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Background
Multiple input and multiple output systems (MIMO) radiate multiple probing signals 
through it their transmit antennas and receive multiple coded waveforms from multiple 
locations. MIMO radar systems have many advantages including high resolution target 
detection/estimation (Haimovich et al. 2008), significantly improved parameter identifi-
ability (Li et al. 2007).

The performance of the transmitted waveforms is judged by their correlation proper-
ties (Deng et al. 2004; Liu et al. 2007, 2008). The waveforms with good autocorrelation 
properties provide high range resolution and good crosscorrelation helps in multiple tar-
get return separability. So, there is a need to design MIMO radar waveforms as orthogo-
nal pulses with low correlation properties. In literature, the orthogonal sequences are 
generated with low autocorrelation and crosscorrelation peak sidelobe levels using vari-
ous algorithms. Deng et al. (2004) has proposed simulated annealing (SA) algorithm to 
optimize the frequency sequences for the development of the orthogonal discrete fre-
quency coding waveforms frequency hopping (DFCW_FF) for netted radar systems. Liu 
has proposed orthogonal DFCW_FF (Liu et al. 2007) and orthogonal discrete frequency 
coding waveforms linear frequency modulation (DFCW_LFM) (Liu et al. 2008) using a 
modified genetic algorithm (MGA).

Abstract 

In this paper, an adaptive algorithm is proposed to develop an orthogonally optimized 
waveforms with good correlation properties that are suitable for the detection of 
target in the presence of strong clutter. The joint optimization both at the transmitter 
and receiver is adapted based on the secondary data and clutter to maximize signal 
to interference noise ratio (SINR) with target and clutter knowledge. The result shows 
good correlation properties and better SINR and signal to clutter ratio (SCR) compared 
to the existing iterative algorithm. The proposed algorithm also shows improved detec-
tion even for lower SCR when implemented with GLRT.
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A multi-objective optimization (MOO) algorithm (Sen et  al. 2013) was proposed to 
maximize the SINR using the orthogonal frequency division multiplexing (OFDM) radar 
signal with the prior knowledge of target and noise covariance. The two-stage wave-
form optimization (Nijsure et al. 2013) algorithm maximizes signal-to-clutter-plus-noise 
ratio (SCNR) for adaptive distributed MIMO radar. An optimal transmit waveform 
was derived by maximizing the signal-to-noise ratio (SNR) (Friedlander et al. 2006) of 
the transmitted signal by controlling the space–time distribution to obtain significant 
improvement in the detection performance. The optimization of both waveforms and 
the receiving filters by iterative algorithm (Chen and al 2009) maximizes signal-to-inter-
ference noise ratio (SINR). An adaptive OFDM (Sen and Glover 2012) radar signal was 
designed to detect a target employing spectral weights for the next transmitting wave-
form to maximize SNR. Adaptive MIMO radar waveform (Zhang et al. 2009) algorithm 
was designed to improve the target detection by maximizing the MI between the target 
impulse response and the received echoes and also minimize the MMSE in estimating 
the target impulse response. From the literature it is understood that the algorithms have 
considered either orthogonality or optimality for the design of waveforms but not both.

In this paper, ortho-optimal waveforms with good correlation properties that are suit-
able for the detection of various targets in the presence of clutter with prior knowledge 
of target and clutter are presented using adaptive algorithm. This algorithm is based on 
continuous training of the receiver and the transmit waveform on the basis of environ-
ment change to suit best the dynamic radar scene. The performance measures used in 
this paper are SINR, SNR and signal-to-clutter ratio (SCR).

Rest of paper is organized as follows. In “Signal model” we formulate orthogonally 
optimized algorithm for the DFCW waveform design in order to minimize the cost func-
tion. In “System model” we introduce system model and orthogonally adaptive optimiza-
tion algorithm. Design results from the proposed algorithms are discussed in “Results”. 
Finally conclusions are drawn in “Conclusion”.

