as)κ1 +

s
∑

j=1

e
−ξaj (1+ ξ2aj )− s +

s
∑

j=2

(aj − aj−1 − 1)α3j ,

Bµ = −(a1 − 1)e−ξa1 ya1:n − (n− as)δ1yas :n −

s
∑

j=1

e
−ξaj yaj :n

+

s
∑

j=2

(aj − aj−1 − 1)(β3jyaj :n + γ3jyaj−1:n),

Cµ = −(a1 − 1)e−ξa1 − (n− as)δ1 −

s
∑

j=1

e
−ξaj +

s
∑

j=2

(aj − aj−1 − 1)(β3j + γ3j),

A2 = s + (a1 − 1)e−ξa1 ξ2a1 − (n− as)κ2 +

s
∑

j=1

e
−ξaj ξ2aj +

s
∑

j=2

(aj − aj−1 − 1)α4j ,

B2 = (a1 − 1)e−ξa1 (1− ξa1 )ya1:n − (n− as)δ2yas :n +

s
∑

j=1

e
−ξaj (1− ξaj )yaj :n

+

s
∑

j=1

yaj :n +

s
∑

j=2

(aj − aj−1 − 1)(β4jyaj :n + γ4jyaj−1:n),

C2 = (a1 − 1)e
−ξaj (1− ξaj )− (n− as)δ2 +

s
∑

j=1

e
−ξaj (1− ξaj )− s

+

s
∑

j=2

(aj − aj−1 − 1)(β4j + γ4j),

κ2 = −
ξ2as
qas

[

f ′(ξas )+
f 2(ξas )

qas

]

, δ2 =
1

qas

[

f (ξas )+ ξas f
′(ξas )+

f 2(ξas )

qas
ξas

]

,

α4j = K 2
j −

ξ2aj f
′(ξaj )− ξ2aj−1

f ′(ξaj−1
)

paj − paj−1

, β4j =

[

(1− Kj)f (ξaj )+ ξaj f
′(ξaj )

]

paj − paj−1

,

γ4j = −

[

(1− Kj)f (ξaj−1
)+ ξaj−1

f ′(ξaj−1
)

]

paj − paj−1

.
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Modified normalized sample Lorenz curve

The Lorenz curve is extensively used in the study of income distribution and used to be a 
powerful tool for the analysis of a variety of scientific problems.

Cho et al. (1999) proposed the transformed Lorenz curve that can be used in the study 
of symmetric distribution. The transformed Lorenz curve is defined by

Kang and Cho (2001) proposed the normalized sample Lorenz curve (NSLC) for the 
complete sample as follows;

where

Now, we propose modified NSLC based on multiply type-II censored samples.
The modified NSLC based on multiply type-II censored samples is given by

where

Also, we propose the modified NSLC plot for multiply type-II censored samples using 
(X,Y) = (1− ri, 1−MNSLCi). If data come from the inverse Weibull distribution, the 
modified NSLC plot is y = 0 (see, Figs.  1, 2). The value of 1−MNSLCi increases and 
then decreases as 1− ri increases when the alternative is Pareto and Weibull distribu-
tions. But the value of 1−MNSLCi decreases and then increases as 1− ri increases when 
the alternative is beta, lognormal and normal distributions.

Test based on spacing of EDF

We have an idea for plot and test statistics based on the spacing of the EDF.

(3.1)TL(ri) =

∑i
j=1 Xj:n

∑n
j=1 Xj:n

, ri =
i

n
, i = 1, 2, . . . , n.

(3.2)NSLC(ri) =
TSL(ri)

TSLF (ri)
, ri =

i

n
, i = 1, 2, . . . , n,

TSL(ri) =

∑i
j=1(Xj:n − X1:n)

∑n
j=1(Xj:n − X1:n)

− ri + 1,

TSLF (ri) =

∑i
j=1

[

F−1(pj)− F−1(p1)
]

∑n
j=1

[

F−1(pj)− F−1(p1)
] − ri + 1.

(3.3)MNSLC(ri) =
MTSL(ri)

MTSLF (ri)
, ri =

ai

n
, i = 1, 2, . . . , s,

MTSL(ri) =

∑i
j=1(Xaj :n − Xa1:n)

∑s
j=1(Xaj :n − Xa1:n)

− ri + 1,

MTSLF (ri) =

∑i
j=1

[

F−1(paj ; σ̂ , �̂)− F−1(pa1; σ̂ , �̂)
]

∑s
j=1

[

F−1(paj ; σ̂ , �̂)− F−1(pa1; σ̂ , �̂)
] − ri + 1.
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F(xai:n) has a different spacing of order statistics at all the distribution. We use the 
range F(xai:n)− F(xa1:n) between aith point and the a1th point. So we propose the plot 
for multiply Type-II censored samples by

where

(3.4)(x, y) =

(

ai

n+ 1
,
Ri

Pi
− 1

)

, i = 1, 2, .., s,

(3.5)Ri =

∑i
j=1 F(xaj :n, σ̂ , �̂)− F(xa1:n, σ̂ , �̂)

F(xas:n, σ̂ , �̂)− F(xa1:n, σ̂ , �̂)
+ 1,

Fig. 1  Modified NSLC plot: complete data (n = 30)

Fig. 2  Modified NSLC plot: multiply type-II censored data (n = 30, aj = 1, 5–13, 17–25, 28–30)
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If data come from inverse Weibull distribution, the above plot is y = 0 (see, Figs. 3, 4).
The value of (Ri/Pi)− 1 increases and then decreases as ai/(n+ 1) increases when the 

alternative is normal and lognormal distributions. But the value of (Ri/Pi)− 1 decreases 
and then increases as ai/(n+ 1) increases when the alternative is Weibull and beta dis-
tributions. The normal alternative distribution and the lognormal alternative distribu-
tion are similar.

