
An Algorithm to detect balancing
of iterated line sigraph
Deepa Sinha1* and Anshu Sethi2

Background
For standard terminology and notation in graph theory we refer to Harary (1969), West
(1996) and Zaslavsky (1981, 1982) for sigraphs and Cormen et al. (2011) and Golumbic
(2004) for algorithms. Throughout the text, we consider finite, undirected graph with no
loops or multiple edges. By an (n, e) graph G we mean a graph having n vertices and e
edges; n is called the order and e is called the size of G. In computer science domain, any
graph G is observed as a network by computer scientists where vertices are taken to be
nodes and edges to be taken as links.

A signed graph (or sigraph in short) Zaslavsky (1982) is an ordered pair S = (Su, σ) ,
where Su = (V ,E) is a graph called the underlying graph of S and σ : E → {+,−} is a
function from the edge set E of Su into the set {+,−}, called the signature (or sign in
short) of S.

For a sigraph S, Behzad and Chartrand (1969) define its line sigraph, L(S) as the
sigraph in which the edges of S are represented as vertices, two of these vertices are
defined adjacent whenever the corresponding edges in S have a vertex in common, any
such edge ef is defined to be negative whenever both e and f are negative edges in S. A

Abstract 

A signed graph (or sigraph in short) S is a graph G in which each edge x carries a value
s(x) ∈ {+1,−1} called its sign denoted specially as S = (G, s). Given a sigraph S, H =
L(S) called the line sigraph of S is that sigraph in which edges of S are represented as
vertices, two of these vertices are defined to be adjacent whenever the corresponding
edges in S have a vertex in common and any such edge ef is defined to be negative
whenever both e and f are negative edges in S. Here S is called root sigraph of H. Iterated
signed line graphs Lk(S) = L(Lk−1(S)), k ∈ N, S:= L0(S) is defined similarly. In this paper,
we give an algorithm to obtain iterated line sigraph and detect for which value of ‘k’ it
is balanced and determine its complexity. In the end we will propose a technique that
will use adjacency matrix of S and adjacency matrix of Lk(S) which is balanced for some
‘k’ as a parameter to encrypt a network and forward the data in the form of balanced
L
k(S) and will decrypt it by applying inverse matrix operations.

Keywords:  Sigraph, Line sigraph, Balanced sigraph, Iterated line sigraph, Negative
section, Network, Encryption and decryption

Mathematics Subject Classification:  Primary 05C 22, Secondary 05C 75, 05C 85

Open Access

© 2015 Sinha and Sethi. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License
(http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium,
provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and
indicate if changes were made.

RESEARCH

Sinha and Sethi ﻿SpringerPlus (2015) 4:704
DOI 10.1186/s40064-015-1499-0

*Correspondence:
deepa_sinha2001@yahoo.com
1 South Asian University Akbar
Bhawan, Chanakyapuri,
New Delhi 110 021, India
Full list of author information
is available at the end of the
article

http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s40064-015-1499-0&domain=pdf

Page 2 of 19Sinha and Sethi ﻿SpringerPlus (2015) 4:704

given sigraph S is a linesigraph if it is isomorphic to the linesigraph L(T) of a sigraph T.
Here T is called the line root of S. A sigraph S and its line sigraph L(S) is shown in Fig. 1.

A sigraph S is sign-compatible Sinha (2005); Sinha and Sethi 2015) if there exists a
marking µ of its vertices such that the end vertices of every negative edge receive ‘−’
signs in µ and no positive edge in S has both of its ends assigned ‘−’ sign in µ. In other
words, a sigraph is sign-compatible if and only if its vertices can be partitioned into two
subsets V1 and V2 such that the all-negative subsigraph of S is precisely the subsigraph
induced by exactly one of the subsets V1 and V2. Every line sigraph is sign-compatible.
However, not every sign-compatible sigraph need be line sigraph.

An adjacency matrix for a network with n vertices and no parallel edges is an n× n
symmetric matrix such that

A cycle in a sigraph S is said to be positive if the product of the signs of its edges is posi-
tive or, equivalently, if the number of negative edges in it is even. A cycle which is not
positive is said to be negative. A sigraph is said to be balanced if every cycle in it is posi-
tive (Harary 1953; Cartwright and Harary 1956; Acharya and Acharya 1986). The follow-
ing characterization of balanced sigraphs is well known:

Theorem 1  (Harary and Kabell 1980) A sigraph is balanced if and only if there exists
a partition of its vertex set into two subsets, one of them possibly empty, such that every
positive edge joins two vertices in the same subset and every negative edge joins two verti-
ces from different subsets.

For any positive integer k, the kth iterated line sigraph Lk(S) of S is defined (see Gill
and Patwardhan 1983) recursively as follows:

 L0(S) = S, Lk(S) = L(Lk−1(S)).

A sigraph S and its iterated line sigraph Lk(S) is shown in Fig. 2.
By a negative section (Gill and Patwardhan 1981) of a subgraph S′ of a sigraph S we

mean a maximal edge-induced subgraph in S′ consisting of only the negative edges of S;
in particular, a negative section in a cycle of S is essentially a maximal all-negative path

aij =







1 if (i, j) is a solid line

−1 if (i, j) is a dotted line

0 if (i = j)

S: L(S):

e 1 e2
e3

e 4
e5

e6

1

2

5 4

3

6

e

e

e

ee

e

Fig. 1  Example showing sigraph and its line sigraph

Page 3 of 19Sinha and Sethi ﻿SpringerPlus (2015) 4:704

in the cycle or the whole cycle itself. Thus, a cycle is positive if and only if it has an even
number of negative sections of odd length.

In this paper, we are going to introduce a new method for encoding and decoding of
data using network as sigraphs and basic properties of matrices. For the purpose of net-
work security, adjacency matrix of S will be considered as basis of information which is
to encrypted to adjacency matrix of balanced Lk(S) for some ‘k’ to assure confidentiality,
integrity and authentication of transmitted data.

