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Background
Any positive integer n can be written as a sum of one or more positive integers, i.e.,

When the order of integers �i does not matter, this representation is known as an integer 
partition Andrews (1976) and can be rewritten as

where each positive integer i appears ti times. If the order of integers �i is important, 
then the representation (1) is known as a composition. For

we have a descending composition. We notice that more often than not there appears 
the tendency of defining partitions as descending compositions and this is also the con-
vention used in this paper. In order to indicate that

is a partition of n, we use the notation � ⊢ n. We denote by l(�) the number of parts of � , 
i.e.,

(1)n = �1 + �2 + · · · + �r .

n = t1 + 2t2 + · · · + ntn

�1 � �2 � · · · � �r

� = [�1, �2, . . . , �r] or � = [1t12t2 . . . ntn ]

l(�) = r or l(�) = t1 + t2 + · · · + tn.

Abstract 

The problem of base changes for the classical symmetric functions has been solved 
a long time ago and has been incorporated into most computer software packages 
for symmetric functions. In this paper, we develop a simple recursive formula for the 
expansion of the augmented monomial symmetric functions into power sum symmet-
ric functions. As corollaries, we present two algorithms that can be used to expressing 
the augmented monomial symmetric functions in terms of the power sum symmetric 
functions.
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If α,β ⊢ n, then α precedes β in the dominance order if and only if for any k � 1, the sum 
of the k largest parts of α is less than the sum of the k largest parts of β, i.e.,

for all k � 1. In this definition, partitions are extended by appending zero parts at the 
end as necessary. If α = [α1,α2, . . . ,αr] and β = [β1,β2, . . . ,βs] are partitions of the 
same positive integer, then α precedes β in the lexicographic order if there is a positive 
integer t with the following properties:

1.	 t � r and t � s;
2.	 for ever positive integer i � t, αi = βi; and
3.	 either αt+1 < βt+1 or t = r and t < s.

When α precedes β in lexicographic order, we use the notation α ≺ β. If α ≺ β or α = 
β, then we use the notation α � β. It is clear that the dominance order implies lexico-
graphical order.

We recall some basic facts about monomial symmetric functions. Proofs and details 
can be found in Macdonald’s book (Macdonald 1995). Let � = [�1, �2, . . . , �k ] be a parti-
tion with k � n. Being given a set of variables {x1, x2, . . . , xn}, the monomial symmetric 
function

on these variables is the sum of monomial x�11 x
�2
2 , . . . , x

�k

k  and all distinct monomials 
obtained from it by a permutation of variables. For instance, with � = [2, 1, 1] and n = 4 , 
we have:

In particular, when � = [k], we have the kth power sum symmetric function 
pk = pk(x1, x2, . . . , xn), i.e.,

In every case p0(x1, x2, . . . , xn) = n.
If � ⊢ k then m� is a symmetric function of degree k. It is well-known that the set

is a basis for the vector space �k
n of symmetric functions of degree k of n variables. 

The dimension of �k
n is the number of partitions of k. The power sum symmetric func-

tions pk do not have enough elements to form a basis for �k
n, there must be one func-

tion for every partition � ⊢ k. To that end in each case we form multiplicative function 
p� = p�(x1, x2, . . . , xn) so that for

α1 + · · · + αk < β1 + · · · + βk

m� = m[�1,�2,...,�k ](x1, x2, . . . , xn)

m[2,1,1] = x
2
1x2x3 + x1x

2
2x3 + x1x2x

2
3 + x

2
1x2x4

+ x1x
2
2x4 + x1x2x

2
4 + x

2
1x3x4 + x1x

2
3x4

+ x1x3x
2
4 + x

2
2x3x4 + x2x

2
3x4 + x2x3x

2
4

m[k] = pk =

n
∑

i=1

xki .

{m�(x1, x2, . . . , xn) | � ⊢ k and l(�) � n}

� = [�1, �2, . . . , �l(�)]
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we note

Also, it is known that the set

is another basis for �k
n.

For each partition

with k � n, the augmented monomial symmetric function

is defined by

In this paper, we develop a simple recursive formula for the expansion of the augmented 
monomial symmetric functions into power sum symmetric functions. As corollaries, we 
present two algorithms that can be used to expressing the augmented monomial sym-
metric functions in terms of the power sum symmetric functions.

Two theorems for expanding augmented monomials
The cardinality of a set A is usually denoted |A|. Recall that a partition of the set A is a 
collection of non-empty, pairwise disjoint subsets of A whose union is A.