(3.6)Pi =

∑i
j=1 aj:n − a1:n

as:n − a1:n
+ 1.

Fig. 3  Plot based on the spacing of the EDF: complete data (n = 30)

Fig. 4  Plot based on the spacing of the EDF: multiply type-II censored data (n = 30, aj =  1, 5–13, 17–25, 
28–30)
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Illustrative examples
In this section, we show some illustrative examples using real data sets and discuss the 
results of examples.

Example 1: the ball bearings in the life test

The data given here arose in tests on the endurance of deep groove ball bearings. They 
were originally discussed by Lieblein and Zelen (1956), who assumed that the data came 
from a Weibull distribution. The data are the number of million revolutions before fail-
ure for each of the 23 ball bearings in the life test:

17.88, 28.92, 33.00, 41.52, 42.12, 45.60, 48.40, 51.84, 51.96, 54.12, 55.56, 67.80, 68.64, 
68.64, 68.88, 84.12, 93.12, 98.64, 105.12, 105.84, 127.92, 128.04, 173.40.

To work with the inverse Weibull distribution, the 23 failure times are converted to 
inverse failure times:

0.006, 0.008, 0.008, 0.009, 0.010, 0.010, 0.011, 0.012, 0.015, 0.015, 0.015, 0.015, 0.018, 
0.018, 0.019, 0.019, 0.021, 0.022, 0.024, 0.024, 0.030, 0.035, 0.056.

For complete data, we can obtain the AMLEs �̂ = 2.121929 and σ̂ = 81.450162. For 
this example of n = 23, s = 16(aj = 1, 2, 5−14, 18−21), and the multiply Type-II cen-
sored samples are 0.006, 0.008, –, –, 0.010, 0.010, 0.011, 0.012, 0.015, 0.015, 0.015, 
0.015, 0.018, 0.018, –, –, –, 0.022, 0.024, 0.024, 0.030, –, –, we can obtain the AMLEs 
�̂ = 2.062999 and σ̂ = 80.986041.

We can picture the proposed plots for multiply Type-II censored samples using the 
AMLEs �̂ and σ̂ (see Figs. 5, 6, 7, 8). It is easy to see that the modified NSLC plot has 
good performance for complete data or multiply Type-II censored samples. The modi-
fied NSLC plot is more sensitive than the plot based on spacing of EDF.

Fig. 5  Modified NSLC plot [Example 1: complete data (n = 30)]



Page 10 of 14Kang and Han ﻿SpringerPlus  (2015) 4:768 

Example 2: maximum flood levels of the susquehenna river

Data given by Dumonceaux and Antle (1963), represents the maximum flood levels (in 
million of cubic feet per second) of the Susquehenna River at Harrisburg, Pennsylvenia 
over 20 four-year periods (1890–1969) as follows;

0.654, 0.613, 0.315, 0.449, 0.297, 0.402, 0.379, 0.423, 0.379, 0.324, 0.269, 0.740, 0.418, 
0.412, 0.494, 0.416, 0.338, 0.392, 0.484, 0.265.

This data had been utilized earlier by Maswadah (2003). He showed a rough indica-
tion of the goodness-of-fit for the model, due to the smallness of the sample seize, by 
plotting the empirical CDF and the CDF of the inverse Weibull distribution using the 
maximum likelihood estimators of the parameters. Maswadah (2003) showed that the 
inverse Weibull distribution provides a good fit to these data, which demonstrated the 

Fig. 6  Modified NSLC plot [example 1: multiply type-II censored data (n = 30, aj = 1, 5–13, 17–25, 28–30)]

Fig. 7  Plot based on the spacing of the EDF [example 1: complete data (n = 30)]
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usefulness of the inverse Weibull distribution in modeling extreme value data, as well as 
its applicability in the analysis of natural phenomena (flood, drought, rainfall, etc.).

We now apply the proposed estimators to these data, and assess their goodness of-fit. 
For complete data, we can obtain the AMLEs �̂ = 4.335915 and σ̂ = 2.783092. For this 
example of n = 20, s = 15(aj = 1−7, 11−18), and the multiply Type-II censored samples 
are 0.265, 0.269, 0.297, 0.315, 0.324, 0.338, 0.379, –, –, –, 0.412, 0.416, 0.418, 0.423, 0.449, 
0.484, 0.494, 0.613, –, –, we can obtain the AMLEs �̂ = 4.132622, and σ̂ = 2.770161.

We can picture the proposed plots for multiply Type-II censored samples using the 
AMLEs �̂ and σ̂ (see Figs. 9, 10, 11, 12). It is easy to see that the plot based on spacing of 

Fig. 8  Plot based on the spacing of the EDF (example 1: multiply type-II censored data [n = 30, aj   = 1, 5–13, 
17–25, 28–30)]

Fig. 9  Modified NSLC plot (example 2: complete data (n = 30))
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EDF has good performance for complete data or multiply Type-II censored samples. The 
plot based on spacing of EDF is more sensitive than the modified NSLC plot.

Conclusions
In most cases of censored and truncated samples, the maximum likelihood method does 
not provide explicit estimators. So we discussed another method for obtaining explicit 
estimators. We also proposed a simple graphical method for goodness on fit assessment 
based on multiply type-II censored samples using AMLEs.

Fig. 10  Modified NSLC plot [example 2: multiply type-II censored data (n = 30, aj = 1, 5–13, 17–25, 28–30)]

Fig. 11  Plot based on the spacing of the EDF (example 2: complete data (n = 30))
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We demonstrated that the proposed graphical method is a simple and fairly good 
approach for assessment of goodness of fit. We will need further study of the test statis-
tics and the critical regions for testing distributions based on multiply type-II censored 
samples.
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