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article tions mediated unwillingness of various information providers towards the reliability

protection of data from disclosure often results utter rejection in data sharing or
incorrect information sharing. This article provides a panoramic overview on new per-
spective and systematic interpretation of a list published literatures via their meticu-
lous organization in subcategories. The fundamental notions of the existing privacy
preserving data mining methods, their merits, and shortcomings are presented. The
current privacy preserving data mining techniques are classified based on distortion,
association rule, hide association rule, taxonomy, clustering, associative classification,
outsourced data mining, distributed, and k-anonymity, where their notable advantages
and disadvantages are emphasized. This careful scrutiny reveals the past development,
present research challenges, future trends, the gaps and weaknesses. Further signifi-
cant enhancements for more robust privacy protection and preservation are affirmed
to be mandatory.
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Background

Supreme cyberspace protection against internet phishing became a necessity. The intim-
idation imposed via ever-increasing phishing attacks with advanced deceptions created
a new challenge in terms of mitigation. Lately, internet phishing caused significant secu-
rity and economic concerns on the users and enterprises worldwide. Diversified com-
munication channels via internet services such as electronic commerce, online-banking,
research, and online trade exploiting both human and software vulnerabilities suffered
from tremendous financial loss. Therefore, enhanced privacy preserving data mining
methods are ever-demanding for secured and reliable information exchange over the
internet. The dramatic increase of storing customers’ personal data led to an enhanced
complexity of data mining algorithm with significant impact on the information sharing.
Amongst several existing algorithm, the Privacy Preserving Data Mining (PPDM) ren-
ders excellent results related to inner perception of privacy preservation and data min-
ing. Truly, the privacy must protect all the three mining aspects including association
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rules, classification, and clustering (Sachan et al. 2013). The problems faced in data min-
ing are widely deliberated in many communities such as the database, the statistical
disclosure control and the cryptography community (Nayak and Devi 2011). The emer-
gence new cloud computing technology allowed the business collaborators to share the
data and supply the information for the mutual benefits. All of these are related to the
cumulative capability to store users’ individual data together with the rising complex-
ity of data mining algorithms that affects the information exchange. Yet, the concepts,
utilization, categorization, and various attributes of PPDM in terms of its strength and
weakness are not methodically reviewed.

Currently, several privacy preservation methods for data mining are available. These
include K-anonymity, classification, clustering, association rule, distributed privacy pres-
ervation, L-diverse, randomization, taxonomy tree, condensation, and cryptographic
(Sachan et al. 2013). The PPDM methods protect the data by changing them to mask
or erase the original sensitive one to be concealed. Typically, they are based on the con-
cepts of privacy failure, the capacity to determine the original user data from the modi-
fied one, loss of information and estimation of the data accuracy loss (Xu and Yi 2011).
The basic purpose of these approaches is to render a trade-off among accuracy and pri-
vacy. Other approaches that employ cryptographic techniques to prevent information
leakage are computationally very expensive (Ciriani et al. 2008). Conversely, PPDMs use
data distribution and horizontally or vertically distributed partitioning through multiple
entities.

Sometimes the individuals are reluctant to share the entire data set and may wish to
block the information using varieties of protocols. The main rationale for implement-
ing such techniques is to maintain individuals’ privacy while deriving collective results
over the entire data (Aggarwal and Yu 2008). Despite much research a method with sat-
isfactory privacy settings are far from being achieved. It is essential to protect the data
information before it gets distributed to multi-cloud providers. To protect the privacy,
clients’ information must be identified prior to sharing with those unknown users not
directly allowed to access the relevant data. This can be achieved by deleting from the
dataset the unique identity fields such as name and passport number. Despite this infor-
mation removal, there are still other types of information including date of birth, zip
code, gender, number of child, number of calls, and account numbers which can be used
for possible subjects’ identification. Intensified and extensively robust privacy preserva-
tion measures in data mining must be implemented to prevent such types of breaching.

This presentation underscores the significant development of privacy preserving data
mining methods, the future vision and fundamental insight. Several perspectives and
new elucidations on privacy preserving data mining approaches are rendered. Existing
literatures are systematically subcategorized to identify the strengths, gap, and weakness
of various approaches. The paper is organized as follows. “Privacy preserving data min-
ing” discusses in detail the requirement of privacy preserving data mining scheme in
the context of internet phishing mitigation. The notable advantages and disadvantages
of the existing methods are highlighted in “Shortcomings of PPDM methods”. This sec-
tion primarily focused on the creation of awareness and relevant action to be taken by all
relevant quarters to protect privacy in secured data transfer over the web. “Conclusion”
concludes the paper with further outlook in this field.
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Differential privacy model

Recently, differential privacy model is widely explored to render maximum security to
the private statistical databases by minimizing the chances of records identification.
There are several trusted party that holds a dataset of sensitive information such as med-
ical records, voter registration information, email usage, and tourism. The primary aim
is to providing global, statistical information about the data publicly available, while
protecting those users privacy whose information is contained in the dataset. The con-
cept of “indistinguishability” also called “differential privacy” signifies the “privacy” in
the context of statistical databases. Generally, data privacy is viewed as a characteristic
or annotation to data safety. Obviously, this view is incorrect because the objectives of
the two domains are opposite. Conversely, security protects the data against unauthor-
ized access when transmitted across a network. However, upon arriving to an authorized
user no additional constraints are imposed on the data security to revealing the personal
information of an individual. Thus, it is worth to determine the correlation between data
security and data privacy because the former is prerequisite of the latter.

Data must be protected at storage and the transmission must be made via data secu-
rity protocols. Moreover, in case data privacy is a goal, then some other steps must be
considered to protect individuals confidentiality embodied in the data. It is important to
describe the process of PPDM addresses in terms of data sharing and the results of data
mining operation between a number of users u,,...u,, with m > 2. The data is viewed as
a database of # records, each consisting of / fields, where each record represents an indi-
vidual #; and illustrates them through its fields. In a simplified representation a table T
contains rows to signify i,,...i, and columns that symbolizes the fields a,,...a;, Assuming
a fixed representation, each individual is represented by a vector of components a,...4,.
The most useful dimension in PPDM is the protected privacy embedded in 7; which an
attacker wants to acquire. The other practical dimension is the possessive data structure,
which belongs to one entity and need to be shared with another (m = 2). It may be built
from parts owned by different entities.