The following result gives a characterization of sigraphs whose line sigraph L(S) is
balanced:

Theorem 2  (Sinha 2005) For any sigraph S, L(S) is balanced if and only if the following
conditions hold on S:

1.	 For any cycle Z in S;

(a)	 If Z is all negative then Z is of even length;
(b)	 If Z negative sections of non-zero even length inis heterogenous then there is an

even number of Z;
2.	 For any vertex v in S, if the degree exceeds two then there is at most one negative edge

incident at v.

Balanced iterated signed line graphs
In this section, we extend Theorem 2 to any iterated line sigraph Lk(S), k ∈ N.

Theorem 3  (Sinha 2005; Sinha and Acharya 2015) For any sigraph S, and for any posi-
tive integer k, Lk(S) is balanced if and only if the following conditions are satisfied by S :

1.	 For any cycle Z in S;

(a)	 If Z is all negative then Z is of even length;
(b)	 If Z is heterogenous then the number of negative sections of odd(even) length

greater than k is even if k is even(odd); and
2.	 For any vertex v in S, if d(v) > 2 then d−(v) < 3, and if d−(v) = 2, then length of any

negative section through v is at most k.
A sigraph S and its iterated line sigraph such that L1(S) is not balanced and L2(S) is

balanced is shown in Fig. 3.

S: L(S):

1

2 4

6

53

L (S):L (S): 23

1

1 1

2

2 2

3

33

4

4 4

5

55

6

6 6

Fig. 2  Example showing sigraph and its line sigraph upto 3 iterations

Page 4 of 19Sinha and Sethi ﻿SpringerPlus (2015) 4:704

Numerical interpretation of above characterization

Following is the numerical analysis for the sigraphs shown in Fig. 3. The adjacency
matrix corresponding to sigraph S is defined as follows:

Following procedure is implemented to obtain an iterated line sigraph from a given
sigraph and check whether this iterated line sigraph is balanced or not:

 Enter the number of nodes, i.e., n. Input n× n adjacency matrix with respect to given
sigraph. The adjacency matrix takes the entries as 0, 1 and −1 for no edge, positive edge
and negative edge respectively. Now we have to find the line sigraph of this sigraph
Sinha and Sethi (2015). For this, first we populate EdgeList (list of all edges in the given
sigraph) by assigning each edge an index. We then search for non-zero entries in adja-
cency matrix and then corresponding to each such entry, say (i, j)th entry, we assign the
edge number as 1, 2,3,...

Then for each edge we check adjacent edges from the EdgeList prepared and see if they
have the common vertex. The sign of the vertex depends on the sign of edge (i, j)th in S.
If edge (i, j) is positive then corresponding vertex would be positive otherwise it would
be negative. This way new matrix of L(S) is computed.

Since we have to compute Lk(S), it means we have to repeat the above conversion of
converting sigraph to its line sigraph ‘k’ times such that number of edges of first iterated
line sigraph now becomes number of vertices for the second iterated line sigraph and
output matrix of first iterated line sigraph is now the input matrix for the required sec-
ond iterated line sigraph and so on.

Similarly, Lk(S) is computed.
To check 1(a) condition, i.e. if cycle is negative, we will find all cycles in the given

sigraph. For each cycle we calculate the length of the path and count all negative entries
corresponding to this path. If path length is equal to half of the negative values, it means
that cycle is homogenous i.e. it contains all the negative edges otherwise heterogenous.
If cycle is homogeneous, then count must be even otherwise we terminate the procedure
and say Lk(S) is not balanced.

For the adjacency matrix of S, length of the path 1-2-3-4 of cycle is 4 and half count
of all negative entries is = 4/2 i.e. 2. Since length of path of cycle does not match the
number of negative entries, therefore, cycle is not homogenous and we check the next
condition.

A(S) =







0 1 0 1

1 0 − 1 0

0 − 1 0 − 1

1 0 − 1 0







S L (S) L (S)1 2

1

2 3

4

k = 1 k = 2

Fig. 3  For a sigraph S, L1(S) is not balanced and L2(S) is balanced

Page 5 of 19Sinha and Sethi ﻿SpringerPlus (2015) 4:704

To check 1(b) condition we first find a cycle. Then we search for positive edge in the
path. If we found any positive edge it means the cycle is heterogeneous. Now we count −
1 entries in the path. If it contains only one negative edge proceeded with a positive edge
consecutively in the path, it means it has negative section. Now we count −1 entries and
check if it is greater than ‘k’ and of odd length, we update NbOddNegativeSections (num-
ber of negative sections of odd length) by 1 and if it is greater than ‘k’ and of even length
then we increment NbEvenNegativeSections (number of negative sections of even length)
by 1. This way total number of negative sections of odd length and even length greater
than ‘k’ is calculated. Now we check if this count NbOddNegativeSections is even when
‘k’ is even and NbEvenNegativeSections is odd when ‘k’ is odd. If both the condition are
satisfied we check the next condition otherwise we terminate the procedure.

For the adjacency matrix of S, it has 2 negative sections, 1-2-3 of length 2 and 4-5-6 also
of length 2. Take k = 1 i.e. ‘k’ is odd. Count number of negative sections of even length > k,
which is 2 but according to the theorem this count must be odd. Given condition does not
hold true for k = 1, therefore for given sigraph S, L1(S) is not balanced. Take k = 2 i.e. ‘k’ is
even, count number of negative sections of odd length > k, which is 0 in our case and is even.
Thus, given condition holds true for k = 2 and we proceed to check the next condition.

To check 2 condition we calculate degree of each vertex by counting non-zero entry in
each row and negative degree by counting −1 entries in each row. Then for each vertex
we check if degree is >2 then negative degree must be ≤ 3 and if d−(v) = 2, then we cal-
culate again the length of each negative section incident at v by applying the same proce-
dure as calculated in condition 1(a).

