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Background
The manufacturing of tools and special equipments is an inevitable part of our modern 
society. When equipment fails, production falls instantaneously. To maintain produc-
tion, one has to keep tools/equipment available at all times, in order to run the systems. 
Since this can be expensive, availability and profit of an industrial system are becom-
ing increasingly important. Indeed, profit will increase when the availability of a system 
increases.

System reliability has also been one of the major factors in most of the system perfor-
mance-related studies. Though many researchers made meaningful contributions a lot 
in the field of system reliability modelling, fewer studies have reported the comparative 
analysis of different types of systems. Tuteja et al. (1991), Alidrisi (1992), Mokaddis et al. 
(1994), Pan (1997), Chandrasekhar et al. (2004) and Xu et al. (2005) analysed the reliabil-
ity and availability of standby systems by studying various parameter viz. partial failures, 
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perfect or imperfect switching, Erlangian repair time and three types of repair facilities. 
Taneja and Naveen (2003), Ke and Chu (2007), Wang and Chen (2009) and Yusuf (2014) 
compared two models considering different situations such as expert repairman, redun-
dant repairable system and switching failures. Zhang et  al. (2012) and Dessie (2014) 
studied the modeling of diesel system in locomotives and HIV/AIDS dynamic evolution.

The demand has been kept fixed in most of these studies systems. However, in some 
practical situations there may be fluctuation in demand, such as the General Cable 
Energy System, where demand of the product varies.

General cable energy system (Taneja and Malhotra 2013) is a cable manufacturing 
plant where different types of cables are produced. Two extruders of diameter 65 and 
120 mm are available which are put to operation on the basis of demand. Hence, vari-
ation in demand plays an important role in the functioning of such systems. Malhotra 
and Taneja (2013a, b) studied the cost-benefit analysis of a single unit system (Model 1) 
while introducing variation in demand. In this model, initially demand is greater than 
or equal to the production. If the operative unit ceases working, a repairman repairs the 
failed unit. If there is fall off in demand, the system moves to a state in which demand 
is less than the production. Moreover, if demand declines further, the system will be in 
a shut down state. Malhotra and Taneja (2015) compared two single units with varying 
demand. Malhotra and Taneja (2014) developed a model for a two- unit cold standby 
system, without considering a shut down state where both the units may become opera-
tive simultaneously depending upon the demand.

In practical situations however, out of the two units being studied (in two-unit cold 
standby systems), only one unit remains operative at a time and the other unit is kept 
standby. Standby unit works only when the first unit fails. Information of such systems 
was collected on visiting a cable manufacturing plant in H.P., India and the authors 
developed a new model (Model 2) in which besides studying the above behavior, a con-
cept of a new state generated was observed when there is no demand and system goes in 
shut down mode.

Depending on the situation, a model can be better or worse, therefore the compara-
tive study becomes more important. Taking this into consideration, comparison is done 
graphically between the concerned models (Models 1 and 2) by computing various 
measures of system effectiveness using Laplace transforms and software package Code-
Blocks 13.12.

Methods
The probabilistic analysis of the two models is analyzed by making use of semi-Markov 
processes and regenerative point technique.

Notations used for the description of models
Op	� Unit is in operative state
d ≥ p, d < p	� Demand is not less than production, demand is less than production
CS, D	� Unit is in cold standby state, down unit
Fr/Fw	� Failed unit is under repair/waiting for repair
FR	� Repair of failed unit continuing from previous state
λ, α	� Failure rate, repair rate of the operative unit
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γ1	� Rate of decrease of demand < production
γ2	� Rate of increase of demand ≥ production
γ3	� Rate of going from upstate to downstate
γ4, β1	� Rate of reaching the state of no demand from some demand in Model 1, 

Model 2
p1	� Probability that during the repair time demand ≥ production
p2	� Probability that during the repair time demand < production
фi(t)	� c.d.f. of first passage time from regenerative state i to a failed state
ADi, APi	� Availability that the system is in upstate when demand ≥ production and 

when demand < production for each Model i where i = 1, 2
Bi	� Busy period analysis of the repairman for each Model i where i = 1, 2
Vi	� Expected number of visits of repairman for each Model i where i = 1, 2
DTi	� Expected down time for each Model i where i = 1,2
P1	� Profit incurred to the system for Model 1
NP2	� Net profit [total profit incurred in Model 2—installation cost for addi-