It is important to introduce some definitions to strengthen the PPDM concepts. Espe-
cially, an explicit identifier is an attribute that permits a direct connection of an instance
(arow in T) to a user i. For example, by identifying a cellular phone number or a driver’s
license number it may unambiguously connect the row in 7, where this explicit iden-
tifier to a person i is embedded. Conversely, a quasi-identifier being a set of individu-
als’ non-explicit attributes may also link a row in T to a specific person. For instance,
in the United States the quasi-identifier triplet <date of birth, 5 digit postal code, gen-
der> uniquely identifies 87 % of the nation’s population (Sweeney 2002). By combining
a public healthcare information dataset with a publicly available voters’ list and using
quasi-identifiers, Sweeney convinced that it is possible to mine the secret health records
of all state employees from a published dataset of the Massachusetts governor, where
only explicit identifiers is removed. Generally, the primary PPDM identity protection
methods that are drawn on simple ideas are known to people as they are abundantly
accessible in the literatures and films. These concepts are portrayed as “hiding in the
crowd” and “camouflage”. One of the “hiding in the crowd” approach to data privacy is
the k-anonymity. Actually, the k-anonymity method (Sweeney 2002; Nergiz et al. 2009)
modifies the original data T to obtain 7" such that for any quasi-identifier ¢ that can
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be built from attributes of T there are at least k instances in 7’ so that q matches these

instances. Moreover, datasets require generalization to satisfy k-anonymity.

Privacy preserving data mining

Recently, the relevance of privacy-preserving data mining techniques is thoroughly ana-
lyzed and discussed by Matwin (2013). Utilization of specific methods revealed their
ability to preventing the discriminatory use of data mining. Some methods suggested
that any stigmatized group must not be targeted more on generalization of data than
the general population. Vatsalan et al. (2013) reviewed the technique called ‘Privacy-
Preserving Record Linkage’ (PPRL), which allowed the linkage of databases to organiza-
tions by protecting the privacy. Thus, a PPRL methods based taxonomy is proposed to
analyse them in 15 dimensions. Qi and Zong (2012) overviewed several available tech-
niques of data mining for the privacy protection depending on data distribution, dis-
tortion, mining algorithms, and data or rules hiding. Regarding data distribution, only
few algorithms are currently used for privacy protection data mining on centralized and
distributed data. Raju et al. (2009) acknowledged the need to add or to multiply the pro-
tocol based homomorphic encryption along with the existing concept of digital envelope
technique in obtaining collaborative data mining while keeping the private data intact
among the mutual parties. The proposed technique exhibited considerable influence on
different applications.

Malina and Hajny (2013) and Sachan et al. (2013) analysed the current privacy pre-
serving solutions for cloud services, where the solution is outlined based on advanced
cryptographic components. The solution offered the anonymous access, the unlink
ability and the retention of confidentiality of transmitted data. Finally, this solution is
implemented, the experimental results are obtained and the performance is compared.
Mukkamala and Ashok (2011) compared a set of fuzzy-based mapping methods in the
context of privacy-preserving characteristics and the capability to maintain the same
connection with other fields. This comparison is subjected to: (1) the four front modi-
fication of the fuzzy function definition, (2) the introduction of the seven ways to join
different functional values of a particular data item to a single value, (3) the utilization of
several similarity metrics for the comparison of the original data and mapped data, and
(4) the evaluation of the influence of mapping on the derived association rule.

Data distortion dependent PPDM

Kamakshi (2012) proposed a novel idea to dynamically identify the sensitive attributes
of PPDM. Identification of these attributes depends on the threshold limit of sensitivity
of each characteristic. It is observed that the data owner modified the value under iden-
tified sensitive attributes using swapping technique to protect the privacy of sensitive
information. The data is modified in such a manner that the original properties of the
data remain unchanged. Despite the novelty it remains time expensive. Subsequently,
Zhang et al. (2012a) introduced a newly enhanced historical probability based noise
generation strategy called HPNGS. The simulation results confirmed that the HPNGS
is capable in reducing the number of noise requirements over its random complement
as much as 90 %. Later, they focused on the privacy protection and noise obfuscation

in cloud computing (Zhang et al. 2012b). Consequently, a novel association probability
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based noise generation strategy (APNGS) is developed. The analysis confirmed that the
proposed APNGS significantly improved the privacy protection on noise obfuscation
involving association probabilities at a reasonable extra cost than standard representa-
tive strategies.

Li et al. (2009a) presented a low-cost and less risky anonymous perturbation technique
via homomorphism encryption and anonymous exchange. The proposed technique dis-
played robustness for optimized parameters. It is complex, loss in utility of data. Kam-
akshi and Babu (2010) introduced three models including clients, data centres, and
database in every site. The data centre is completely passive, so that the clients and the
site database role appear exchangeable. Islam and Brankovic (2011) proposed an archi-
tecture involving different novel techniques that affected all the attributes in the data-
base. Experimental findings showed that the proposed architecture is very efficient in
preserving the original patterns in a perturbed dataset. Wang and Lee (2008) introduced
a technique to prevent Forward-Inference Attacks, in the sanitized data (implies original
data) created by the sanitization.

Association rule based PPDM

An improved distortion technique for privacy preserving frequent item-set mining is
proposed by Shrivastava et al. (2011), where two probability parameters (fp and nfp) are
employed. Better accuracy is achieved in the presence of a minor reduction in the pri-
vacy by tuning these two parameters. Furthermore, this algorithm produced the opti-
mum results when the fraction of frequent items among all the available items is less.
PPDM is used in various fields for its enhanced efficiency and security. Presently, it is
facing a rule mining challenge. Vijayarani et al. (2010a) explained the techniques of sta-
tistical disclosure control community, the database community, and the cryptography
community. Less utility of data requires high cost. Aggarwal and Yu (2008) emphasized
two significant factors involving the association rule mining such as confidence and sup-
port. For an association rule X => Y, the support is the percentage of transactions in
the dataset which includes X U Y. The confidence (also called strength) of an associa-
tion rule X => Y is the ratio of the transactions number by X. Furthermore, Belwal et al.
(2013) reduced the basis of support and confidence of sensitive rules without modifying
directly the given database. However, alteration can indirectly be performed via newly
incorporating parameters associated to database transactions and association rules. New
additions include M support (modified support), M confidence (modified confidence)
and Hiding counter. The algorithm utilized the definition of support and confidence.
Thus, it hided the required sensitive association rule without any side effect. However, it
can hide only the rules for single sensitive item on the LHS.