A simple way to express the augmented monomial symmetric function m̃� in terms of 
the power sum is given by

Theorem 1  Let [�1, �2, . . . , �k ] be an integer partition. Then

where m̃ and p are functions of n variables, n � k.

Proof  We denote by M the set of terms in the expression p�k · m̃[�1,�2,...,�k−1], by Mk the 
set of terms in the expression m̃[�1,�2,...,�k ] and by Mi the set of terms in the expression 
m̃[�1,...,�i−1,�i+�k ,�i+1,...,�k−1], for i = 1, 2, . . . , k − 1. According to

and

p� = p�1p�2 · · · p�l(�) .

{p�(x1, x2, . . . , xn) | � ⊢ k and l(�) � n}

� = [�1, �2, . . . , �k ] = [1t12t2 · · · rtr ]

m̃� = m̃[�1,�2,...,�k ](x1, x2, . . . , xn)

m̃� = t1!t2! · · · tr ! ·m�.

m̃[�1,�2,...,�k ] = p�k · m̃[�1,�2,...,�k−1]

−

k−1
∑

i=1

m̃[�1,...,�i−1,�i+�k ,�i+1,...,�k−1]

|M| =
n · n!

(n− k + 1)!
, |Mk | =

n!

(n− k)!

|Mi| =
n!

(n− k + 1)!
,
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we get

Taking into account that {Mi}1�i�k is pairwise disjoint, we deduce that {Mi}1�i�k is a set 
partition of M. Therefore, the theorem is proved.�  �

Example 1  Replacing k by 2 in Theorem 1, we get

Then, for k = 3, we obtain

By (2) and (3), we deduce that

It is clear that in the expansion of the augmented monomial m̃� generated by 
Theorem 1, the number of terms is equal to the number of parts of �.

The following result is immediate from Theorem 1.

Corollary 1  Let � = [1t12t2 · · · ] be an integer partition and let j be a positive integer 
such that tj > 0. Then

where δij is the Kronecker delta and

with

and

for all i > 0.
In this corollary, if � ⊢ k then we remark that �0 ⊢ k − j and � ≺ �

i for all i > 0 with 
ti > δij. If tj = 1 then we have tj(j) = −1. This drawback is eliminated by the fact that 
tj − δjj = 0.

|M| = |Mk | +

k−1
∑

i=1

|Mi|.

(2)m̃[�1,�2] = p�1p�2 − p�1+�2
.

(3)
m̃[�1,�2,�3] = p�3 · m̃[�1,�2]

− m̃[�1+�3,�2] − m̃[�1,�2+�3].

m̃[�1,�2,�3] = p�1p�2p�3 − p�1p�2+�3
− p�2p�1+�3

− p�3p�1+�2
+ 2p�1+�2+�3

.

m̃� = pj · m̃�0 −
∑

i>0

(ti − δij)m̃�i

�
i = [1t1(i)2t2(i) · · · ] ,

tr(0) =

{

tr − 1, if r = j,
tr , otherwise,

tr(i) =







tr − 1− δij , if r ∈ {i, j},
tr + 1, if r = i + j,
tr , otherwise
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Example 2  For � = [132131] and j = 3, by Corollary 1, we have

Clearly, the coefficient of m̃�0 is p3, the coefficient of m̃�1 is −3, the coefficient of m̃�2 is 
−1 , and for i > 2 all the coefficients are 0. Thus, we obtain

We remark that in the expansion of m̃� generated by Corollary 1, the number of terms 
is equal to

So, we can say that this corollary is a refined form of Theorem 1.
We denote by Pn the set of all partitions of {1, 2, . . . , n}. The cardinality of the set Pn is 

well-known as the nth Bell number, Bn (see Sloane 2012, A000110). The Möbius function 
of Pn (Bender and Goldman 1975; Rota 1964), namely

can be used to express the augmented monomial symmetric functions in terms of the 
power sum symmetric functions.

Theorem 2  Let � be an integer partition. Then

where s(v) = [s1, s2, . . . , s|v|] is an integer partition with

m̃ and p are functions of n variables, n � l(�).

Proof  Let � = [�1, �2, . . . , �k ] be an integer partition. For v = (v1, v2, . . . , vr) ∈ Pk−1 and 
1 � i � r let us consider f (v), fi(v) ∈ Pk defined by

and

By (4), we deduce that

�
0 = [1321], �

1 = [122141] and �
2 = [1351].

m̃[132131] = p3 · m̃[1321] − 3m̃[122141] − m̃[1351].

the number of distinct parts of �+

{

1, for tj > 1,
0, for tj = 1.