For the adjacency matrix of S, there exists no vertex where degree >2, therefore, given
condition is also satisfied for given S. Thus, we can say that for given sigraph S, L1(S) is
not balanced and L2(S) is balanced.

Algorithm to detect balancing of iterated line sigraph

The algorithm to detect balancing of line sigraph is based on the characterization given
by Acharya and Sinha (2003). To detect balancing of iterated line sigraph Lk(S) of S, we
have to first obtain Lk(S) from S. Following is the algorithm to Lk(S) of a given sigraph S:

Algorithm to convert a sigraph to its iterated line sigraph SigraphtoIteratedLinesigraph

(vertex, n, k)

Here vertex is the input matrix and n is the number of vertices of a given sigraph. k
denotes number of iterations whose kth iterated line sigraph Lk(S) is to be computed.

Note: Since, if we have n number of vertices, then for k = 1, there are maximum of
n(n− 1)/2 edges, which in turn becomes number of vertices for the next iteration and

Step 1. Apply algorithm defined in [23] to obtain L(S) i.e matrix linevertex[i][j].
Step 2. Count non-zero entries in matrix linevertex[i][j]. Let this count be m.
Step 3. Set n = m / 2

//number of edges will now become number of vertices for next iteration.
Step 4. Set vertex[i][j] = linevertex[i][j] for i = 1 to n and j = 1 to n

// output matrix will now become input matrix for next iteration.
Step 5. Repeat Step 1 to Step 5 for � = 2 to k
Step 6. Exit

Page 6 of 19Sinha and Sethi ﻿SpringerPlus (2015) 4:704

so on. For k =2, the number of vertices will be of order n2 and correspondingly number
of edges will be of order n4 and so on. Thus, kth iteration will have maximum nk number
of vertices and n2k number of edges.

Complexity of computation involved in above algorithm
In Step 1, we have applied the algorithm defined in Sinha and Sethi (2015) to obtain

L(S), Thus complexity of this step = O(n2).

In Step 5, we have to compute Lk(S) and we have to repeat Step1, k − 1 times,
therefore,

Complexity of this step = nk−1 × O(n2) = O(n2(k−1)), where k denotes number of
iterations.

Hence complexity of computation involved in above algorithm is O(n2(k−1)), where n
is number of vertices in S.

Numerical interpretation
The adjacency matrix corresponding to sigraph L1(S) and L2(S) is defined as follows:

Main algorithm

Following is the algorithm to detect balancing of an iterated line sigraph:

Here vertices is the input matrix and n is the number of vertices of a given sigraph. k
denotes number of iterations. NbPositiveEdges, NbNegativeEdges and NbTotalEdges rep-
resents total number of positive edges, negative edges and total edges incident to each
vertex.

A
�

L1(S)
�

=







0 1 1 0

1 0 0 1

1 0 0 −1

0 1 −1 0






and A

�

L2(S)
�

=







0 1 1 0

1 0 0 1

1 0 0 1

0 1 1 0







IteratedLineSigraphBalance (vertices,n, k)

Page 7 of 19Sinha and Sethi ﻿SpringerPlus (2015) 4:704

Step 1. Implement algorithm defined in Section 2.2.1 to obtain Lk(S).
Step 2. Repeat Step 2 to Step 4 for Node i = 1 to n
Step 3. Set path.push-back(i)

IsNodeInPath[i] = true
Step 4. Call function FindCycle(n, i, &path, IsNodeinPath, IsPathEval

uatedforNode, Evaluatepath)
If it returns 0,
Print Since condition on S is not satisfied, therefore, Lk(S) is not
balanced and Goto Step 15

Step 5. Print Since 1(b) condition is satisfied i.e cycle is heterogenous and there
is even number of negative sections of non-zero even length in the cycle,
Now we check the 2nd condition

Step 6. Repeat Step 6 to Step 13 for Node i = 1 to n
Step 7. Set NbPositiveEdges = 0

NbNegativeEdges = 0
NbtotalEdges = 0

Step 8. Repeat Step 8 to Step 9 for j = 1 to n
Step 9. if (vertices[i][j] == 1) Set NbPositiveEdges++

if (vertices[i][j] == −1) NbNegativeEdges++
if ((vertices[i][j] == −1) ‖ (vertices[i][j] == 1)) NbTotalEdges++

Step 10. Repeat Step 10 to Step 13 for i = 1 to n
Step 11. Check if(NbTotalEdges > 2)

Check if(NbNegativeEdges > 3), If yes,
Print Since condition is not satisfied,therefore, Lk(S) is not balanced
and Goto Step 15

Step 12. check if(NbNegativeEdges == 2), Set
path.push-back(i)
IsNodeInPath[i] = true

Step 13. Call function FindCycle(n, i, &path, IsNodeinPath, IsPathEvaluated
forNode, EvaluatePath)
If it returns 0,
Print Since second condition on S is not satisfied, therefore, Lk(S) is

not balanced and Goto Step 15
Step 14. Print All conditions on S are satisfied, therefore Lk(S) is balanced.
Step 15. Exit

Here FindCycle is a function used to find all cycles within a given sigraph from its adja-
cency matrix. StartNode represents first node from where the cycle start. PathUptilNow
is a vector used to represent the position of the node till the vertex is traversed. IsNo-
deInPath is a boolean varible used to detect whether nodes is already in the path or not.
IsPathEvaluatedForNode is also a boolean variable used to find whether nodes for which
path is already calculated. Evaluate = 0 is a function to evaluate path. cur-node repre-
sents the current node which is traversed.