Jain et al. (2011) developed a new algorithm to enhance and reduce the support of the
LHS and RHS rule item to hide or secure the association rules. The proposed algorithm
is found to be advantageous as it made minimum modification to the data entries to hide
a set of rules with lesser CPU time than the previous work. It is limited to association
rule only. Naeem et al. (2010) proposed an architecture which screened the restricted
association rules with complete removal of the known side effects such as the genera-
tion of unwanted, non-genuine association rules while yielding no ‘hiding’ failure. In this

architecture, standard statistical measures are used instead of conventional framework
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of support and confidence to create association rules, particularly weighing procedure
based on central tendency. Li and Liu (2009) introduced an association rule mining
algorithm for privacy preserving known as DDIL. The proposed algorithm is based on
inquiry limitation and data disturbance. The original data can be hidden or disturbed by
using DDIL algorithm to improve the privacy efficiently. This is an effective technique to
generating frequent items from transformed data. Experimental results displayed that
the proposed technique is efficient to generating acceptable values of privacy balance
with suitable selection of random parameters.

Hide association rule based PPDM

Fast Hiding Sensitive Association Rules (FHSAR) algorithm is introduced by Weng et al.
(2008). This secured the SAR with fewer side effects, where a strategy is established to
avoid hidden failures. Besides, two heuristic techniques are developed to improve the
efficiency of the system to solve the problems. The heuristic function is further utilized
to determine the earlier weight for each particular transaction so that the order of modi-
fied transactions can be decided efficiently. Consequently, the connection between the
sensitive association rules and each transaction in the original database are analyzed
by successfully choosing the suitable item for modification. The efficient sanitization of
sensitive information for updated database need to be studied. Dehkordi et al. (2009)
presented a new multi-objective technique to hide the sensitive association rules and to
enhance the security of database. In fact, this maintained the utility and of mined rules
at efficient level. The proposed algorithm is based on genetic algorithm (GA) concept,
where the privacy and accuracy of dataset are enhanced. Gkoulalas-Divanis and Very-
kios (2009) developed an exact border-based technique to obtain an optimal solution to
hide sensitive frequent item sets with minimum extension of the original database gen-
erated synthetically via the database extension. This is accomplished via the following:
(1) by formulating the generation of the database extension as a constraint satisfaction
problem, (2) using mapping of the constraint satisfaction issues to an equivalent binary
integer programming problem, (3) via the manipulation of underutilized synthetic trans-
actions to increase the support of non-sensitive item sets, (4) employing the minimally
relaxing constraint satisfaction problem to offer an approximate solution close to the
optimal one when an ideal solution does not exist, and (5) by partitioning the universe of
the items to enhance the efficiency of the proposed hiding algorithm.

Li et al. (2009b) proposed a new algorithm to sanitize a transactional database. This is
item-set oriented, where the support of large item-sets are considerably reduced below
the threshold defined by the client. Thus, no rules can be obtained from the specific
item-sets. A new technique is also introduced to select the items that required removal
from the dataset to avoid the detection of a set of rules. The main limitations are associ-
ated with the selection of victim-items without affecting the non-sensitive patterns when
the sanitization of 3rd and the 4th sensitive transactions are defined. Kasthuri and Mey-
yappan (2013) presented a new technique to identify the sensitive items by hiding the
susceptible association rules. The proposed technique located the frequent item sets and
produced the association rules. Representative association rules concept is employed
to detect the sensitive items. Hiding the sensitive association rules using selected sensi-
tive items is worth looking. Quoc et al. (2013) have developed heuristic algorithm based
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on the intersection lattice of frequent item-sets to secure the set of sensitive association
rules employing distortion method. To reduce the side effects, the heuristic for confi-
dence and support reduction based on intersection lattice (HCSRIL) algorithm are used.
This specified the victim item and reduced the number of transactions by causing least
impact on item-sets variations in Gen(FI). In addition, Domadiya and Rao (2013) intro-
duced a heuristic based algorithm called Modified Decrease Support of RHS item of
Rule Clusters (MDSRRC) to secure the delicate association rules using multiple items
in consequent (RHS) and antecedent (LHS). This algorithm successfully addressed the
drawbacks of existing rule hiding DSRRC algorithm. Experimental findings revealed the
efficiency and capability of the proposed algorithm to maintaining the database qual-
ity. By minimizing the modifications on database the efficiency can be enhanced with
reduced side effects.

Classification based PPDM

Xiong et al. (2006) proposed a closet neighbour classification method based on SMC
techniques to resolve the privacy challenges in few stages including the pf selection of
the privacy preserving closet neighbour and the categorization of privacy preserving.
The proposed algorithm is balanced in terms of accuracy, performance, and privacy pro-
tection. Furthermore, it is adaptable to the various settings to fulfilling different optimi-
zation condition. Singh et al. (2010) provided a simple and efficient privacy preserving
classification for cloud data. Jaccard similarity measure is used to compute the near-
est neighbours for K-NN classification and the equality test is introduced to compute
it between two encrypted records. This approach facilitated a secured local neighbour
computation at each node in the cloud and classified the unseen records via weighted
K-NN classification scheme. It is significant to focus on enabling the robustness of the
presented approach so that generalization to multiple data mining tasks can be made,
where security and privacy are needed.

Baotou (2010) introduced an efficient algorithm based on random perturbation matrix
to protect privacy classification mining. It is applied on discrete data of character type,
Boolean type, classification type and number types. The experimental revealed the sig-
nificantly enhanced features of proposed algorithm in terms of privacy protection and
accuracy of mining computation, where the computation process is greatly simplified
but at higher cost. Vaidya et al. (2008) developed an approach for vertically partitioned
mining data. This technique could modify and extend a variety of data mining applica-
tions as decision trees. More efficient solutions are needed to find tight upper bound on
the complexity. Kantarcioglu and Vaidya (2003) emphasized the use of secure logarithm
and summation, where the distributed naive Bayes classifier are securely determined.
The experimental results strongly supported the concept of few useful protected proto-
cols that facilitated the secure deployment of different types of distributed data mining
algorithms. The classification of privacy preserving methods and standard algorithms
for each class is reviewed by Sathiyapriya and Sadasivam (2013), where the merits and
limitations of different methods are exemplified. The optimal sanitization is found to be
NP-Hard in the presence of privacy and accuracy trade-off.
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Clustering based PPDM

Yi and Zhang (2013) overviewed various earlier solutions to preserve privacy of distrib-
uted k-means clustering and provided a formal definition for equally contributed mul-
tiparty protocol. An equally contributed multiparty k-means clustering is applied on
vertically partitioned data, wherein each data site contributed k-means clustering evenly.
According to basic concept, data sites collaborated to encrypt k values (each associated
to a distance between the centre and point) with a common public key in each step of
clustering. Then, it securely compared k values and outputted the index of the minimum
without displaying the intermediate values. In some setting, this is practical and more
efficient than Vaidya—Clifton protocol (Vaidya et al. 2008).