(4)µ(v) =

|v|
∏

i=1

(−1)|vi|−1(|vi| − 1)!,

m̃� =
∑

v∈Pl(�)

µ(v)ps(v)

si =
∑

j∈vi

�j , i = 1, . . . , |v|,

f (v) = (v1, v2, . . . , vr , {k})

fi(v) = (v1, . . . , vi−1, vi ∪ {k}, vi+1, . . . , vr).

(5)µ(f (v)) = µ(v) and µ(fi(v)) = −|vi|µ(v).
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Let P ′
k be a subset of Pk defined by 

We are to prove the theorem by induction on k. For k = 1, we have µ({1}) = 1 and 
s({1}) = [�1]. Considering that m̃[�1] = µ({1})ps({1}), the base case of induction is fin-
ished. We suppose that the relation

is true for any integer k ′, 1 � k ′ < k. By (5), (6) and Theorem 1, we can write

Thus, the proof is finished.�  �

Example 3  For {1, 2, 3}, we have P3 = {a, b, c, d, e} with

According to (4), we have

Taking into account Theorem 2, we get

Iterative algorithm for computing transition matrix
If � ⊢ k, then it is immediate from Theorem 1 or Theorem 2 the fact that the augmented 
monomial symmetric function m̃� is a sum over integer partitions of k.

Corollary 2  Let � be an integer partition. Then

(6)P
′
k =

{

v ∈ Pk : {k} /∈ v
}

.

m̃[�1,�2,...,�k′ ]
=

∑

v∈Pk′

µ(v)ps(v)

m̃[�1,�2,...,�k ]

= p�k ·
∑

v∈Pk−1

µ(v)ps(v) −

k−1
∑

i=1

∑

v∈Pk−1

µ(fi(v))ps(fi(v))

=
∑

v∈Pk−P ′
k

µ(v)ps(v) +
∑

v∈P ′
k

µ(v)ps(v).

a = {{1}, {2}, {3}},

b = {{1}, {2, 3}},

c = {{2}, {1, 3}},

d = {{3}, {1, 2}} and

e = {{1, 2, 3}}.

µ(a) = (−1)3−30!0!0! = 1

µ(b) = µ(c) = µ(d) = (−1)3−20!1! = −1 and

µ(e) = (−1)3−12! = 2.

m̃[2,1,1] = p[2,1,1] − p[2,2] − 2p[3,1] + 2p[4].

m̃� =
∑

��β

T�β · pβ
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where T�β is an integer such that

m̃ and p are functions of n variables, n � l(�).
We observe that the transition matrix expanding the augmented monomial symmet-

ric functions in p� is lower triangular (with respect to any extension of the dominance 
ordering on partitions to a total order on the partitions � ⊢ k), i.e.,

where

with

Example 4  For k = 4, according to Theorems 1 or 2, we obtain

We remark that

where ek is the kth elementary symmetric function. For k = t1 + 2t2 + · · · + ktk, the 
number of ways of partitioning a set of k different objects into ti subsets containing i 
objects, i = 1, 2, . . . , k is

[see (s.24.1.2 Abramovitz and Stegun 1972)]. Thus, the formula

where k = t1 + 2t2 + · · · + ktk, can be easily derived from Theorem 2. Unfortunately, for 
T�β with [1k ] ≺ � and � ≺ β such formulas are not known.

(−1)l(�)−l(β)T�β � 0,







m̃[k1]
...

m̃[1k ]






= T (k) ·







p[k1]
...

p[1k ]






,

T (k) =
[

T�β

]

�,β⊢k
,

(7)T�β =

{

0, for � �� β ,
1, for � = β .











m̃[4]

m̃[3,1]

m̃[22]

m̃[2,12]

m̃[14]











=











1 0 0 0 0
−1 1 0 0 0
−1 0 1 0 0
2 − 2 − 1 1 0

−6 8 3 − 6 1





















p[4]
p[3,1]
p[22]
p[2,12]
p[14]











.

m̃[1k ] = k! ·m[1k ] = k! · ek ,

k!
∏k

i=1 ti! · (i!)
ti

T[1k ][1t12t2 ···ktk ] = (−1)k−t1−t2−···−tk
k!

∏k
i=1 ti!i

ti
,
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The following result is immediate from Corollaries 1 and 2.