Function FindCycle (n, StartNode, Pathuptilnow, IsNodeinPath, IsPathEvaluat-
edforNode, Evaluate = 0)

Page 8 of 19Sinha and Sethi ﻿SpringerPlus (2015) 4:704

Step 1. Set Cur-Node = Pathuptilnow → back();
Step 2. Repeat Step 2 for i = 1 to n

2.1. Check if ((Cur-Node != i) && (vertex [Cur-Node][i]))

2.1.1. Check if ((i == StartNode) && (PathUptilNow → size () > 2))

2.1.1.1. // We have found a cycle
if (Evaluate)
Set AllOkay = Evaluate(PathUptilNow);
if (!AllOkay)
return false;

2.2. else if (IsNodeinPath[i] ‖ IsPathEvaluatedForNode[i])
continue; // Either the node is already in path, or all the cycles for this
node have been evaluated. We don’t want this node in the cycle.

2.3. // Add the node to the path and continue to find cycles.
Pathuptilnow → push-back(i);
IsNodeinPath[i] = true;
IsAllOkay = FindCycle(n, StartNode, Pathuptilnow, IsNodeinPath,
IsPathEvaluatedForNode, Evaluate);
IsNodeinPath[i] = false;
Pathuptilnow → pop-back();
if (!IsAllOkay) return false;

Step 3. Return true

Above function outputs a path of the cycle. Here Function EvaluatePath is used to
detect whether cycle is homogenous or heterogenous. If it is heterogenous, then it
counts number of negative sections of odd(even) length greater than k is even if k is
even(odd) or not. NbEdgesInSection denotes total number of edges in each section.
NbNegativeSections represents total number of negative sections. NbEvenNegativeSec-
tions and NbOddNegativeSections denotes number of negative sections of even and odd
length respectively.

Function evaluate (path)

Page 9 of 19Sinha and Sethi ﻿SpringerPlus (2015) 4:704

Step 1. Set NbNodesInPath = path → size()
Step 2. Set StartIndex = −1 and PositiveEdgePresent = false
Step 3. // Check ‘1(b)’ condition for heterogenous cycle

// Find the first positive edge
Repeat Step 3 to Step 4 for i = 1 to NbNodesInPath

Step 4. Check if (vertices[(∗ path) [i % NbNodesInPath]][(∗ path)[(i+1)% Nb
NodesInPath]] == 1),
If yes, Set
PositiveEdgePresent = true
StartIndex = i
break

Step 5. if (!PositiveEdgePresent)
// The cycle doesn’t have any positive edge, which means it has all
negative edges
Print Cycle doesn’t have positive edges. Size of cycle is =
NbNodesInPath
return (NbNodesInPath % 2 == 0)

Step 6. Else Set NbNegativeSections = 0
NbEdgesInSection = 0
NbEvenNegativeSections = 0
NbOddNegativeSections =0
IsCurrentSectionNegative = false

Step 7. Repeat Step 7 to Step 14 for i = StartIndex to (StartIndex + NbNodes
InPath + 1)

Step 8. Check if (vertices[(∗ path)[i % NbNodesInPath]][(∗path)[(i+1)% Nb
NodesInPath]] == −1)
Check if (!IsCurrentSectionNegative)
If yes, Print Started negative section at (∗ path)[i % NbNodesInPath]
and Set NbNegativeSections++
IsCurrentSectionNegative = true
NbEdgesInSection++

Step 9. else if (IsCurrentSectionNegative)
Print Finished negative section at (∗path)[i % NbNodesInPath] of size
NbEdgesInSection
Check if ((NbEdgesInSection % 2 !=0) &&(NbEdgesInSection > k))
if yes, set NbOddNegativeSections++
Check if ((NbEdgesInSection % 2 == 0) &&(NbEdgesInSection > k))
If yes, set NbEvenNegativeSections++
Set NbEdgesInSection = 0
IsCurrentSectionNegative = false

Step 10. Print Total number of negative sections - NbNegativeSections
Total number of negative sections of even length greater than k -
NbEvenNegativeSections
Total number of negative sections of odd length greater than k -
NbOddNegativeSections

Step 11. Check if((k%2==0) && (NbOddNegativeSections%2==0))
If yes, return (true)

Step 12. Check if((k%2!=0)&& (NbEvenNegativeSections%2==0))
If yes, return (true)

Step 13. Check if(NbEdgesInSection > k) , If yes, return(false)
checking 2nd condition

Step 14. return(false)

Complexity of computation involved in above algorithm
In Step 1, we compute Lk(S) as defined in "Main algorithm", therefore,
Complexity of this step = O(n2(k−1)).

Page 10 of 19Sinha and Sethi ﻿SpringerPlus (2015) 4:704

In Step 2, each node of the graph is traversed and for each node we have to find cycle
i.e. Step 4 is called ‘n’ times. For finding cycle, we have to call for function Evaluate-
Path() where each vertex is again traversed. Thus complexity of this step = O(n)× n× n
= O(n3).

For the function EvaluatePath(), in Step 3 and Step 4 we first calculate first positive
edge and for this we have to traverse each node of the path, Thus, Complexity of this step
= O(n).

In Step 7, for finding number of negative sections and length of each section we repeat
Step 7 to Step 12 and it is repeated for each cycle, therefore, Complexity of this step =
O(n)× n = O(n2).

For checking the 2 condition we calculate positive, negative and total edges incident
to each vertex, for this, we follow Step 6 to Step 9 in the main algorithm and for this we
traverse again n× n matrix, Thus, complexity of this step = O(n2).

In Step 10 to Step 13, we check total degree and negative degree of each vertex, there-
fore, Complexity of this step = O(n).

In Step 13, we call the function FindCycle(), such that whole procedure is again
repeated, therefore, Complexity of this step = O(n)× n× n = O(n3).

Total complexity = O(n2(k−1)) + O(n3) + O(n) + O(n2) + O(n2) + O(n) + O(n3) =
O(n3 + n2(k−1)).

Note: Our main aim is to only detect balancing of iterated line sigraph, therefore,
complexity to obtain iterated line sigraphs can be neglected.