Associative classification based PPDM

An associative classification model based on vertically partitioned datasets is introduced
by Raghuram and Gyani (2012). A scalar product based third party privacy preserv-
ing model is adopted to preserve the privacy for data sharing process between multiple
users. The accuracy of the presented method is authenticated on its VCI databases with
inspiring results. Lin and Lo (2013) presented a set of algorithms comprising of Equal
Working Set (EWS), Small Size Working Set (SSWS), Request on Demand (ROD) and
the Progressive Size Working Set (PSWS). This repeated mining offered a scalable, fast
and reliable service for different-tasks on computing environments. The presented algo-
rithms demonstrated an outstanding efficiency in terms of scalability and execution time
under different simulation conditions. Although CARM is a fast and scalable distrib-
uted algorithm in comparison with previous studies, the scalability is still limited. This
is because the HD-Mine used in CARM establishes the FP-tree in the main memory of
the trusted node. In the absence of any memory space to mine the conditional FP-tree
in the trusted node, the reconstructed conditional FP-tree is distributed to an available
computing node for mining. The trusted node must provide sufficient memory space for
the original FP-tree. Clearly, the scalability is restricted by the major memory size of the
trusted node.

Harnsamut and Natwichai (2008) developed a novel heuristic algorithm based on
Classification Correction Rate (CCR) of particular database to secure the privacy and
sustain the quality of data. The proposed algorithm is tested and the experimental
results are validated. The heuristic algorithm is found to be highly effective and efficient.
Seisungsittisunti and Natwichai 2011) highlighted the issues related to data transforma-
tion to protecting privacy for data mining technique and associative classification in an
incremental-data scenario. An incremental polynomial-time algorithm is proposed to
transform the data to maintain a privacy standard called k-anonymity. Quality can still
be maintained even under transformation when constructing an associative classifica-
tion model. Different experiments are performed to evaluate developed algorithm per-
formance and compared with non-incremental algorithm. It is established to be more
efficient in every problem setting. It is worth to examine the stored data in the distrib-

uted systems rather than a single repository.
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Privacy preserving outsourced data mining

Giannotti et al. (2013) explained the issues involving the outsourcing of association rule
mining task for a corporate privacy-preserving network. An attack model is developed
based on the background knowledge for privacy preserving outsourced mining. An
encryption scheme, known as Rob Frugal is proposed. This is based on 1-1 substitution
ciphers of items, which included the fake transactions to share each cipher item with the
same frequency as >k — 1 to the others. A compact synopsis of the fake transactions is
used for true support of mined patterns from which the server can be recovered effi-
ciently. It is demonstrated that the proposed scheme is robust against adversarial attack
which is based on the actual items and their exact support. This framework assumed
that the attacker is unaware of such information. Furthermore, any relaxation may break
our encryption scheme and bring privacy vulnerabilities. They investigated encryption
schemes that could resist such privacy vulnerabilities. The strategies for the improve-
ment of the RobFrugal algorithm to minimize the number of spurious patterns are also
explored.

Worku et al. (2014) enhanced efficiency of the above scheme by reducing the com-
putational intensive operations such as bilinear mapping. The scheme revealed secure
and efficient results after a detailed analysis on security performance. However, the data
block insertion made the proposed scheme non-dynamic. Thus, the development of a
fully dynamic and secure public auditing scheme remains an open challenge for a cloud
system. Arunadevi and Anuradha (2014) investigated the issues related to outsourcing
of frequent item-sets for a corporate privacy preserving architecture. An attack model
is introduced by considering that the attackers are fully aware of the items and support
of the item. In addition, even in the eventuality the attackers are totally conscious of
the details of the encryption algorithm and some pairs of item with the corresponding
cipher values. These basic assumptions remarkably improved the security of the system
and eliminated the item and item-set based attack as well as reduced the processing
time.

Lai et al. (2014) proposed the first semantically secured solution for outsourcing asso-
ciation rule mining with data privacy, mining privacy and soundness. These solutions
are non-deterministic and secured against an adversary at cloud servers. It is capable
to adaptively obtaining plaintext—cipher text pairs as required by semantic security. The
adversary may also insert false data into the data mining results. In comparison, adver-
sary models used in previous works on outsourcing association rule mining assumed
that the honesty of adversary/server but remained curious. It is not capable to obtain-
ing any plaintext—cipher text pairs in attacks. Consequently, the sub-situation mappings
based solutions are neither semantically secured nor ensured the soundness for the
data mining results. Kerschbaum and Julien (2008) presented a searchable encryption
scheme for outsource data analysis. In this scheme the client had to encrypt the data
only once and transmit the encrypted information to the data analyst. The data analyst
conducted a number of queries for required permission from the client to translate the
data contents in the queries. The proposed encryption schemes permitted the search of
keyword and range queries. The scheme also allowed queries to reprocess the output
of earlier queries as tokens to make dependent queries without interface. The proposed
scheme is found to be secured. There are many open questions in the area of search-able
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encryption. In case of outsourced data analytics, it is most interesting to combine the
efficiency improvements possible for range queries with the necessary security require-
ments via pairing-based cryptography.