tion unit (ICA)]
μi	� Mean sojourn time in regenerative state i before transiting to any other 

state
*	� Symbol for Laplace transforms
**	� Symbol for Laplace Stieltjes transforms
qij(t), Qij(t),	� p.d.f and c.d.f of first passage time from a regenerative state i to a regen-

erative state j or to a failed state j without visiting any other regenerative 
state in (0, t]

g(t), G(t)	� p.d.f. and c.d.f. of repair time for the unit

Description of Model 2

The transition diagram shows the various states of the system in Fig. 1. In this diagram, 
S0, S1, S2, S6 and S8 are regenerative states. S3, S7 and S9 are non-regenerative states. 
States S4 and S5 are failed states.

In Model 2  (Fig.  2), initially (state S0) demand is not less than the production and 
one of the units is operative while the other is kept as cold standby. If the operative 
unit stops working, repairman repairs the failed unit and standby unit becomes opera-
tive instantaneously (state S1). When both the units are not working i.e. one is under 
repair and other is waiting to be repaired, the system will stay in the failed state S4. If 
demand gets decreased, system goes to state S2. After this state, three possibilities are 
there: (1) if demand gets increased, system goes back to state S0, (2) if demand further 
gets decreased, system goes to down state S8 and (3) if demand remains constant but 
operative unit fails, system goes to state S6. It moves to state S7 as the demand increased 
and failed unit is being repaired. From state S3 four possibilities are there (1) if failed 
unit gets repaired, then system moves to state S2, (2) if other unit also gets failed, sys-
tem moves to state S5 (one unit is under repair and other is waiting to get repaired, (3) 
if demand gets increased, system goes back to state S1 and (4) if demand gets decreased 
further, system put to shut down state S9.

Model 2 differs from the model presented in Fig. 3 (Malhotra and Taneja 2014) because 
the earlier paper did not include the case of shut down on very less or no demand. Also, 
in the earlier paper, the two units may become operative simultaneously when the 
demand is very high leading to increase in the failure rate of the system as compared 
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to Model 2 but on the other hand high demand is met sooner in the earlier model. So, 
a comparative study between these two models is also reported here in the conclusion 
revealing which and when one model is better than the other.

Various assumptions for the Model 2 are as follows:

1.	 The units are similar and statistically independent.
2.	 Once the down state is reached, system will not be operative till all the units become 

operable, irrespective of the nature of demand.
3.	 A single repair facility is available. Each unit is new after repair.
4.	 All the random variables are independent. Switching is perfect and instantaneous.
5.	 Each unit is assumed to have an exponential distribution of the time to failure while 

the distribution of repair time is taken as arbitrary.

Measures of system effectiveness of Model 2

Using semi-Markov processes and regenerative point technique, various recursive rela-
tions are solved and measures of system effectiveness for Model 2 are evaluated. From 
transition probabilities qij, the steady state probabilities pij of reaching different states and 
mean sojourn times have also been computed. The non-zero elements pij obtained as

(1)pij = lim
s→0

q∗
ij
(s)

Fig. 1  Transition state diagram of Model 1
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To determine the mean time to system failure (MTSF) of the system, we regard the 
failed states as absorbing states. By probabilistic arguments, we obtain the following 
recursive relations for фi (t) where i = 0, 1, 2, 6, 8:

φ0(t) = Q01(t) � φ0(t)+ Q02(t) � φ0(t)

φ1(t) = Q10(t) � φ0(t)+ Q3
11(t) � φ1(t)+ Q3

12
(t) � φ2(t)

+ Q
(3,9)
18 (t) � φ8(t)+ Q3

15(t)+ Q14(t)

φ2(t) = Q20(t) � φ0(t)+ Q26(t) � φ6(t)+ Q28(t) � φ8(t)

φ6(t) = Q7
60
(t) � φ0(t)+ Q

(7,3)
61 (t) � φ1(t)+ Q62(t) � φ2(t)+ Q

(7,3)
62 (t) � φ2(t)

+ Q
(7,3,9)
68 (t) � φ8(t)+ Q(7,3)

65
(t) � Q7

64(t)+ Q62(t)

Fig. 2  Transition state diagram of Model 2
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Taking Laplace–Steltjes Transform (L.S.T.) of these relations and solving them for 
φ∗∗
0 (s), we obtain

The reliability R(t) of the system at time t is given as

Now, the mean time to system failure (MTSF) when the system starts from the state ‘0’ is