Thus Total complexity for detecting balancing of iterated line sigraph = O(n3) + O(n)
+ O(n2) + O(n2) + O(n) + O(n3) = O(n3).

Hence complexity of computation involved in above algorithm is O(n3), where n is
number of vertices in S.

Correctness of the above algorithm
An algorithm is said to be correct if for every input data that satisfies some conditions-

called the precondition of the algorithm, the output data satisfy a certain predefined
condition-called the post condition of the algorithm. A graph algorithm depends upon
number of vertices and edges in a graph and inter/intra relationship between these two
features. Here, we will discuss an approach based on the adjacency matrices of the given
sigraph to prove or disprove the correctness of the above proposed algorithm.

Example 1  Consider the sigraphs shown in Fig. 4.

The adjacency matrix corresponding to sigraph S1 and S2 is defined as follows:

1 2

34

1

2

34

5
S1 S 2

Fig. 4  Example showing homogeneous cycle of odd and even length

Page 11 of 19Sinha and Sethi ﻿SpringerPlus (2015) 4:704

In Step 4, for S1, we call for the function FindCycle() to find all cycles starting with initial
node i=1. S1 contain cycle 1-2-3-4-1 with path length 4(Path size) and count of nega-
tive edges(NbNodesInPath) as 4. Both the counts are same, therefore, cycle is homog-
enous and we have to check if this count is odd or even. If it is odd, then process is
terminated after Step 4 in O(n3)) steps otherwise next condition is checked. Similarly,
for S2, there exists cycle 1-2-3-4–5-1 with path length 5(Path size) and count of negative
edges(NbNodesInPath) as 5. Both the counts are same, therefore, cycle is homogenous
and we have to check if this count is odd or even. Since this count is odd, then process is
terminated after Step 4 in O(n3)) steps.

Note: For any sigraph to detect its balancing, we have to find cycle and complexity of
finding cycle is O(n3), therefore, whole process must be implemented in atleast O(n3)
steps.

Example 2  Consider another sigraphs as shown in Fig. 5.

The adjacency matrix corresponding to sigraph S and S1 is defined as follows:

Consider a sigraph S as shown in Fig. 5. It has 2 negative sections, 1-2-3 of length 2 and
4-5-6 also of length 2. Take k = 1 i.e. k is odd. Now we have to count number of negative
sections of even length > k, which is 2 but according to the theorem this count must be
odd. Since condition does not hold true for k = 1, therefore for given sigraph S, L1(S) is
not balanced and process is terminated at Step 4 of main algorithm and implemented in
O(n3) steps. If k = 2 i.e. k is even, then we have to count number of negative sections of
odd length > k, which is 0 in our case and is even. Therefore, condition holds true for k
= 2 and we proceed to check the next condition. Since there does not exists any vertex
with NbTotalEdges >2, therefore, given condition is also satisfied and process is again
terminated in O(n3) steps.

Similarly, if we take sigraph S1, we have 2 negative sections, 5-1 of length 1 and 2-3-4
of length 2. Now it can be easily verified that for k =1 and k = 2, all conditions holds
true.

A(S1) =







0 −1 0 −1

−1 0 −1 0

0 −1 0 −1

−1 0 −1 0






and A(S2) =











0 −1 0 0 −1

−1 0 −1 0 0

0 −1 0 −1 0

0 0 −1 0 −1

−1 0 0 −1 0











A(S) =







0 −1 0 −1

−1 0 −1 0

0 −1 0 −1

−1 0 −1 0






and A(S1) =











0 −1 0 0 −1

−1 0 −1 0 0

0 −1 0 −1 0

0 0 −1 0 −1

−1 0 0 −1 0











1

2 3

4

56

1

2

34

5S S 1

Fig. 5  Illustration of another example

Page 12 of 19Sinha and Sethi ﻿SpringerPlus (2015) 4:704

Conclusion and scope
In this paper, we have given an algorithmic approach to obtain iterated line sigraphs of
a given sigraph and detect whether it is balanced or not in O(n3) steps. In this method,
data is taken in the form of adjacency matrix with entries as 0, 1 and −1. Now since
any matrix can be represented in the form of a network and vice-versa, we can apply
encryption and decryption mechanism for a network through matrices. Algorithm
is already defined to obtain a line sigraph from a given sigraph Sinha and Sethi (2015)
and if we have algorithm to obtain line root sigraph of given sigraph, therefore, we can
apply encryption and decryption algorithms with the additional condition that Lk(S) is
balanced for some ‘k’ to a network. There exists several techniques on encryption and
decryption, but we have developed a new technique in which weak and strong relation-
ships among nodes in a balanced network can be defined. For the purpose of security, we
have used asymmetric key cryptography.

System model

Asymmetric cryptography is used in this model. Two different keys, a secret key d and a
public key e are defined. The public key e is used for encryption i.e. for converting adja-
cency matrix of S to adjacency matrix of Lk(S) which is balanced for some ‘k’. Since we
have a unique method for encryption, therefore, it can be published. Further, the secret
private key d is used for decryption of adjacency matrix of Lk(S) to adjacency matrix
of S. Since we have many line root sigraphs of a given sigraph and we have to restrict
our networks to obtain a unique line root sigraph, therefore, private key is used. Also, if
labelling of vertices can be done by Lehot (1974), then only we obtain unique line root
sigraph. The following model is used as an application to above algorithms.

The model used as an application to above algorithms can be referred in Fig. 6.

Algorithms for system model

Apart from algorithms defined in "Algorithm to convert a sigraph to its iterated line
sigraphSigraphtoIteratedLinesigraph (vertex, n, k)" and "Main algorithm", following are
the algorithms that will be used in encryption and decryption mechanism.