Distributed method based PPDM
Ying-hua et al. (2011) surveyed the Distributed Privacy Preserving Data Mining
(DPPDM) depending on different underlying technologies. Existing techniques are
categorized into three groups such as (1) secure multi-party computation, (2) pertur-
bation and (3) restricted query. Li (2013) elucidated the advantages and drawbacks of
each method by developing and analyzing a symmetric-key based privacy-preserving
scheme to support mining counts. An incentive consideration is proposed to the study
the secure computation by presenting a reputation system in wireless network. The pro-
posed system offered an incentive for misbehaving nodes to behave properly. Experi-
mental results revealed the system effectiveness in detecting the misbehaving nodes and
enhancing the average throughput in the whole network. Furthermore, Dev et al. 2012)
acknowledged the privacy risks related to data mining on cloud system and presented a
distributed framework to remove such risks. The proposed approach involved classifica-
tion, disintegration, and distribution. This avoided the data mining by preserving the pri-
vacy levels, splitting the data into chunks and storing them into suitable cloud providers.
Though, the proposed system offered a suitable way to safe privacy from mining based
attacks, but it added a performance overhead as client accessed the data frequently. For
instance, client had to run a global data analysis for a complete dataset, where the analy-
sis required accessing the data through different locations with a degraded performance.
Tassa (2014) developed a protocol for secured mining of association rules in horizon-
tally distributed database. The proposed protocol possessed advantages over leading
protocols in terms of performance and security. It included two set of rules including
(1) a multi-party protocol to compute the union or intersection of private subsets pos-
sessed by each client and (2) a protocol to test the presence of an element held by client
in a subset held by another. Techniques based on Field and Row-Level distribution of
transactional data are proposed by Chan and Keng (2013). They presented a distributed
framework to preserve outsourcing association mining rules and explored the possibil-
ity of its deployment. Database information based on its characteristics is distinguished
for the distribution to multiple servers. Its privacy notions are examined from two sepa-
rate viewpoints such as distribution of support values and K-anonymity. The proposed
algorithms for allocating transactions to outsourced servers are based on the importance
of the types of privacy notion to a user. Dong and Kresman (2009) explained the rela-
tion between distributed data mining and prevention of indirect disclosure of private
data in privacy preserving algorithms, where two protocols are devised to avoid such
disclosures. The first one was a simple add-on to a protocol used for different applica-
tion, whereas the second one provided the suitability of collusion resistance and fewer
broadcasts. The simplicity of the proposed protocols enabled minimal requirements for
computation, easy data storage or data structures. Consequently, the notion of trust is
introduced and the performance of certain ID assignment protocols is addressed.
Aggarwal et al. (2005) discussed data encryption based methods, which caused a
large overhead in query processing. A new distributed framework is proposed to enable
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privacy-preservation for the outsourced storage of data. Different techniques are used
to decompose the data. It demonstrated improved queries when implemented in such
types of distributed system. A new definition for privacy is coined based on hiding sets
of attributes. It discussed the secured privacy achievement of the proposed decompo-
sition approaches and identified the best privacy-preserving decomposition technique.
Other future work includes identifying improved algorithms for decomposition, expand-
ing the scope of techniques available for decomposition (supporting replication, and
incorporation of these techniques into the query optimization framework). Xu and Yi
(2011) investigated the privacy-preserving distributed data mining that passed through
different stages and persisted. Taxonomy is proposed to endorse the standardization and
assessment of the protocols efficiency. This might be applied to categorize such PPDDM
protocols based on predefined dimensions. The dimensions included the data partition-
ing model, mining algorithms, privacy preservation methods and secured communica-
tion model. This area is prospective. Yet, the solution and evaluation work is still open
for further investigation.

Inan and Saygin (2010) presented a technique to assemble dissimilarity matrix for hor-
izontal distributed data mining. The comparison required all the record operations in
the form of pair for personal private datasets which are distributed horizontally to differ-
ent sites. This approach considered the data either in the form of character or numerical.
For these two different types of data sets, a number of comparison functions are made
available. However, as expected, ensuring privacy has its costs, considering the compari-
son against the baseline protocol where private data is shared with third parties. We used
the secured comparison protocols for clustering horizontally partitioned datasets. There
are various other application areas of these methods such as record linkage and outlier
detection problems Nanavati and Jinwala (2012) elaborated different approaches used
to find global and partial cycles in a distributed setup while keeping the privacy of the
particular parties secured in a co-operative setup. The interleaved algorithm is extended
and modified to determine global cycles in cyclic association rules privately. The pri-
vacy preservation techniques are recommended on the basis of homomorphic approach
and secret sharing. It is concluded that the approaches based on Shamir’s secret sharing
can be employed to detect the partial global cycles. However, few open research chal-
lenges including the application of these privacy preserving theories to other temporal
rule mining methods like calendric association rules and temporal predicate association
rules need to be addressed. Another research challenge also involves deciphering the
most efficient and accurate technique in this scenario by practically comparing the cost
for each method.

Agrawal and Srikant (2000) developed a uniform randomization method based asso-
ciation rule for the categorical datasets. In this approach, before sending a data to server,
the client is replaced each item by a new item which is originally absent in the data. The
substitution process of specific values from datasets with other values is called uniform
randomization. This is a generalization of the Warner’s “randomized response” tech-
nique. In other types of data reconstruction techniques the original data are put aside
and are initiated via sanitizing known as “knowledge base”. Thus, newly obtained data is
then reassembled based on the sanitized knowledge. The effectiveness of randomization
with reconstruction for categorical attributes is exemplified.
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Wang et al. (2010) proposed a modified algorithm called PPFDM and related computa-
tion technique based on the Frequent Data Mining (FDM) to preserve privacy. The pro-
cess involved the computation of total support count along with the privacy-preserved
technique while ensuring the local large item-set and local support count source is cov-
ered. Thus, the time needed for the communication is saved and secured the distributed
data privacy at each site. The experimental results demonstrated the effectiveness and
suitability of the method for practical application, especially in privacy preservation dur-
ing mining process.

Nguyen et al. (2012) presented an Enhanced M. Hussein et al’s Scheme (EMHS) for
secured privacy association rules mining, where horizontally distributed database is
used. EMHS (developed in 2008) is capable to modify the privacy and efficiency with
increasing number of sites. The efficiency of EMHS is discerned to be much better than
MHS, particularly for databases with increasing number of sites. A second approach is
also presented for the other types of datasets. It is important to solving the collusion
of Initiator and Combiner. Om Kumar et al. (2013) used WEKA to predict the patterns
in a single cloud. By using cloud data distributor with a secured distributed approach
they provided an effective solution that prevented such mining attacks on cloud. Thus, it
made the cloud a secured platform for service and storage.