Using L’ Hospital rule and putting the value of φ∗∗
0 (s) from Eq. (2), we have

φ8(t) = Q80(t) � φ0(t)

(2)φ∗∗

0 (s) =
N (s)

D(s)

(3)R(t) = Inverse Laplace transform of
1− φ∗∗

0 (s)

s

(4)MTSF =

∞
∫

0

R(t)dt = lim
s→0

R∗(s)

(5)MTSF (M2) = N/D

Fig. 3  Transition state diagram of Model 3
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where

Letting AD2(t) as the probability that the system is in upstate when demand is not less 
than production at instant t given that it entered the state i at time t. AP2(t) as the prob-
ability that the system is in upstate when demand is less than production at time t. B2(t) 
as the probability that the repairman is busy to repair the failed unit at instant t given 
that it entered the regenerative state i at any time t. V2(t) as the expected number of vis-
its by the server in (0, t] given that the system entered the regenerative state i. DT2(t) as 
the probability that the system is in down state at instant t given that the system entered 
regenerative state i at any time t.

These measures of system effectiveness (AD2, AP2, B2, V2, DT2) have been obtained, 
in steady state, by using the probabilistic arguments in the similar fashion as shown for 
MTSF except the fact that here the failed state is not considered as the absorbing state. 
For more elaboration of these measures, Malhotra and Taneja (2014) may be referred to.

Expected total profit =  Expected total revenue −  expected total cost is, therefore, 
given by

where AD2 =
N1
D2

, AP2 =
N2
D2

, B2 =
N3
D2

, V2 =
N4
D2

, DT2 =
N5
D2

.

N = µ0

((

1− p311

)(

1− p26

(

p62 + p
(7,3)
62

))

− p26p
3
12p

(7,3)
61

)

+ µ1

(

p01 + p
(7,3)
61

p26

− p01p26

(

p62 + p
(7,3)
61

+ p
(7,3)
62

))

+

(

p01p
3
12 + p02

(

1− p311

))

(µ2 + p26µ6

+

(

p26

(

p968 + p
(7,3,9)
68

+ p28

)

µ8

)

+ p
(3,9)
18

(

p01

(

1− p26

(

p62 + p
(7,3)
62

))

− p26p02p
(7,3)
61

)

µ8

D = −

(

p26

(

p968 + p
(7,3,9)
68

+ p28

)(

p01p
3
12 + p02

(

1− p311

))

− p
(3,9)
18

(

p01

(

1− p26

(
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))
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p312
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+

(

1− p311

)

(

−p26p02p
7
60 − p02p20 + 1
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− p01p10 − p01p20p
3
12

)

(6)

Thus, Expected total revenue

= (Revenue/time when d ≥ p (C0)) ∗ steady state availability (AD2)

+ (revenue/time when d < p (C1)) ∗ steady state availability (AP2)

= C0 ∗ AD2+ C1 ∗ AP2

(7)

Expected total cost

= (Cost (C2)/time for engaging the repairman for repair) ∗ busy Period (B2)

+ (cost (C3)per visit of the repairman) ∗ expected number of visits (V2)

+ (loss (C4)/time during system remains down) ∗ expected down time (DT2)

= C2 ∗ B2+ C3 ∗ V2+ C4 ∗ DT2

(8)Profit (NP2) = (C0 ∗ AD2+ C1 ∗ AP2)− (C2 ∗ B2+ C3 ∗ V2+ C4 ∗ DT2)

(9)
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(
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))

+

(

γ1

(β1 + γ2 − γ1)
(µ1 − µ6)+ µ1

)
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(10)

N2 = µ2

((

p02
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3
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where
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g ∗ (�+ γ1)− g ∗ (�+ β1 + γ2)
)

(20)p411 = �

(

1− g ∗ (�+ γ1)

(�+ γ1)

)

(21)

p
(3,5,4)
1,1 = �γ1γ2









1

γ2(�+ γ1)(�+ β1 + γ2)
+

g ∗ (�+ γ1)

(β1 + γ2 − γ1)(�+ γ1)(�+ γ1γ2)
+

g ∗ (�+ β1 + γ2)

(�+ β1 + γ2)(β1 + γ2 − γ1)(�+ β1)
−

g ∗ (γ2)

γ2(�+ β1)(�+ γ1 − γ2)









(22)p513 =
�γ1

(β1 + γ2 − γ1)

(

−

(

1− g ∗ (�+ β1 + γ2)
)