Encode a network to adjacency
matrix of S using encoding chart

Apply algo to convert adjacency
matrix of S to adjacency matrix of

Originator Receipient

Apply algo to output (k-1) line root
sigraph of kth iterated line sigraph

Decode message (adjacency matrix
of S) to network using encoding chart

L (S) upto 'k' iterationsk

Apply algo to check for which
value of k, L (S) is balanced.k

Apply algo to output line root
sigraph 'k' times to get given

sigraph S

Fig. 6  Application in Cryptography

Page 13 of 19Sinha and Sethi ﻿SpringerPlus (2015) 4:704

Algorithm to detect a line sigraph and output its root sigraph

The algorithm to detect a line sigraph and output its line root sigraph is an extension
of a paper named “An Optimal Algorithm to Detect a Line Graph and Output its Root
Graph” by Lehot (1974).

To check whether a given sigraph is a line root sigraph or not we have to check two
conditions:

1.	 The underlying graph is a line graph.
2.	 Given sigraph is sign-compatible.

If both the conditions are satisfied we say that line root sigraph exists and will print the
new line root sigraph of S.

Figure 7a shows the sigraph corresponding to the input matrix. Now we have to
find the line root sigraph of this sigraph. The step wise procedure in shown in Fig. 7.
NewNode represents the node of the intermediate graph, i.e., Fig. 7b and Lookup repre-
sents if current index is mapped to which node. It shows the mapping between Fig. 7a, b.
Since each node represents 2 points, maximum amount of numbers required is 2* max
where max denotes maximum value of n.

NewGraph denotes the adjacency matrix of required line root sigraph and corre-
sponding to this matrix Fig. 7c is plot.

Find the first non-zero entry in adjacency matrix i.e. graph[i] [j]. For the first edge (i, j)
create a new node (i, 1, 2) → Node i named as pair (1, 2) i.e. in Fig. 7b.

Now start traversing the graph from this node. Also populate the final graph with this
edge i.e. (1, 2). Now traverse through the graph and name other nodes. For each untrave-
led neighbor create a modified node for Fig. 7b. Find an i1 for new node. We want to find
j as the first index i1, we look if j is assigned to any node, do we have any edge. For e.g. if
j = 2 and current nodes are (a, (1, 2)), (b, (2, 3)) and (c, (1, 4)) we check if current node
has edge from a to b Ȯnce we have find j we want to find k as second index. If j and k are
found we have found the naming of i1 and i2. Add i1 and i2 to NewNode. Make CurIdx
minimum of (CurIdx, j, k). Record that j and k have been assigned to current node (i).

If pairing of edges can be done as given by Lehot (1974), then we say that graph is a
line graph otherwise not a line graph and hence not a line root sigraph.

This pair would represent an edge in NewGraph. If this node has negative edge any-
where, set this edge as negative else positive. Also add this node to the queue as we want
to travel its neighbor.

1 2

34

1-2 2-3

1-33-4

1

2 3

4

a b

c
Fig. 7  Step wise procedure to find line root sigraph

Page 14 of 19Sinha and Sethi ﻿SpringerPlus (2015) 4:704

Next step we will check whether a given sigraph is sign-compatible or not. If sigraph is
sign-compatible, line root sigraph exists and output the new modified graph otherwise
line root sigraph does not exists.

Theorem 4  Sigraph H is the line root of a sigraph S and unique line root of a sigraph S
if and only

1.	 Su is a line graph and
2.	 Vertices of S can be assigned marks ‘+’ or ‘−’ such that both the ends of every negative

edge receive ‘−’ mark and the same is not true for any positive edge (i.e. S is sign-com-
patible) such that the end vertices of the positive path receiving ‘ −’ mark is of length
exactly two.

Theorem 5  Line root sigraph H of a line sigraph S is unique if and only if

1.	 H is homogenous and all-negative or
2.	 Positive section is of length one and every negative edge has at least one negative

degree.
The final NewGraph is then plotted. This is the required line root sigraph. Since for a

given line root sigraph we have many sigraphs, we have restricted ourselves to sigraphs
based on Theorems 4 and 5.

It uses following functions:
Max denotes maximum number of vertices
Structure of Node : idx; // Primary and i1, i2; // The pair represents mapping between

Fig. 7a, b. Vertex 1 in Fig. 7a is mapped to pair 1–2 in Fig. 7b. idx represents initial vertex
and i1 and i2 represents corresponding mapping between the vertices.

IsTraversed is a function which represents whether node is travelled or not.
Lookup defines if the current index is mapped to which node. Now, since each node is

given 2 numbers, the maximum amount of numbers required is 2*MAX.
NewGraph represents required line root sigraph.

Page 15 of 19Sinha and Sethi ﻿SpringerPlus (2015) 4:704

Step 1. Input a sigraph H with entries 0, 1 and −1 whose line root sigraph
S is required.

Step 2. Find the first edge i.e repeat step for i= 0 to Max and j= 0 to
Max and till queue is not empty.

() Check if (graph[i][j] ! = 0) If yes, then create a new node (i, 1, 2). This
node i is named as pair(1,2). If no, goto Step 3.

() Again start traversing the graph from this node.

() Initialize weight = 1.

() Repeat for l=0 to Max and weight=1
If true, assign weight = −1 else weight= 1.

() Populate the final graph with this edge i.e (1,2)
NewGraph[NewNodes[i].i1][NewNodes[i].i2] = weight
NewGraph[NewNodes[i].i2][NewNodes[i].i1] = weight

Step 3. Now traverse through the graph and name other nodes. Traverse
till queue is not empty.

3.1. Set current node to queue.front

3.2. Repeat for i= 0 to Max For each untravelled neighbor

3.2.1. create new node

3.2.2. set NewNode.idx = current node i.e i

3.2.3. Choose i1 and i2 such that NewGraph (adjacency matrix = Lookup)
and graph are consistent. First loop – Try with the indices tried until
now

3.2.3.1. Look for i1 such that if (i1, l) is an edge, then (CurNode, l) should
be an edge

3.2.3.2. Look for i2 such that if (i2, l) is an edge, then (CurNode, l) should
be an edge

3.2.3.3. Set CurIdx as the minimum of i1 and i2
3.2.3.4. Add edges to NewGraph from i1 and i2 to i.

This pair would represent an edge in new graph. If this node has
negative edge anywhere, set this edge as negative else positive.