Mokeddem and Belbachir (2010) proposed a distributed model to perform class-
association rules detection for shared-nothing framework. The solution of the proposed
model is one of the fastest known sequential algorithms (FP-growth) which is extended
to produce classification rules in a parallel setting. By using the proposed system, the
data replication is avoided on these sites with an option to communicate the required
information. These choices are evaluated by performing experimentations, which per-
mitted us to analyze several important aspects such as accuracy, scalability, speedup,
memory usage, communication, synchronization, and also the load balancing. Ibrahim
et al. (2012) developed a practical cryptographic model to calculate the KNN catego-
rization over the distributed cloud databases. Their experiments demonstrated similar
accuracy of the proposed as the naive scheme without security. It is believed that such
schemes may mitigate the users concerns and accelerate the paces towards the high
adoption of cloud computing. The extension of our secure classifier to work in the mali-
cious adversary security model will be reported elsewhere.

Patel et al. (2012) proposed an operative algorithm to protect the secrecy distributed
over K-Means cluster using Shamir’s secret sharing model. The proposed approach com-
puted the cluster mean collaboratively and prevented the role of trusted third party.
Upon comparison, it is observed that the proposed framework is orders of magnitude
faster as compared to oblivious polynomial evaluation and homomorphic encryp-
tion techniques in terms of computation cost and more reliable for huge databases. It
is essential to extend the proposed algorithm in vertical partitioning in the presence of
malicious adversary model. In addition, the results from a realistic distributed emula-
tion are worth looking. Kumbhar and Kharat (2012) analysed and compared different
techniques used for Privacy Preserving Association Rule Mining (PPARM). The algo-
rithm based on cryptography techniques, Homomorphic encryption, Secure Scalar
product and Shamir’s secret sharing technique are employed to satisfy the privacy con-
straints for vertically partitioned dataset. However, for horizontally partitioned dataset
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the algorithm with the combination of RSA public key cryptosystem and Homomorphic
encryption scheme are used. Paillier cryptosystem is employed to determine the global
supports. In practice, while calculating c.count collaboratively, participant may deviate
from algorithm and lead malicious behaviour. But algorithm is semantically secured and
prevents collusive behaviour with accurate results.

Nix et al. (2012) implemented two sketching protocols for the scalar (dot) product of
two vectors which are used as sub-protocols in larger data mining tasks. Results through
extensive experimentations revealed their high accuracy, low data leakage, and orders of
magnitude improved efficiency. The security properties of these approximations under
a security definition are also analyzed. In contrast to the previous definitions these are
found to be very efficient approximation protocols. It is worth to explore the use of these
dot product protocols in other data mining tasks such as support vector machines, neu-
ral networks, and clustering. The notion of a secure approximation and determination of
the relaxation extent of the posed restrictions by the security model need to be looked
at.

Keshavamurthy et al. (2013) demonstrated that GA approach possessed two potential
advantages than traditional frequent pattern mining algorithm. It is found that in fre-
quent pattern mining, the population is formed only once. Conversely, in GA method
the population is formed for each generation that maximizes the sample set. However,
the major drawback of GA approach is connected to the duplication in its sequential
generations. For privacy preservation data mining over distributed dataset, the key goal
is to permit computation of collective statistics for complete database with assurance of
the privacy for confidential data of the contributing databases. Hence, the algorithms for
privacy preservation needs further improvement based on the trade-offs between recon-
struction accuracy and privacy. On top, the fitness function of GA plays an important
role and the convergence of search space is directly proportional to the effectiveness of
fitness function. In other words, superior fitness functions for a given problem leads to
faster convergence of GA.

K-anonymity based PPDM
For the sake of clarity, it is customary to render two important definition of K-anonymity.

The first definition tells that: QI being a quasi-identifier for a given table U with
T(Ay...Ap fc:U— T, fp : T — U, where U C U, a quasi-identifier of T(Q7) is a
set of attributes {Ai...A;} € {A;... Ay}, where 3p; € U such that f; (f-(p)IQ1]) = pi
(Sweeney 2002). The second definition is stated as follows: a table T satisfies K-ano-
nymity if for every tuple t € T there exist k — I other tuples ¢;1t;2 .. .t—1 € T such that
ti1[C] = t[C] = .. . tix—1[C] for all C € Qt (Machanavajjhala et al. 2007).

A scalable solution for each repetition can examine at least one generalization for
each attribute involved in the linking. (Wang et al. 2004) studied the data mining as a
approach used for data masking called data mining based on privacy protection. The
data mining methods are inspected in terms of data generalization concept, where the
data mining is performed by hiding the original information instead of trends and pat-
terns. After data masking, the common data mining methods are employed without any
modification. Two key factors, quality and scalability are specifically focused. The quality
issue is settled via the trade-off between privacy and information. The scalability issue
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is established employing new data architecture while focusing on good generalizations.
Loukides and Gkoulalas-divanis (2012) proposed a novel technique to anonymize the
data by satisfying the data publishers’ utilization necessities experiencing low informa-
tion loss. An accurate information loss measure and an effective anonymization algo-
rithm are introduced to minimize the information losses. Experimental investigations on
click-stream and medical data revealed that that the proposed technique allowed more
reliable query answers than the state state-of-the-art techniques which are equivalent in
terms of efficiency. This work opens up several promising avenues for future research.
These include examining how UAR can be extended to guard against both identity and
sensitive information disclosure and how to produce anonymized data with guaranteed
utility in certain data mining tasks, such as classification and association rule mining.
Friedman et al. (2008) extended the definitions of K-anonymity to prove that the data
mining model does not violate the K-anonymity of the clients represented in the learn-
ing examples. A tool is provided to determine the amount of anonymity retained during
data mining. The proposed approach showed its employment capability to different data
mining problems including classification, association rule mining and clustering.

The K-anonymity is further combined with data mining approach to protect the
respondent’s identity. Ciriani et al. (2008) highlighted the potential threats to K-ano-
nymity, which are raised via the implementation of mining to collect data and analyses
of two main techniques to join K- anonymity in data mining. The different approaches
employed to detect K-anonymity violations are also described. Subsequently, the elimi-
nation of these approaches in association rule mining and classification mining are
emphasized. He et al. (2011) proposed an algorithm based on clustering to produce a
utility-friendly anonymized version of micro data. This method is found to outper-
form the non-homogeneous technique where the size of Ql-attribute is greater than 3.
They achieved a clustering-based K-anonymity algorithm, which revealed considerable
improvement in the utility performance when applied to several real datasets. Recently,
K-anonymous privacy preservation is widely employed. Further modification appeared
to be increasingly difficult without resolving several issues. Patil and Patankar (2013)
examined the standard K-anonymity techniques and its applications. Some of the mul-
tidimensional K-anonymous investigation is carried out. Yet, the present are multidi-
mensional data sets based K-anonymity algorithms using nearest neighbour strategy are
useful to enhancing the quality of anonymity and reducing the information loss.