(�+ β1 + γ2)
+

(

1− g ∗ (�+ γ1)
)

(�+ γ1)

)

(23)

p
(3,5)
16

= �γ1

(

g ∗ (�+ β1 + γ2)

(β1 + γ2 − γ1)(�+ β1)
+

g ∗ (γ2)

(�+ γ1 − γ2)(�+ β1)
−

g ∗ (�+ γ1)

(β1 + γ2 − γ1)(�+ γ1 − γ2)

)
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(24)

p
(3,9)
18

= β1γ1

(

1

(�+ β1 + γ2)(�+ γ1)
+

g ∗ (�+ β1 + γ2)

(β1 + γ2 − γ1)(�+ β1 + γ2)
−

g ∗ (�+ γ1)

(β1 + γ2 − γ1)(�+ γ1)

)

(25)p14 = �

(

1− g ∗ (�+ γ1)

(�+ γ1)

)

(26)p20 =
γ2

(�+ β1 + γ2)

(27)p26 =
�

(�+ β1 + γ2)

(28)p28 =
β1

(�+ β1 + γ2)

(29)p760 =
γ2

(β1 + γ2 − γ1)
(g ∗ (�+ γ1)− g ∗ (�+ β1 + γ2))

(30)p
(5,4)
61 = �γ2

(

1

(�+ β1 + γ2)γ2
−

g ∗ (γ2)

γ2(�+ β1)
+

g ∗ (�+ β1 + γ2)

(�+ β1 + γ2)(�+ β1)

)

(31)

p
(7,3)
61 = γ 2

2 γ1









1

(�+ β1 + γ2)2(�+ γ1)
+

g ∗ (�+ β1 + γ2)(2β1 + 2γ2 + �− γ1)

(β1 + γ2 − γ1)
2(�+ β1 + γ2)2

−
g ∗′ (�+ β1 + γ2)

(β1 + γ2 − γ1)(�+ β1 + γ2)
−

g ∗ (�+ γ1)

(β1 + γ2 − γ1)
2(�+ γ1)









(32)p
(7,4)
61 = �γ2









1

(�+ β1 + γ2)(�+ γ1)
+

g ∗ (�+ β1 + γ2)

(β1 + γ2 − γ1)(�+ β1 + γ2)

−
g ∗ (�+ γ1)

(β1 + γ2 − γ1)(�+ γ1)









(33)

p
(7,3,5,4)
61 = �γ 2

2 γ1

(

1

γ2(�+ β1 + γ2)2(�+ γ1)
−

g ∗ (γ2)

γ2(�+ γ1 − γ2)(�+ β1)2

+
g ∗ (�+ γ1)

(β1 + γ2 − γ1)
2(�+ γ1)(�+ γ1 − γ2)

+ g ∗ (�+ β1 + γ2)

×

(

−1

γ2(�+ β1 + γ2)2(�+ γ1)
+

1

γ2(�+ β1)2(�+ γ1 − γ2)

−
1

(β1 + γ2 − γ1)
2(�+ γ1)(�+ γ1 − γ2)

)

−
g ∗′ (�+ β1 + γ2)

(β1 + γ2 − γ1)(�+ β1 + γ2)(�+ β1)

)

(34)p62 = g ∗ (�+ β1 + γ2)
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Results and discussion
Numerous graphs have been plotted for the availability and the profit with respect to 
rates/revenue per unit up time for different values of rates/costs. The values of other 
parameters are given in Table  1. The following interpretations can be made from the 
graphs.

It has been observed that the MTSF for the Model 2 is greater than that of Model 1 
irrespective of the values of failure rate (λ). However, availability of one may be greater 
or lesser than that of the other depending upon the values of λ as discussed below.

(35)p
(7,3)
62 = γ2γ1

(

−
g ∗ (�+ β1 + γ2)

(β1 + γ2 − γ1)
2

+
g ∗′ (�+ β1 + γ2)

(β1 + γ2 − γ1)
+

g ∗ (�+ γ1)

(β1 + γ2 − γ1)
2

)

(36)p764 =
�γ2

(β1 + γ2 − γ1)

(

−
1− g ∗ (�+ β1 + γ2)

(�+ β1 + γ2)
+

1− g ∗ (�+ γ1)

(�+ γ1)

)

(37)p65 = �

(

1− g ∗ (�+ β1 + γ2)

(�+ β1 + γ2)

)