Signal model
Consider MIMO radar system with N transmitting antennas, each represented by 
a sequence of M samples and R receiving antennas. A modified ant colony optimiza-
tion algorithm (M_ACO) is used to generate orthogonal discrete frequency waveforms 
(DFCW) with good correlation properties. To achieve this objective, the cost function 
was based on peak sidelobe and integrated sidelobes level ratio is considered for mini-
mizing objective function.

Table 1  Length of firing sequences and related parameters (Liu et al. 2008)

M B·T B/∆f T·∆f

8 18 6 3

16 36 12 3

32 72 24 3

64 144 48 3

128 288 96 3
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Discrete frequency coding waveform

Discrete frequency coding (DFC) sequence is represented as {0, 1, 2, 3… M − 1} ran-
domly. The waveform with adjacent subpulses of time duration modulated with DFC 
sequences is called as DFCW. Each pulse is divided into number of subpulses in the 
waveform which are equal to the number of code sequences. The DFCW_LFM wave-
form is defined as (Liu et al. 2008)

where B is DFCW bandwidth, T is the subpulse time duration and k is the frequency 
slope, k = B/T. p = 1, 2,…, N. M represents number of subpulses with the coefficient 
sequence {m1,m2,… mM} with unique permutation of sequence {0,1,2,… M −  1}. The 
fm
p = fo

p + m ∆f is the coding frequency of mth subpulse, being the starting frequency of 
p-th waveform. ∆f is the frequency step. The B and T values are constant for each pulse. 
The grating lobes can be eliminated by the relationship between subpulse duration T, 
frequency step ∆f and LFM bandwidth B. The starting frequency of each LFM pulse is 
different. The above mentioned parameters are different for different lengths of firing 
sequence. The choice of BT, T ∆f and B/∆f values are crucial for the waveform design 
(Liu et al. 2008), as shown in Table 1. The B and T values are constant for each pulse. 
These BT, T ∆f and B/∆f values are selected from the Table 1 depending on the value of 
M which are proposed in (Liu et al. 2008) so that the grating lobes can be eliminated.

Cost function

The cost function is the key parameter for the waveform optimization. The peak side-
lobe ratio (PSLR) and the integrated side-lobe ratio (ISLR) determines the correlation 
properties. The PSLR is a ratio of the amplitude of the peak sidelobe to the main lobe 
and is expressed in decibels. This parameter ensures the detection of weak targets when 
covered by strong ones. The autocorrelation and crosscorrelation PSLR is given by

where t ≠ q, t = 1, 2,… N, q = 1, 2,… N, n = 1,2,..N for PLSRAn and n = 1, 2, … N(N − 1) 
for PLSRCn, A(St, n) and C(St, Sq, n) are the aperiodic autocorrelation function of t-th 
waveform, the crosscorrelation function of t-th and q-th waveforms, respectively.

The ISLR is a ratio of sum of the energy side lobes to the energy of the main lobe in the 
pulse compression function. The autocorrelation and crosscorrelation ISLR is given by

where t ≠ q, t = 1, 2,… N, q = 1, 2, … N, n = 1, 2, … 2N − 1.
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The objective is to minimize the cost function (CF) and is given as (Bo et al. 2011):

Subjected to power constraint ||s||2 ≤ 1.

System model
The N waveforms of length M are transmitted and reflected by a target and clutter. In 
the receiver N × R waveforms are recovered and to further detect the target detection 
by a receiving filter. K (K ≥ N) secondary data vector and primary data share the same 
covariance structure. The covariance matrix is a trained matrix of clutter statistics for 
K secondary data. ri and riK, i = 1, 2… r, K = 1, 2 … K are primary and secondary data 
of the received signal, respectively. The primary data received by the radar at the i-th 
antenna are given by

where, SN×M = [a1, . . . , aN] ∈ CN×M is the transmit code matrix and 
an = [an1, an2, . . . , aNM]

T
∈ CNx1, the transmit codeword of the antenna with M as the 

length of the code word where, the superscript T stands for the transpose of a matrix. 
The target scattering properties are represented by αi =  [αi1, αi2,… αiN]T, i =  1, … R, 
which is the target scattering coefficient generated randomly and complex and those of 
the clutter by ci, which is the clutter vector. An additive complex Gaussian noise vector 
is ni. The target scattering is given by α = Ƙ δ(t − τ) where τ < 2d/c, the radial span of 
the target is d and speed of light is c. The reflection coefficient of individual scatters is Ƙ 
which are generated randomly and are complex values.