Lately, K-anonymity became one of the most important topics for privacy preserva-
tion. This can effectively avoid privacy leaks due to link attacks. Certainly, K-anonymity
is one of the widely used approach in all fields (Zhu and Chen 2012). Soodejani et al.
(2012) employed a version of the chase termed as standard chase, which put some
restrictions on the dependencies and constrains, such as being positive and conjunctive.
This area is prospective for future study in fathering investigations on the applicability
of other versions of the chase in the method. The anonymity principle of their method
reveals some similarities to the L-diversity privacy model. Investigation of other pri-
vacy models such as t-closeness may provide a stronger privacy model for the proposed
method with extreme usefulness. Karim et al. (2012) proposed a numerical method to
mine maximal frequent patterns with privacy preserving capability. This method showed
an efficient data transformation technique, a novel encoded and compressed lattice
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structure and MFPM algorithm. The proposed lattice structure and MFPM algorithm
reduced both the search space as well as the searching time. The experimental results
displayed that the MFPM algorithm outperformed PC_Miner and existing maximal fre-
quent pattern mining algorithms. Besides the lattice structure, it outperformed FP-like
tree and PC_tree algorithm as well.

Loukides et al. (2012) proposed a rule-based privacy model that allowed data publish-
ers to express fine-grained protection requirements for both identity and sensitive infor-
mation disclosure. Based on this model, they developed two anonymization algorithms.
Their first algorithm worked in a top-down fashion, employing an efficient strategy to
recursively generalize data with low information loss. Conversely, the second algorithm
used sampling and a mixture of bottom-up and top-down generalized heuristics. This
greatly improved the scalability and maintained low information loss. Extensive experi-
mentations show that these algorithms significantly outperformed the state-of-the-art
in context of recalling data utilization, while keeping good protection and scalability. It
provides a foundation for some future studies. First, while identity and sensitive infor-
mation disclosure are the main concerns in data publishing, it is worth examining mem-
bership disclosure, in which inferring whether an individual’s record is contained in the
published data is to be prevented. Second, it is worth to extend the proposed approach
to anonymize disk-resident data with small memory consumption and I/O overhead.

Vijayarani et al. (2010b) studied K-anonymity as an interesting approach to protect
micro data related to public or semi-public sectors from linking attacks. The possi-
ble threats to K-anonymity approach is described in detail. Particularly, the problems
related to data and the approaches are identified to combine K-anonymity in data min-
ing. Nergiz et al. (2009) improved and extended the definitions of K-anonymity to mani-
fold relations definitions of K-anonymity expression. It is shown that earlier developed
techniques either failed to secure privacy or as a whole reduced the data utilization, and
data protection in a multiple relations setting. A new clustering algorithms is introduced
to obtain multi-relational anonymity. Experimental results illustrated that the proposed
technique is an effective approach in terms of utility and efficiency. Support for arbitrary
schemes with multiple private entities must be considered.

The problem of secured outsourcing of frequent itemset mining on the multi-cloud
environments is studied by Tai et al. (2013). Concerning the challenges in big data anal-
ysis, they suggested to partition the data into several parts and outsourced each part
independently to different cloud based on pseudo-taxonomy, anonymization technique,
known as KAT. They proposed DKNT to ensure the privacy security for each partial data
outsourced to different clouds. Experimental results demonstrated excellent achieve-
ment in terms of protection and better computation efficiency as compared to those on
a single machine. Tai et al. (2010) presented K-support anonymity, which provided pro-
tection against a knowledgeable attacker with the exact support information. To achieve
the K-support anonymity, a pseudo taxonomy tree is introduced with the third party
mine for the generalized frequent item-sets. The construction of the pseudo taxonomy
tree facilitated the hiding of the original items and limited the fake items introduced in
the encrypted database. The results showed very good privacy protection with moderate
storage overhead. K-anonymity is further enhanced and improved by Pan et al. (2012).
They analyzed and compared the developed K-anonymity models and discussed their
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applications. The modified K-anonymity models such as the L-diversity, (a, K)-anonym-
ity and («, L)-diversification K-anonymity overcome the existing limitations related to
privacy. Few K-anonymous methods are employed in obtaining the main technology.

Based on suppression, Deivanai et al. proposed a new K-anonymity technique called
‘kactus’ (Deivanai et al. 2011). In the proposed technique, multi-dimensional suppression
is performed. The values are suppressed to a certain records based on other attributes
without using the domain hierarchy trees. Thus, this approach identified the attributes
independent of classification of the data records and suppressed these values to comply
with K-anonymity. This approach is implemented on different database to determine its
accuracy and efficiency and compared with other K-anonymity based techniques. It is
affirmed that in a multiparty environment, the anonymization can be performed with
perturbation to preserve privacy. A new definition of K-anonymity model for effective
privacy protection of personal sequential data is introduced (Monreale et al. 2014). This
method transformed the sequential datasets into a K-anonymous form, while preserv-
ing the utility of data with reference to a variety of analytical properties. A series of
experimentation on different real-life sequential data bases exhibited that the proposed
approach substantially secured the sequential pattern mining results not only in terms
of extracted patterns but also the support. Furthermore, the results appeared extremely
interesting in the case of dense datasets.

Nergiz and Gok (2014) and Nergiz et al. (2013) introduced the hybrid generalizations.
It not only performed the generalizations, but also involved the mechanism for data
relocation. In data process, the position of certain cells is changed to some populated
indistinguishable data cells. The relocation process helped to generate anonymizations
of finer granularity and ensured underlying privacy. The data relocation is a trade-off
among the utilization and reliability of the data, where the trade-off is controlled by
the provider parameter. The results revealed that a small number of relocations could
enhance the utility as compared to the heuristic metrics and query answering accuracy.
A Hybrid generalizations mechanism to relocate the data is introduced (Nergiz and Gok
2014). In data relocation process, data cells are relocated to certain populated small
groups of tuples which remained distinguishable from each other. Again, the data relo-
cation helped to generate anonymizations of finer granularity which ensured the data
privacy. It is demonstrated that a small number of relocations could remarkably enhance
the utility. New hybrid algorithms can be designed for other privacy metric such as
diversity, (o, k)-anonymity or 8-presence. This would be crucial in addressing different
types of adversaries. There is also room for improvement of the proposed hybrid algo-
rithms. For example, one can design hybrid algorithms that would theoretically bound to
the probability of identification against algorithm-aware adversaries.