Corollary 3  Let k be a positive integer. If � = [1t12t2 · · · ] and β = [1v12v2 · · · ] are two 
integer partitions of k such that � ≺ β then

where j is a positive integer such that tj > 0, δij is the Kronecker delta,

with

and

for all i > 0.
In this corollary, for vj = 0 we have vj(0) = −1. Fortunately, this drawback is elimi-

nated by the fact that 1− δ0,vj = 0. Recall that �0 is an integer partition of k − j and 
� ≺ �

i for all i > 0 with ti > δij. We remark that β0 ⊢ k − j for vj > 0.

Example 5  By Corollary 3, for � = [14] and β = [1131], we have

According to (7) and Corollary 3, we obtain Algorithm 1 for computing the transition 
matrix T (k). We can see that in order to compute the transition matrix T (k), Algorithm 1 
is based on generating the immediate lexicographic predecessor of an integer partition 
(see lines 10 and 22). The problem of generating the immediate lexicographic predeces-
sor of an integer partition is well-known in literature. For more details, one can refer to 
(Kelleher and O’Sullivan 2009) and the references therein.

T�β =
(

1− δ0,vj

)

T�0β0 −
∑

i>0

(ti − δij)T�iβ ,

β0 = [1v1(0)2v2(0) · · · ] and �
i = [1t1(i)2t2(i) · · · ],

vr(0) = vr − δrj , tr(0) = tr − δrj

tr(i) =







tr − 1− δij , if r ∈ {i, j},
tr + 1, if r = i + j,
tr , otherwise

T[14][1131] = T[13][31] − 3T[1221][1131]

= −2T[1121][31] − 3
(

−2T[1131][1131]

)

= −2
(

−T[31][31]

)

+ 6

= 8.
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Algorithm 1 Computing transition matrix
Require: k
1: T[1][1] ← 1
2: r ← 2
3: while r ≤ k do
4: λ ← [r]
5: Tλλ ← 1
6: for all β ≺ λ do
7: Tλβ ← 0
8: end for
9: while [1r] ≺ λ do

10: λ ← predecessor of λ
11: β ← [r]
12: while λ ≺ β do
13: j ← λ1
14: if vj > 0 then
15: Tλβ ← Tλ0β0

16: else
17: Tλβ ← 0
18: end if
19: for all i > 0 with ti > δij do
20: Tλβ ← Tλβ − (ti − δij)Tλiβ

21: end for
22: β ← predecessor of β
23: end while
24: Tλλ ← 1
25: for all β ≺ λ do
26: Tλβ ← 0
27: end for
28: end while
29: visit T (r)

30: r ← r + 1
31: end while

Example 6  Applying Algorithm 1 for k = 5, we get successively:

T (2) =

�

1 0
−1 1

�

,

T (3) =





1 0 0
−1 1 0
2 − 3 1



,

T (4) =











1 0 0 0 0
−1 1 0 0 0
−1 0 1 0 0
2 − 2 − 1 1 0

−6 8 3 − 6 1











,

T (5) =



















1 0 0 0 0 0 0
−1 1 0 0 0 0 0
−1 0 1 0 0 0 0
2 − 2 − 1 1 0 0 0
2 − 1 − 2 0 1 0 0

−6 6 5 − 3 − 3 1 0
24 − 30 − 20 20 15 − 10 1



















.
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At the end of this section, we remark the following

Conjecture 1  Let k be a positive integer. The identities

are true for all � ≺ [k].

Recursive algorithm for computing an element of the transition matrix
A specific augmented monomial function m̃� can be expressed in terms of power sums

without computing the transition matrices

According to (7) and Corollary 3, we obtain Algorithm 2 for computing the coefficient 
T�β of the power sums pβ.

In Algorithm 2, � and β are two integer partitions of k such that

The recursive function Tlb(k) is presented in a form that allows fast identification of 
the correlation between Corollary 3 and the operations executed with the arrays 
(t1, t2, . . . , tk) and (v1, v2, . . . , vk). Thus, the lines 2–9 are useful to determine whether 
β = � or β ≺ �. The value of j is selected in the lines 16–24 such that j is the largest posi-
tive integer with

This selection of j allows us to reduce the number of recursive calls from the lines 30 and 
39.

The arrays (t1, t2, . . . , tk) and (v1, v2, . . . , vk) are the global variables of the recursive 
function Tlb(k). These global variables are very important because help us save mem-
ory. The integer partitions � and �i with i � 0 are alternatively stored in the same array 
(t1, t2, . . . , tk). The integer partition �0 is immediately derived from the integer partition � 
in the line 28. Then � is derived from �0 in the line 31. The integer partition �i with i > 0 
is derived from the integer partition � in the lines 36–38. Then � is derived from �i in the 
lines 40–42. The integer partitions β and β0 are alternatively stored in the same array 
(v1, v2, . . . , vk). The integer partition β0 is immediately derived from the integer partition 
β in the line 29. Then β is derived from β0 in the line 32.