Additionally, a set of K(K ≥ N) secondary data vectors is necessary to trained clutter 
statistics for K secondary data for the implementation of orthogonal adaptive optimiza-
tion algorithm. The secondary data vectors are defined as

where, is an additive complex Gaussian noise of secondary vector is niK and those of the 
clutter ciK is the secondary clutter vector.

As the resolution of radar system increases, the clutter model no longer acts as Gauss-
ian distribution (Fay et al. 1997; Trunk 1973; Jakeman and Pusey 1976; Gini et al. 2002; 
Hu et al. 2006). The model of sea clutter is a challenge to fit various distributions. The 
models proposed are Weibull (Fay et al. 1997), log-normal (Trunk 1973), k (Jakeman and 
Pusey 1976) and compound Gaussian (Gini et al. 2002) distributions. These models do 
not satisfactorily match to real sea clutter. The limitation of these models is due to non 
stationary characteristic. The Tsallis distribution (Hu et al. 2006) is used to model the sea 
clutter, known as K-distribution clutter. This K-distribution sea model is verified with 
original amplitude data of sea clutter. This is the best distribution for sea clutter (Ward 
1981).

The compound Gaussian random vector, ci is given as, i.e.,

(4)CF =

N
∑

n=1

PSLRAn +

N(N−1)
∑

n=1

PSLRCn +

2N−1
∑

n=1

ISLRAn +

2N−1
∑

n=1

ISLRCn

(5)ri = Sαi + Sci + ni, i = 1, . . .R

(6)riK = SciK + niK , i = 1, . . .R, K = 1, 2 . . .K

(7)ci =
√

αiβi, i = 1, . . .R



Page 5 of 12Reddy and Uttarakumari ﻿SpringerPlus  (2015) 4:792 

The texture αi is non negative random variable and the speckle component and βi is 
correlated complex circular Gaussian vector. The compound Gaussian clutter is sample 
from K-distribution.

Noise covariance matrix is given by

where, H is transpose conjugate of a matrix and E[.] is expectation operator.
Matched filter output at the receiver is expressed as

where h is the impulse response of the matched filter at the receiver of size (1 × N). The 
matched filter output at the receiver y is of size (1 × N)

Thus, the SINR, SNR, SCR at the filter can be expressed as

The objective is to maximize SINR subjected to the constraint ||s||2 ≤ 1.

An orthogonal adaptive optimization algorithm

The design of extended target based waveform is different from the design of other types 
of waveform. It requires the prior information of clutter and target statistics. The trans-
mitted waveform needs to adapt to the changing environment in real time scenario. The 
clutter information is estimated by the received signals before the target appears. The 
information is collected from K secondary data. The aim is to design a waveform which 
is best suited for the detection of the target of interest.

The orthogonal waveforms have better correlation properties which are critical to 
reduce mutual interference and to increase range resolution. The adaptive waveforms 
have the capacity to mitigate clutter statistics and increase the detection capabilities. The 
orthogonal adaptive (optimal) waveform is developed from the proposed adaptive algo-
rithm. The orthogonal adaptive (optimal) waveforms have better probability of detection 
and better resolution. This proposed algorithm guarantees the improved SINR.