3.2.3.5. Add the new node to the queue.
3.2.3.6. Set the current node as travelled. Second loop - If we go inside

this loop, it means we did not find any i1
and i2 < CurIdx. So we do an unbounded search. The steps
are same, try with indices not use until now.

Step 4. Check if (CurIdx > Dim) then
Print Graph is not line graph and exit
else Print Graph is a line graph

Step 5. Since sigraph is a line graph now we have to check whether it is
sign-compatible.

5.1. Set for i = 1 to n all counts to 0.

5.2. Set for i = 1 to n and j = 1 to n and Count −1 in each row and column.

5.3. Set for i = 1 to n and j= 1 to n

5.3.1. Search for first 1 and if(row[i] ≥ 1 and (col[j] ≥ 1),
If yes, Print “Sigraph is not sign-compatible” and exit
else goto Step8.

Step 6. Print Sigraph is sign-compatible and hence its line root sigraph
exists.

Step 7. Print the NewGraph (which is the required line root sigraph).
Step 8. Exit

Complexity of computation involved in above algorithm
In Step 2, we have to find first non-zero entry (i.e. first edge) in adjacency matrix of

order n× n and then corresponding to each such entry, say (i, j)th entry, we again have
to traverse the graph to find its adjacent node and push the node in the queue.

Thus complexity of this step = O(n3).

In Step 3, since we have to traverse the graph and name all other nodes till queue is not
empty. Queue contains the edges that are adjacent to first edge. This maximum number
of edges is e = n(n− 1)/2. Thus complexity of this step = O(e/n3).

Page 16 of 19Sinha and Sethi ﻿SpringerPlus (2015) 4:704

In Step 5 we detect whether the given sigraph is sign-compatible or not. We count
number of adjacent negative edges in adjacency matrix of order n× n. Maximum num-
ber of edges can be O(n2). Thus complexity of this step = O(n2).

Total complexity = O(n3) + O(e/n3) + O(n2) = O(n3).

Hence complexity of computation involved in above algorithm is O(n3), where n is
number of vertices in S and e is the number of edges.

Encoding chart

For a network with n number of vertices, we have n× n adjacency matrix encoded as
shown in Fig. 8.

Encryption algorithm

• • Input the network which is to be encrypted. Then encode this network into adja-
cency matrix of S.

• • Apply algorithm defined in Sinha and Sethi (2015) to convert a given adjacency
matrix of S to adjacency matrix of L(S).

• • Apply algorithm defined in Sect. 2.2.2 to detect if adjacency matrix of L(S) so pro-
duced is balanced for k =1. If it is balanced, then the adjacency matrix of L(S) is the
encrypted data.

• • Repeat algorithm defined in Sect. 2.2.1 to compute kth iterated line sigraph and algo-
rithm defined in Sect. 2.2.2 to detect its balancing at each iteration. Stop the proce-
dure where we get iterated line sigraph which is balanced for some k.

• • The adjacency matrix for which Lk(S) is balanced for some ‘k’ is the encrypted data.
• • Now send the resultant adjacency matrix to the receiver in a linear format (i.e. either

column wise or row wise) with space between elements. n n < Resultant matrix data
> m m where, n = number of vertices or nodes in the network m = number of edges
in the network.

Decryption algorithm

• • Read the encrypted data and form the required matrices of order m×m.

• • Here the encrypted matrix is adjacency matrix of Lk(S) which is balanced for some k.
• • Apply “Algorithm to detect a line sigraph and output its root sigraph” defined in

"Algorithm to detect a line sigraph and output its root sigraph" to obtain Lk−1(S).







0 1 0 −1

1 0 −1 −1

0 −1 0 1

−1 −1 1 0







1 2

34

Fig. 8  Encoding of a network to adjacency matrix

Page 17 of 19Sinha and Sethi ﻿SpringerPlus (2015) 4:704

• • Repeat the above step (k − 1) times to obtain back the resultant adjacency matrix of
S.

• • Decode adjacency matrix of S using encoding chart to generate the original network.

Note: Since we have restricted adjacency matrix of S to satisfy the property of Lk(S)
balancing for some ‘k’, therefore, our networks are restricted to have data with values 0,
1 and −1 and satisfying the balancing property of Lk(S). The reading and writing of data
can be done manually or by using file operation of any programming language(eg. C,
C++...).

Example

Consider a network (Fig. 9):
Let

be the adjacency matrix for the above network.
Compute adjacency matrix of L(S) corresponding to adjacency matrix of S by apply-

ing algorithm defined in Sinha and Sethi (2015). Thus the resultant matrix is adjacency
matrix of L(S):

The corresponding graph is (Fig. 10):

A(S) =







0 −1 −1 0

−1 0 0 −1

−1 0 0 −1

0 −1 −1 0







AL(S) =







0 −1 −1 0

−1 0 0 −1

−1 0 0 −1

0 −1 −1 0







1 2

43

Fig. 9  Network

1 2

43
Fig. 10  Network corresponding to L1(S)

Page 18 of 19Sinha and Sethi ﻿SpringerPlus (2015) 4:704

Now we check whether this calculated L1(S) at k =1 is balanced or not. For this we
apply algorithm defined in "Main Algorithm" from where it can be easily verified that it
is balanced.