The function Tlb(k) can be integrated into any algorithm for generating integer parti-
tions to get the expression of the augmented monomial m̃� in terms of power sums.

∑

��β

T�β = 0 and
∑

v∈Pl(�)

µ(v) = 0

m̃� =
∑

��β

T�β · pβ

T (r) =
[

T�β

]

�,β⊢r
, r � l(�).

� = [1t12t2 · · · ktk ] and β = [1v12v2 · · · kvk ].

tj = min{ti|ti > 0 }.



Page 11 of 13Merca ﻿SpringerPlus  (2015) 4:724 

Algorithm 2 Computing Tλβ

Require: k, t1, t2, . . . , tk, v1, v2, . . . , vk
1: function Tlb(k)
2: i ← k
3: L ← i · ti
4: B ← i · vi
5: while L = B and i > 1 do
6: i ← i− 1
7: L ← L+ i · ti
8: B ← B + i · vi
9: end while

10: if B = L then
11: S ← 1
12: else
13: if B < L then
14: S ← 0
15: else
16: j ← 1
17: while tj = 0 do
18: j ← j + 1
19: end while
20: for i = j + 1 to k do
21: if ti > 0 and ti < tj then
22: j ← i
23: end if
24: end for
25: if vj = 0 then
26: S ← 0
27: else
28: tj ← tj − 1
29: vj ← vj − 1
30: S ← Tlb(k − j)
31: tj ← tj + 1
32: vj ← vj + 1
33: end if
34: for i = 1 to k do
35: if ti > δij then
36: ti ← ti − 1
37: tj ← tj − 1
38: ti+j ← ti+j + 1
39: S ← S − (ti + 1) ·Tlb(k)
40: ti ← ti + 1
41: tj ← tj + 1
42: ti+j ← ti+j − 1
43: end if
44: end for
45: end if
46: end if
47: return S
48: end function
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Concluding remarks
An iterative algorithm for computing transition matrix expanding the augmented mono-
mial symmetric functions in terms of the power sums symmetric functions has been 
derived in this paper. It is clear that the efficiency of this algorithm is directly influenced 
by the efficiency of the algorithm used for generating integer partitions in reverse lexico-
graphic order. To express a specific augmented monomials in terms of power sums, we 
need a single line of the transition matrix. In this case, the computation of all transition 
matrix elements is not justified. Thus, a recursive function that computes the value of 
a single element of the transition matrix has been derived. Clearly, behind these algo-
rithms is Theorem 1.

A recursive algorithm that requires algebraic symbol manipulation for expressing the 
augmented monomial m̃� in terms of power sums can be easily derived from Theorem 1. 
For instance, in Maple this algorithm can be written as

monom := proc(a :: list, n :: integer);
local i, s, b;
if n = 1 then

s := pa[1]
else

if n = 2 then
s := pa[1] · pa[2] − pa[1]+a[2]

else
s := pa[n] ·monom(a, n− 1);
for i from 1 by 1 while i < n do
b := a;
b[i] := b[i] + a[n];
s := s−monom(b, n− 1);

end do;
end if ;

end if ;
sort(expand(s));
end proc;

and the command

generates the following expression

Such a recursive algorithm is very simple but its effectiveness can not be called into 
question because of the large number of recursive calls (for the augmented monomial m̃� 
the number of recursive calls is the factorial of l(�)− 1).

Unfortunately, Theorem 2 is more difficult to exploit in order to give similar results. 
However, a special case can be considered.

monom([3, 2, 1, 1], 4)

p
2
1p2p3 − p

2
1p5 − 2p1p2p4 − 2p1p

2
3

− p
2
2p3 + 4p1p6 + 3p2p5 + 4p3p4 − 6p7.
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Corollary 4  Let � = [�1, �2, . . . , �r] be an integer partition of k such that

for all i < r.

1.	 The number of integer partition β with � � β is greater than or equal to Br.
2.	 The number of integer partition β with T�β = 0 is equal to 

 where p(k) is the Euler partition function.
3.	 For all v ∈ Pr the following formula holds: 

 where s(v) = [s1, s2, . . . , s|v|] is an integer partition with 

This corollary is immediate from Theorem 2 and Corollary 3.
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�i > �i+1 + · · · + �r

p(k)− Br ,

T�,s(v) = µ(v) ,

si =
∑

j∈vi

�j , i = 1, . . . , |v|.
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