The technique applied here is to optimize the filter based on the covariance matrix of 
clutter and noise. The target statistics and waveform (orthogonal waveform initially) are 
also considered. The covariance matrix is a trained matrix of clutter statistics for K sec-
ondary data. Here, the clutter information is estimated by the received signals before the 
target appears. The covariance matrix of filter and clutter statistics are estimated. Using 
this covariance matrix, the signal covariance matrix is estimated from target, noise, clut-
ter and filter covariance matrix. Then this waveform covariance matrix is normalized 
and transmitted by NxR MIMO radar system. Thus, obtained waveform is orthogonal 
optimal waveform.
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The objective is to maximize SINR subjected to the constraint ||S||2  ≤  1 and to 
optimize by first solving h in terms of S (Pillai et al. 2000). The optimization problem 
becomes.

Rc,s
�
=E

[

CSSH CH
]

and Rn
�
=E

[

n nH
]

 are estimated from clutter covariance 
matrix in (7) and noise covariance matrix in (8). The maximization of h is possible by 
minimizing min

h
hH

(

Rc,s + Rn

)

h such that hHαS = 1.
The solution to this is (Capon 1969)

where, µ is a scalar which satisfies the equality constraint. This term can be neglected as 
it has no effect on the objective function.

The objective function now becomes SHTH
(

Rc,s + Rn

)−1
TS which is a function of S 

only.

Subjected to ||s||2 ≤ 1.
The adaptive algorithm is discussed below:

Step 1	Initialization

The transmitting matrix of the DFCW waveforms as shown in Eq. (14) is modeled by 
optimized code set sequences using M_ACO optimization algorithm(Reddy and 
Uttarakumari 2014) (not in the scope of this paper). The objective function Eq. (4) is 
considered to minimize ASP and CP values. S is a matrix of (MxN). 

	 The extended target matrix is given by 

	 Clutter covariance of size (1 × N) is estimated using the Eq. (16) 
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where, K is the number of secondary data, N is the length of the code set sequence 
of the waveform, rik is the received signal from the primary and secondary data. The 
clutter covariance matrix of size (M × N) is estimated using Eq. (16) and is as shown 
in Eq. (17)
	

Step 2	Training of waveform and filter
	 The filter coefficients are trained based on the covariance matrix of clutter and noise. 

The Rc,s is obtained by using clutter covariance matrix given in Eq. (18) and transmit-
ting matrix using Eq. (14) for DFCW waveforms. 

	 The transmitting waveform is adapted to the dynamic environment using 
Eqs. (20) and (21). Using Eq. (22), the waveform is normalized. The covariance matrix 
of clutter and filter is estimated using Eq. (20) and finally, the waveform matrix is esti-
mated using Eq. (22). Thus, obtained waveforms are orthogonal adaptive waveforms 
developed using adaptive algorithm. 

Step 3	The obtained orthogonal adaptive waveform (S) is substituted in Eq.  (10) to 
obtain SINR, SCR and SNR values. The S matrix and values of SINR, SCR and SNR 
are noted and step 2 is repeated. Out of these two values, the one with highest CF 
waveforms is noted. The process is repeated for 100 simulations.

	 This adaptive algorithm has orthogonally optimized DFCW_LFM waveforms with 
the prior knowledge of the channel and clutter, i.e., environment. The results of 
this algorithm are better than the iterative algorithm (Chen and al 2009) due to the 
collection of the secondary data for K samples. Using Eq.  (17), the filter is initially 
trained for clutter statistics without target statistics.

	 Figure  1 illustrates the adaptive algorithm to generate adaptive waveform. Initially 
the orthogonal waveforms are generated using optimization algorithm (Reddy and 
Uttarakumari 2014) (not in the scope of this paper) and then transmitted through 
the channel. The performance at the receiver degrades due to the clutter. Hence 
to increase the performance, the waveforms are modified based on the clutter and 
target statistics and also the filter coefficients are adapted based on the covariance 
matrix of clutter, target statistics and waveforms. The waveforms are orthogonally 
optimized based on the covariance matrix of noise, clutter and filter with target sta-
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tistics. The adaptive algorithm adapts the waveform to the rapidly changing environ-
ment by increasing the SINR, SCR and SNR values.