(38)p
(7,3)
65 = �γ2γ1









1

(�+ β1 + γ2)2(�+ γ1)
+

g ∗ (�+ β1 + γ2)(2β1 + 2γ2 + �− γ1)

(β1 + γ2 − γ1)
2(�+ β1 + γ2)2

−
g ∗′ (�+ β1 + γ2)

(β1 + γ2 − γ1)(�+ β1 + γ2)
−

g ∗ (�+ γ1)

(β1 + γ2 − γ1)
2(�+ γ1)









(39)p566 =
�

(�+ β1)

(

g ∗ (γ2)− g ∗ (�+ β1 + γ2)
)

(40)

p
(7,3,5)
66

= �γ2γ1











g ∗ (�+ β1 + γ2)

(�− γ2 + γ1)

�

1

(β1 + γ2 − γ1)
2
−

1

(�+ β1)2

�

−
g ∗′ (�+ β1 + γ2)

(β1 + γ2 − γ1)(�+ β1)

−
g ∗ (�+ γ1)

(β1 + γ2 − γ1)
2(�+ γ1 − γ2)

+
g ∗ (γ2)

(β1 + �)2(�+ γ1 − γ2)











(41)p968 =
β1

(�+ β1 + γ2)
(1− g ∗ (�+ β1 + γ2))

(42)

p
(7,3,9)
68

= β1γ2γ1











g ∗ (�+ β1 + γ2)

(�+ γ1)

�

1

(β1 + γ2 − γ1)
2
−

1

(�+ β1)2

�

−
g ∗′ (�+ β1 + γ2)

(β1 + γ2 − γ1)(�+ β1 + γ2)

−
g ∗ (�+ γ1)

(β1 + γ2 − γ1)
2(�+ γ1)

+
1

(β1 + �+ γ2)
2(�+ γ1)











(43)p80 = 1

(44)
µ0 =

1

(�+ γ1)
, µ1 =

1

(�+ γ1)
(1− g ∗ (�+ γ1)), µ2 =

1

(�+ β1 + γ2)
,

µ6 =

(

1− g∗(�+ β1 + γ2)
)

(�+ β1 + γ2)
, µ8 =

1

γ2
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Figure 4 depicts the behaviour of the availabilities (AD1, AD2) when demand is not 
less than the production with respect to the failure rate (λ). It can be interpreted from 
the graph that AD2 is < or = or >AD1 according as λ> or = or <0.3903.

Table 1  Comparison table

Figure  
no.

Fixed  
parameter

Comparison 
with respect to

Which model is better (according to different situa-
tions)

Model 1 is  
better if

Model 2 is  
better if

Both the models 
are equally good

4 γ1 = 0.008/hr, 
γ2 = 0.235/hr, 
γ3 = 0.353/hr, 
γ4 = 0.4213/
hr, α = 0.05/
hr, β1 = 0.002/
hr, p1 = 0.665, 
p2 = 0.335, 
C2 = INR 500, 
C1 = INR 700, 
C3 = INR 400, 
ICA = INR 500, 
λ = 0.003/hr

Availability (AD) 
when d ≥ p

λ > 0.3903 λ < 0.3903 λ = 0.3903

5 Profit

C4 = 100 C0 < 728.173 C0 > 728.173 C0 = 728.173

C4 = 600 C0 < 574.291 C0 > 574.291 C0 = 574.291

C4 = 1100 C0 < 352.178 C0 > 352.178 C0 = 352.178

6 λ = 0.003/hr, 
α = 0.05/hr, 
γ1 = 0.008/
hr, γ2 = 0.23/
hr, γ3 = 0.353/
hr, γ4 = 0.4213/
hr, β1 = 0.002/
hr, p1 = 0.665, 
p2 = 0.335, 
C0 = INR 7000, 
C1 = INR 700, 
C4 = INR 400, 
ICA = INR 500

Profit

C3 = 200 C2 > 574.248 C2 < 574.248 C2 = 574.248

C3 = 10,200 C2 > 478.789 C2 < 478.789 C2 = 478.789

C3 = 20,200 C2 > 391.432 C2 < 391.432 C2 = 391.432

7 λ = 0.003/hr, 
α = 0.05/hr, 
γ2 = 0.235/hr, 
γ3 = 0.353/hr, 
γ4 = 0.4213/
hr, β1 = 0.002/
hr, p1 = 0.665, 
p2 = 0.335, 
C2 = INR 500, 
C0 = INR 7000, 
C3 = INR 400, 
C4 = INR 400, 
ICA = INR 500, 
γ1 = 0.008/hr