If we decide to transmit the data row wise, the data to be sent is (the data are sepa-
rated by space)

4 4 0 −1 −1 0 −1 0 0 −1 −1 0 0 −1 0 −1 −1 0 4 4
Suppose the received data is
4 4 0 −1 −1 0 −1 0 0 −1 −1 0 0 −1 0 −1 −1 0 4 4
From the data we have received we get the following matrix:

isomorphic to some sigraph.
Now applying the decryption algorithm for Lk(S) to S as shown in example we get the

matrix as

which is equal to the adjacency matrix of S.
Authors’ contributions
DS conceptualized this study and drafted the manuscript. The second author gave the shape to the manuscript by work-
ing out the algorithm and checking the complexity. All authors read and approved the final manuscript.

Author details
1 South Asian University Akbar Bhawan, Chanakyapuri, New Delhi 110 021, India. 2 Center For Mathematical Sciences,
Banasthali University, Banasthali 304 022, Rajasthan, India.

Acknowledgements
The authors express gratitude to Mr. Dhananjay Kulkarni who was always there in prior discussion and helping in writing
algorithms and finding complexity and to the referees who made extensive and constructively critical comments on the
first version of the paper.

Competing interests
Both authors declare that they have no competing interests.

Received: 12 September 2015 Accepted: 2 November 2015

References
Acharya BD (1981) A spectral criterion for cycle balance in networks. J Graph Theory 4(1):1–11
Acharya BD, Acharya M (1986) New algebraic models of a social system. Indian J Pure Appl Math 17(2):150–168
Acharya M, Sinha D (2006) Common-edge sigraphs. AKCE Int J Graphs Comb 3(2):115–130
Acharya M, Sinha D (2002) A characterizations of signed graphs that are switching equivalent to their jump signed

graphs. Graph Theory Notes N Y XLIII:7–8
Acharya M, Sinha D (2003) A characterizations of sigraphs whose line sigraphs and jump sigraphs are switching equiva-

lent. Graph Theory Notes N Y XLIV:30–34
Acharya M, Sinha D (2005) Characterizations of line sigraphs Nat Acad Sci Lett 28(1–2):31–34 [also, see extended

abstract in: Electron. Notes Discrete Math, 15 (2003)]
Behzad M, Chartrand GT (1969) Line coloring of signed graphs. Elem Math 24(3):49–52
Cartwright D, Harary F (1956) Structural balance: a generalization of Heider’s theory. Psychol Rev 63:277–293
Chartrand GT (1977) Graphs as mathematical models. Prindle, Weber and Schmidt Inc, Boston

T ′ =







0 −1 −1 0

−1 0 0 −1

−1 0 0 −1

0 −1 −1 0







T =







0 −1 −1 0

−1 0 0 −1

−1 0 0 −1

0 −1 −1 0







Page 19 of 19Sinha and Sethi ﻿SpringerPlus (2015) 4:704

Cormen T, Leiserson C, Rivest R, Stein C (2011) Introduction to algorithm, 3rd edn. PHI Learning Private Limited
Deo N (1995) Graph theory with appliaction to Engineering and Computer Science. Prentice Hall India
Gill MK, Patwardhan GA (1981) A characterization of signed graphs which are switching equivalent to their line signed

graphs. J Math Phys Sci 7(4):567–571
Gill MK, Patwardhan GA (1983) A characterization of signed graphs which are switching equivalent to their iterated line

graphs. J Comb Inf Syst Sci 8:287–296
Golumbic MC (2004) Algorithmic graph theory and perfect graphs, 2nd edn
Harary F (1953) A characterization of balanced signed graphs. Mich Math J 2:143–146
Harary F (1969) Graph Theory. Addison-Wesley Publ. Comp, Reading
Harary F, Norman RZ, Cartwright DW (1965) Structural models: an introduction to the theory of directed graphs. Wiley

Inter Science Inc, New York
Harary F, Kabell JA (1980/81) A simple algorithm to detect balance in signed graphs. Math Soc Sci 1:131–136
Horowitz E, Sahni S (2004) Computer Algorithm. Galgotia Publications
Lehot PGH (1974) An optimal algorithm to detect a line graph and output its root graph. J Assoc Comput Mach

21(4):569–575
Sinha D (2005) New frontiers in the theory of signed graph, Ph.D. Thesis, University of Delhi (Faculty of Technology)
Sinha D, Acharya M (2015) Characterization of signed graphs whose iterated signed line graphs are balanced or

S-consistent. Bull Malays Math Sci Soc 28(1–2):31–34. doi:10.1007/s40840-015-0264-4
Sinha D, Sethi A (2015) An optimal algorithm to detect sign compatibility of a given sigraph. Nat Acad Sci Lett

38(3):235–238
Sinha D, Sethi A (2015) An algorithmic characterization of sigraphs whose common-edge sigraphs and second iterated

line sigraphs are switching equivalent. J Discrete Math Sci Cryptogr 18(5):581–603. doi:10.1080/09720529.2015679
Sinha D, Sethi A (2015) An algorithm to detect S-consistency in line sigraph. J Comb Inf Syst Sci (Accepted)
West DB (1996) Introduction to graph theory. Prentice-Hall of India Pvt. Ltd
Zaslavsky T (1981) Characterizations of signed graphs. J Graph Theory 5:401–406
Zaslavsky T (1982) Signed graphs. Discrete Appl Math 4(1):47–74

http://dx.doi.org/10.1007/s40840-015-0264-4
http://dx.doi.org/10.1080/09720529.2015679

	An Algorithm to detect balancing of iterated line sigraph
	Abstract
	Background
	Balanced iterated signed line graphs
	Numerical interpretation of above characterization
	Algorithm to detect balancing of iterated line sigraph
	Algorithm to convert a sigraph to its iterated line sigraph SigraphtoIteratedLinesigraph (vertex, n, k)
	Main algorithm

	Conclusion and scope
	System model
	Algorithms for system model
	Algorithm to detect a line sigraph and output its root sigraph

	Encoding chart
	Encryption algorithm
	Decryption algorithm
	Example

	Authors’ contributions
	References