GLRT

In low resolution maritime radar system, the model of clutter is a complex Gaussian pro-
cess. As the radar resolution increases, the clutter no longer acts as a Gaussian model 
and it can be described as a non-Gaussian clutter model for heavy-tailed clutter distri-
butions. Using maximum likelihood estimation (MLE) method, the unknown parame-
ters like the clutter power level and RCS of the target are estimated. To cancel the clutter 
and make the detector fully adaptive, the primary data covariance matrix is assumed to 
be known initially. Then, the secondary data covariance matrix is derived and placed 
in place of covariance matrix. Thus, the dynamic decision-based detector, Generalized 
GLRT detector (Cui et al. 2010) is developed. The GLRT detector shows excellent detec-
tion performance against the compound Gaussian clutter for high resolution MIMO 
radars. The clutter has exponential correction structure covariance matrix Ro, the (i,j) 
element of which is ρ|i−j|, here ρ is the one-lag correlation coefficient. The Power Spec-
tral Density of clutter is generally located in low frequency region and Clutter spread is 
controlled by v. v is the parameter ruling the shape of the distribution. To analyze the 
probability of detection with orthogonal and adaptive waveforms, the parameters con-
sidered are Pfa = 10−4, N = 4, MT = 4, MR = 4, ρ = 0.9, K = 32 and v = 0.5. The GLRT 
& Gaussian clutter GLRT (GC-GLRT) detectors are used to check the performance of 
orthogonal optimal waveforms in terms of probability of detection when SCR is low.

Results
The simulation was carried out in MATLAB for 4 × 4 MIMO for extended target. 4 sets 
of orthogonal DFCW_LFM codes were generated using Modified Ant Colony Optimi-
zation (M_ACO) algorithm for sequence length of 4 (Reddy and Uttarakumari 2014). 
The orthogonal waveforms are then optimized using adaptive algorithm as explained 
in section III. The PSLR and ISLR are evaluated for each sequence and are tabulated 
along with the sequences in Table 2. The autocorrelation sidelobe peak (ASP) and cross-
correlation peak (CP) for the corresponding waveforms are shown in Table  3 in pres-
ence of compound Gaussian clutter and extended target. The diagonal terms show the 

Orthogonal 
Waveform  

Clutter 

Target 

Nois
GLRT output 

Adaptive 
Waveform 

Filter 

Fig. 1  Block diagram of adaptive waveform generation



Page 9 of 12Reddy and Uttarakumari ﻿SpringerPlus  (2015) 4:792 

normalized ASP or PSLR of the autocorrelation function. The off diagonal terms are the 
normalized (with respect to sequence length) max CP of the crosscorrelation function. 
The average ASP and CP are −13.80 dB (0.2043) and −33.34 dB (0.02154), respectively, 
for the sequence in presence of compound Gaussian clutter and extended target. These 
results show that the waveforms are also orthogonal with better autocorrelation and 
crosscorrelation when clutter is very spiky. The correlation properties are very impor-
tant to best suit best for MIMO applications. Low crosscorrelation sidelobe levels are 
very critical for reducing mutual interference maximizing independent information and 
also to facilitate high range resolution. In Table 4, the average ASP and CP values are 
tabulated for orthogonal, iterative and adaptive waveforms.

These results clearly show an improvement in ASP and CP values when compared with 
orthogonal and iterative method. There is a drastic reduction in sidelobes and also wave-
forms are more uncorrelated in presence of compound Gaussian clutter and extended 
target.