Profit C1 < 202.594 C1 > 202.594 C1 = 202.594

8 λ = 0.003/hr, 
α = 0.05/hr, 
γ1 = 0.008/
hr, γ2 = 0.235/
hr, γ3 = 0.353/
hr, γ4 = 0.4213/
hr, β1 = 0.002/
hr, p1 = 0.665, 
p2 = 0.335, 
C2 = INR 500, 
C0 = INR 7000, 
C3 = INR 400, 
C4 = INR 400, 
C1 = INR 700

Profit ICA > 1632.46 ICA < 1632.46 ICA = 1632.46
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So far as the behaviour of the availabilities (AP1, AP2) when demand is less than the 
production with respect to the failure rate (λ) is concerned, it has been observed that 
Model 1 is better than that of Model 2, whatever the values of λ may be.

Figure 5 depicts the behaviour of the differences of profits (P1-NP2) with respect to 
revenue (C0) per unit up time for different values of loss (C4) per unit time during the 
system remains down. It can be seen that this difference decreases with increase in the 
values of C0 and has lower values for higher C4.

Figure 6 depicts the behaviour of the differences of profits (P1-NP2) with respect to 
cost (C2) for different values of cost (C3). It can be seen that this difference increases with 
increase in the values of C2 and has higher values for higher C3.

Figure  7 depicts the behaviour of profits (P1, NP2) with respect to revenue (C1) 
per unit up time. It is clear from the graph that NP2>  or =  or  <P1 according as C1 
is > or = or <202.594.

Figure  8 depicts the behaviour of profits (P1, NP2) with respect to installation cost 
(ICA) for additional unit. It is clear from the graph that NP2> or = or <P1 according as 
ICA is < or = or > 1632.46.
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Fig. 4  Availabilities (AD1, AD2) when demand ≥ production versus failure rate (λ)
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Comparative analysis between Model 2 and the Model discussed in Malhotra and Taneja 

(2014)

Here, we wish to report the comparison between the Model 2 and that discussed in Mal-
hotra and Taneja (2014) also as under:
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Fig. 7  Profits (P1, NP2) versus revenue (C1) per unit up time
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Fig. 8  Profits (P1, NP2) versus Installation cost for additional unit (ICA)
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1.	 MTSF in case of Model 2 is greater than that of the earlier paper, irrespective of the 
value of λ. However, availability in case of the former is greater or lesser than that the 
latter according as the demand is lesser or greater than production.

2.	 So far as the profit of the system is concerned, Model 2 is better or worse than that 
discussed in Malhotra and Taneja (2014) according as the value of revenue per unit 
up time is lesser or greater than that at cut-off point as shown in Fig. 9.

3.	 Behaviour of the profit with respect to loss per unit down time reveals that Model 
discussed in Malhotra and Taneja (2014) is better or worse than Model 2 if the loss 
per unit down time is greater or lesser than the value at cut-off point as shown in 
Fig. 10.
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Conclusion
The semi-Markov process is applied to show the comparison of two stochastic models of 
a cable manufacturing plant with varying demand. The comparison of systems is done by 
means of MTSF, steady state availabilities and profit function.

In the terms of availability (when demand is not less than production), Model 2 is 
more profitable than Model 1, provided the failure rate does not exceed the calculated 
cut-off value. It can also be observed that all the availabilities decrease with increase in 
the value of failure rate. The lower limits (cut-off points) for the revenue per unit up 
time (when demand is not less than the production; when demand is less than produc-
tion) for positive profit have been obtained, which may be quite useful for the system 
manufacturers/engineers/system analysts to check which model is best. Cut-off points 
for cost of engaging the repairman for repair and installation cost for additional unit has 
also been obtained. If these costs exceed corresponding cut-off values, Model 1 should 
be preferred.

Thus cut-off points on taking various numerical values for different parameters (rates/
costs) prove to be helpful in taking important decisions so far as the reliability and the 
profitability of the system is concerned. These also help to conclude that which model 
gives more profit as compared to other under favourable conditions.

Which and when one model is better than the other has been presented in the Table 1.
The comparison between Model 2 and the model discussed in Malhotra and Taneja 

(2014) also reveals that none of these is always better than the other. One is better than 
the other for some values of failure rate/loss/revenue and worse for other values of these 
parameters.
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