Zhang et al. (2013a, 2014a) investigated the issues related to scalability of sub-tree
anonymization for huge data storage on cloud. They developed a hybrid approach along
with Top-Down Specialization (TDS) and Bottom-Up Generalization (BUG) tech-
niques. In this method, one of the two components is selected automatically by com-
paring K-anonymity parameter with workload balancing point which is defined by the
clients. Both TDS and BUG are obtained in a scalable way via a series of deliberately
designed Map Reduce jobs. Based on the contributions herein, it is worth exploring the
next step on scalable privacy preservation aware analysis and scheduling on large-scale
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datasets. Later, Zhang et al. (2014b) introduced a two-phase TDS technique based on
Map Reduce on cloud. In the first phase, the data sets are anonymized and partitioned in
parallel and intermediate results are generated. In the second phase, these intermediate
results are aggregated for further anonymization to produce consistent K-anonymous
datasets. The Map Reduce on cloud is employed for data anonymization and a group
of data is designed deliberately to concretely achieve the specific computation in a scal-
able way. The results from the implementation of this method on real-world datasets
displayed that the presence of scalability and competence of TDS made the performance
much better than existing methods. They have presented an efficient quasi-identifier
index based technique to preserve the privacy over incremental datasets on cloud. In
the proposed technique, QI-groups (QI: quasi-identifier) are listed using domain val-
ues in the current generalization level, which allowed the access only to a small portion
of records in any database rather than admittance to the whole data base (Zhang et al.
2013b, c¢). In addition, Ding et al. 2013) introduced a distributed anonymization protocol
for privacy-preserving data publishing from multiple data providers in a cloud system.
Their method performed a personalized anonymization to satisfy every data provider’s
requirements and the union formed a global anonymization to be published. They also
presented a new anonymization algorithm using R-tree index structure.

Shortcomings of PPDM methods

Currently, several data mining techniques are available to protect the privacy. Broadly,
the privacy preserving techniques are classified according to data distribution, data dis-
tortion, data mining algorithms, anonymization, data or rules hiding, and privacy pro-
tection. Table 1 summarizes different techniques applied to secure data mining privacy.
Intensive research findings over the decades revealed that the existing privacy preserv-
ing data mining search approaches are still suffer from major incompleteness including
the distributed clients’ data to multi semi honest providers, the overhead of comput-
ing global mining, incremental data privacy issue in cloud computing, integrity of min-
ing result, utility of data, scalability and overhead performance. Thus, a strong, efficient,
and scalable model is essential to surmount these shortcomings. Furthermore, proper
anonymization of data is needed to protect the privacy of each client prior to publish.
The connection between personal data and personal identification should be vanished.

Table 1 Description of PPDM methods

PPDM methods Description

Data distribution May contain vertically or horizontally partitioned data

Data distortion Contain perturbation, blocking, aggregation or merging, swapping and sampling

Data mining algorithms  Encloses classification mining, association rule mining, clustering, and Bayesian net-
works etc

Data or rules hidden Denotes to hide main data or rules of innovative data

K-anonymity Achieve the anonymization

L-diverse Keeps the least group size of K, and maintains the diversity of the sensitive attributes

Taxonomy Tree Attributes the generalization to limit the information leakage

Randomization An un-sophisticated and valuable technique to hide the individual data in PPDM

Privacy protection Protects the privacy, it should adapt data carefully to attain optimum data utility
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Such an anonymization must not only satisfy underlying privacy requirements but also
safeguard the utility of the data.

Undoubtedly, K-anonymity is an effective method of privacy protection in data min-
ing. However, several demonstrated that the data processed by this method often failed
to overcome some attacks and are susceptible to internet phishing. Consequently, the
future privacy preserving data mining based K-anonymity needs an advance data infra-
structure to support the combination of present data functionality. This would definitely
fulfil the requirements of different kinds of clients and communities. Although the pre-
sent search algorithms are able to speed up the retrieval process, but they do not scale up
to large volume of data because of the linear increase of response time with the amount
of the searched datasets. The proposed techniques for the searching of distributed large
data among many cloud providers must possess the ability to preserve privacy, must
be scalable, efficient, compatible and good for utility as well as integrity. Table 2 enlists
some relevant studies on privacy preserving data mining as well as their notable merits
and de-merits. Table 3 outline the categorization of current studies.

Conclusion

An inclusive overview on PPDM techniques based on distortion, associative classifica-
tion, randomization, distribution, and k-anonymization is presented. It is established
that PPDM is appeared progressively common due to easy sharing of privacy sensitive
data for analysis. The notable advantages and obvious disadvantages of current studies
are emphasized. Presently, Big Data are often shared across sectors such as health, mili-
tary and others, and transverses across Business-to-Businesses, Entities-to-Entities and
Government-to-Government. Thus, the preservation of privacy against disclosure and
attacks are of critical concern. Several big organizations and governments worldwide
being totally dependent on information communications via internet expressed grave
concerns over privacy issues. Consequently, the rapid development of IT faced new
challenges to PPDM. Data mining possesses being the capability to extract and mine
vast sea of interesting patterns or knowledge from a huge amount of data requires abso-
lute security. The main idea of PPDM is to incorporate the traditional data mining tech-
niques in transforming the data to mask sensitive information. The major challenge is to
efficiently transform the data and recover its mining outcome from the transformed one.
Furthermore, the incompleteness of previous studies indicated forced us to engage in an
extensive inspection of the problems of distributed and published data for sharing and
mining. Consequently, the overhead for global mining computing, preserving privacy of
growing data, the integrity of mining result, the utility of data, the scalability and over-
head performance in the context of PPDM are examined. There is an urgent necessity to
develop a strong, efficient, and scalable model to surmount these issues. In this regard,
we identified the gaps and weaknesses of existing literatures and analyzed them for fur-
ther significant enhancements, more robust privacy protection, and preservation. This
exhaustive and informative review article is hoped to serve as taxonomy for navigating
and comprehending the research advancements towards PPDM.
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