The proposed adaptive algorithm is compared with the existing iterative algorithm 
(Chen and al 2009) based on SINR, SCR and SNR performance measures for extended 
target model and are shown in Figs. 2, 3 and 4, respectively, in presence of compound 
Gaussian clutter. The oscillations in Figs. 2, 3 and 4 are due to the random behavior of 
compound Gaussian clutter and extended target scatterings. Improvement by 3, 4 and 

Table 2  4 sequences generated using adaptive algorithm with compound Gaussian clutter 
and extended target (N = 4 and M = 4)

Code set Orthogonal optimized sequence PSLR ISLR

1 0.0469 − 0.0240i, 0.0215 − 0.0105i, −0.0224 + 0.0051i, 0.6849 + 0.0220i −13.82 −20.97

2 −0.0014 + 0.0193i, −0.0008 + 0.0087i, 0.0027 − 0.0080i, −0.1376 + 0.2110i −13.82 −21.04

3 −0.0122 + 0.0024i, −0.0055 + 0.0010i, 0.0054 + 0.0003i, −0.1538 − 0.0494i −13.83 −21.04

4 −0.0055 + 0.0502i, −0.0029 + 0.0228i, 0.0077 − 0.0206i, −0.3793 + 0.5374i −13.83 −20.99

Table 3  ASP and CP for M = 4 and N = 4 code using adaptive algorithm with compound 
Gaussian clutter and extended

Code set 1 2 3 4

1 0.2036 0.0249 0.0159 0.0649

2 0.0249 0.2035 0.0059 0.0239

3 0.0159 0.0059 0.2034 0.0153

4 0.0649 0.0239 0.0153 0.2037

Table 4  average value of ASP and CP values for orthogonal, itterative and adaptive wave-
forms

ASP (in dB) CP (in dB)

Orthogonal −5.0876 −28.4962

Itterative (Chen and Vaidyanathan 2009) −11.32 −28.0023

Adaptive −13.79 −32.0065
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25 dB are observed in SINR, SCR and SNR, respectively, using adaptive algorithms over 
iterative method (Chen and al 2009) in presence of compound Gaussian clutter and with 
extended target.

From Table 5, it can be concluded that the SINR, SNR and SCR values of orthogonally 
optimal waveforms generated using adaptive algorithm is better than the iterative algo-
rithm in presence of compound Gaussian clutter and extended target.

The orthogonal adaptive waveforms generated by adaptive algorithm in presence of 
clutter and extended target are subjected to GLRT and GC-GLRT (Cui et al. 2010) to 
check the performance of these waveforms in terms of probability of detection when 

0 10 20 30 40 50 60 70 80 90 100
0

10

20

30

40

50

No of Itteration

S
IN

R

Iterative
Adaptive

Fig. 2  The SINR plot of adaptive and iterative algorithm for extended target in clutter

0 10 20 30 40 50 60 70 80 90 100
0

10

20

30

40

50

No of Itteration

S
C

R

Iterative
Adaptive

Fig. 3  The SCR plot of adaptive and iterative algorithm for extended target in clutter
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Fig. 4  The SNR plot of adaptive and iterative algorithm for extended target in clutter
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SCR is low. The waveform developed by adaptive algorithm show better detection per-
formance even for lower SCR when GLRT and GC-GLRT (Cui et al. 2010) is adapted 
and is clearly shown in Figs. 5 and 6. So, this algorithm shows better result compared to 
iterative for lower SCR also.

Table 5  Maximum value of  SINR, SCR and  SNR for  adaptive and  iterative algorithm 
for extended target in clutter

Adaptive (in dB) Iterative (in dB)  
(Chen and Vaidyanathan 2009)

SINR 41.16 38.00

SCR 40.62 36.54

SNR 111.3 87.03
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Fig. 5  The plot of pd vs SCR for GC-GLRT and GLRT, for Pfa = 10−4, N = 4, Tx = 4, ρ = 0.9, Rx = 4, v = 0.5, 
K = 32 for different waveforms for adaptive
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Fig. 6  The plot of pd vs SCR for GC-GLRT and GLRT, for Pfa = 10−4, N = 4, Tx = 4, ρ = 0.9, Rx = 4, v = 0.5, 
K = 32 for different waveforms for iterative
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Conclusion
The adaptive algorithm develops waveforms that are orthogonal and exhibits good cor-
relation properties and also shows good detection at lower SCR when adapted for GLRT. 
The numerical results show that the proposed adaptive algorithm has better SINR, SNR 
and SCR performance compared to the existing iterative algorithm.
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